Belle II Software  release-08-01-10
eclTValidationAlgorithm Class Reference

Validate the ecl timing calibrations using a hadronic event selection. More...

#include <eclTValidationAlgorithm.h>

Inheritance diagram for eclTValidationAlgorithm:
Collaboration diagram for eclTValidationAlgorithm:

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclTValidationAlgorithm ()
 ..Constructor
 
 eclTValidationAlgorithm (std::string physicsProcessCollectorName)
 ..Constructor - main one as it allows user to choose which collector data to analyse
 
 ~eclTValidationAlgorithm ()
 ..Destructor
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type. More...
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun. More...
 
std::string getCollectorName () const
 Alias for prefix. More...
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list. More...
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration. More...
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algoithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The rturn bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int cellIDLo
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
int cellIDHi
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
bool readPrevCrysPayload
 Read the previous crystal payload values for comparison.
 
double meanCleanRebinFactor
 Rebinning factor for mean calculation.
 
double meanCleanCutMinFactor
 After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value. More...
 
double clusterTimesFractionWindow_maxtime
 Maximum time for window to calculate cluster time fraction, in ns.
 
bool debugOutput
 Save every histogram and fitted function to debugFilename.
 
std::string debugFilenameBase
 Name of file with debug output, eclTValidationAlgorithm.root by default.
 

Protected Member Functions

EResult calibrate () override
 ..Run algorithm on events More...
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm. More...
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used interally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Validate the ecl timing calibrations using a hadronic event selection.

Definition at line 31 of file eclTValidationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfuly =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

Member Function Documentation

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events

Put root into batch mode so that we don't try to open a graphics window

Write out job parameters


Implements CalibrationAlgorithm.

Definition at line 81 of file eclTValidationAlgorithm.cc.

82 {
84  gROOT->SetBatch();
85 
86 
88  B2INFO("eclTValidationAlgorithm parameters:");
89  B2INFO("cellIDLo = " << cellIDLo);
90  B2INFO("cellIDHi = " << cellIDHi);
91  B2INFO("readPrevCrysPayload = " << readPrevCrysPayload);
92  B2INFO("meanCleanRebinFactor = " << meanCleanRebinFactor);
93  B2INFO("meanCleanCutMinFactor = " << meanCleanCutMinFactor);
94  B2INFO("clusterTimesFractionWindow_maxtime = " << clusterTimesFractionWindow_maxtime);
95 
96 
97  /* Histogram with the data collected by eclTimeCalibrationValidationCollector*/
98  auto clusterTime = getObjectPtr<TH1F>("clusterTime");
99  auto clusterTime_cid = getObjectPtr<TH2F>("clusterTime_cid");
100  auto clusterTime_run = getObjectPtr<TH2F>("clusterTime_run");
101  auto clusterTimeClusterE = getObjectPtr<TH2F>("clusterTimeClusterE");
102  auto dt99_clusterE = getObjectPtr<TH2F>("dt99_clusterE");
103  auto eventT0 = getObjectPtr<TH1F>("eventT0");
104  auto clusterTimeE0E1diff = getObjectPtr<TH1F>("clusterTimeE0E1diff");
105 
106  // Collect other plots just for reference - combines all the runs for these plots.
107  auto cutflow = getObjectPtr<TH1F>("cutflow");
108 
109  vector <int> binProjectionLeft_Time_vs_E_runDep ;
110  vector <int> binProjectionRight_Time_vs_E_runDep ;
111 
112  for (int binCounter = 1; binCounter <= clusterTimeClusterE->GetNbinsX(); binCounter++) {
113  binProjectionLeft_Time_vs_E_runDep.push_back(binCounter);
114  binProjectionRight_Time_vs_E_runDep.push_back(binCounter);
115  }
116 
117  if (!clusterTime_cid) return c_Failure;
118 
121  TFile* histfile = 0;
122 
123  // Vector of time offsets to track how far from nominal the cluster times are.
124  vector<float> t_offsets(ECLElementNumbers::c_NCrystals, 0.0);
125  vector<float> t_offsets_unc(ECLElementNumbers::c_NCrystals, 0.0);
126  vector<long> numClusterPerCrys(ECLElementNumbers::c_NCrystals, 0);
127  vector<bool> crysHasGoodFitandStats(ECLElementNumbers::c_NCrystals, false);
128  vector<bool> crysHasGoodFit(ECLElementNumbers::c_NCrystals, false);
129  int numCrysWithNonZeroEntries = 0 ;
130  int numCrysWithGoodFit = 0 ;
131 
132  int minNumEntries = 40;
133 
134  double mean;
135  double sigma;
136 
137 
138  bool minRunNumBool = false;
139  bool maxRunNumBool = false;
140  int minRunNum = -1;
141  int maxRunNum = -1;
142  int minExpNum = -1;
143  int maxExpNum = -1;
144  for (auto expRun : getRunList()) {
145  int expNumber = expRun.first;
146  int runNumber = expRun.second;
147  if (!minRunNumBool) {
148  minExpNum = expNumber;
149  minRunNum = runNumber;
150  minRunNumBool = true;
151  }
152  if (!maxRunNumBool) {
153  maxExpNum = expNumber;
154  maxRunNum = runNumber;
155  maxRunNumBool = true;
156  }
157  if (((minRunNum > runNumber) && (minExpNum >= expNumber)) ||
158  (minExpNum > expNumber)) {
159  minExpNum = expNumber;
160  minRunNum = runNumber;
161  }
162  if (((maxRunNum < runNumber) && (maxExpNum <= expNumber)) ||
163  (maxExpNum < expNumber))
164 
165  {
166  maxExpNum = expNumber;
167  maxRunNum = runNumber;
168  }
169  }
170 
171  B2INFO("debugFilenameBase = " << debugFilenameBase);
172  string runNumsString = string("_") + to_string(minExpNum) + "_" + to_string(minRunNum) + string("-") +
173  to_string(maxExpNum) + "_" + to_string(maxRunNum);
174  string debugFilename = debugFilenameBase + runNumsString + string(".root");
175 
176 
177  // Need to load information about the event/run/experiment to get the right database information
178  // Will be used for:
179  // * ECLChannelMapper (to map crystal to crates)
180  // * crystal payload updating for iterating crystal and crate fits
181  int eventNumberForCrates = 1;
182 
183 
184  //-------------------------------------------------------------------
185  /* Uploading older payloads for the current set of runs */
186 
188  // simulate the initialize() phase where we can register objects in the DataStore
190  evtPtr.registerInDataStore();
192  // now construct the event metadata
193  evtPtr.construct(eventNumberForCrates, minRunNum, minExpNum);
194  // and update the database contents
195  DBStore& dbstore = DBStore::Instance();
196  dbstore.update();
197  // this is only needed it the payload might be intra-run dependent,
198  // that is if it might change during one run as well
199  dbstore.updateEvent();
200 
201 
202  B2INFO("Uploading payload for exp " << minExpNum << ", run " << minRunNum << ", event " << eventNumberForCrates);
203  updateDBObjPtrs(eventNumberForCrates, minRunNum, minExpNum);
204  unique_ptr<ECLChannelMapper> crystalMapper(new ECL::ECLChannelMapper());
205  crystalMapper->initFromDB();
206 
207  /* 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency.
208  Same for all crystals. */
209  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
210 
211  //------------------------------------------------------------------------
212  //..Read payloads from database
213  DBObjPtr<Belle2::ECLCrystalCalib> crystalTimeObject("ECLCrystalTimeOffset");
214  B2INFO("Dumping payload");
215 
216  //..Get vectors of values from the payloads
217  std::vector<float> currentValuesCrys = crystalTimeObject->getCalibVector();
218  std::vector<float> currentUncCrys = crystalTimeObject->getCalibUncVector();
219 
220  //..Print out a few values for quality control
221  B2INFO("Values read from database. Write out for their values for comparison against those from tcol");
222  for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
223  B2INFO("ts: cellID " << ic + 1 << " " << currentValuesCrys[ic] << " +/- " << currentUncCrys[ic]);
224  }
225 
226 
227  //..Read in the previous crystal payload values
228  DBObjPtr<Belle2::ECLCrystalCalib> customPrevCrystalTimeObject("ECLCrystalTimeOffsetPreviousValues");
229  vector<float> prevValuesCrys(ECLElementNumbers::c_NCrystals);
230  if (readPrevCrysPayload) {
231  //..Get vectors of values from the payloads
232  prevValuesCrys = customPrevCrystalTimeObject->getCalibVector();
233 
234  //..Print out a few values for quality control
235  B2INFO("Previous values read from database. Write out for their values for comparison against those from tcol");
236  for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
237  B2INFO("ts custom previous payload: cellID " << ic + 1 << " " << prevValuesCrys[ic]);
238  }
239  }
240 
241 
242  //------------------------------------------------------------------------
243  //..Start looking at timing information
244 
245  B2INFO("Debug output rootfile: " << debugFilename);
246  histfile = new TFile(debugFilename.c_str(), "recreate");
247 
248 
249  clusterTime ->Write();
250  clusterTime_cid ->Write();
251  clusterTime_run ->Write();
252  clusterTimeClusterE ->Write();
253  dt99_clusterE ->Write();
254  eventT0 ->Write();
255  clusterTimeE0E1diff ->Write();
256 
257  cutflow->Write();
258 
259 
260  double hist_tmin = clusterTime->GetXaxis()->GetXmin();
261  double hist_tmax = clusterTime->GetXaxis()->GetXmax();
262  int hist_nTbins = clusterTime->GetNbinsX();
263 
264  B2INFO("hist_tmin = " << hist_tmin);
265  B2INFO("hist_tmax = " << hist_tmax);
266  B2INFO("hist_nTbins = " << hist_nTbins);
267 
268  double time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
269  double time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
270 
271 
272  // define histogram for keeping track of the peak of the cluster times per crystal
273  auto peakClusterTime_cid = new TH1F("peakClusterTime_cid", ";cell id;Peak cluster time [ns]", ECLElementNumbers::c_NCrystals, 1,
275  auto peakClusterTimes = new TH1F("peakClusterTimes",
276  "-For crystals with at least one hit-;Peak cluster time [ns];Number of crystals",
277  hist_nTbins, hist_tmin, hist_tmax);
278  auto peakClusterTimesGoodFit = new TH1F("peakClusterTimesGoodFit",
279  "-For crystals with a good fit to distribution of hits-;Peak cluster time [ns];Number of crystals",
280  hist_nTbins, hist_tmin, hist_tmax);
281 
282  auto peakClusterTimesGoodFit__cid = new TH1F("peakClusterTimesGoodFit__cid",
283  "-For crystals with a good fit to distribution of hits-;cell id (only crystals with good fit);Peak cluster time [ns]",
285 
286 
287  // define histograms to keep track of the difference in the new crystal times vs the old ones
288  auto tsNew_MINUS_tsCustomPrev__cid = new TH1F("TsNew_MINUS_TsCustomPrev__cid",
289  ";cell id; ts(new|merged) - ts(old = 'pre-calib'|merged) [ns]",
291 
292  auto tsNew_MINUS_tsCustomPrev = new TH1F("TsNew_MINUS_TsCustomPrev",
293  ";ts(new | merged) - ts(old = 'pre-calib' | merged) [ns];Number of crystals",
294  285, -69.5801, 69.5801);
295 
296 
297 
298  // Histogram to keep track of the fraction of cluster times within a window.
299  double timeWindow_maxTime = clusterTimesFractionWindow_maxtime;
300  B2INFO("timeWindow_maxTime = " << timeWindow_maxTime);
301  int binyLeft = clusterTime_cid->GetYaxis()->FindBin(-timeWindow_maxTime);
302  int binyRight = clusterTime_cid->GetYaxis()->FindBin(timeWindow_maxTime);
303  double windowLowTimeFromBin = clusterTime_cid->GetYaxis()->GetBinLowEdge(binyLeft);
304  double windowHighTimeFromBin = clusterTime_cid->GetYaxis()->GetBinLowEdge(binyRight + 1);
305  std::string s_lowTime = std::to_string(windowLowTimeFromBin);
306  std::string s_highTime = std::to_string(windowHighTimeFromBin);
307  TString fracWindowTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
308  "] ns;cell id;Fraction of cluster times in window";
309  B2INFO("fracWindowTitle = " << fracWindowTitle);
310  TString fracWindowInGoodECLRingsTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
311  "] ns and in good ECL theta rings;cell id;Fraction cluster times in window + good ECL rings";
312  B2INFO("fracWindowInGoodECLRingsTitle = " << fracWindowInGoodECLRingsTitle);
313  B2INFO("Good ECL rings skip gaps in the acceptance, and includes ECL theta IDs: 3-10, 15-39, 44-56, 61-66.");
314 
315  TString fracWindowHistTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
316  "] ns;Fraction of cluster times in window;Number of crystals";
317 
318  auto clusterTimeNumberInWindow__cid = new TH1F("clusterTimeNumberInWindow__cid", fracWindowTitle, ECLElementNumbers::c_NCrystals, 1,
320  auto clusterTimeNumberInWindowInGoodECLRings__cid = new TH1F("clusterTimeNumberInWindowInGoodECLRings__cid", fracWindowTitle,
323  auto clusterTimeNumber__cid = new TH1F("clusterTimeNumber_cid", fracWindowTitle, ECLElementNumbers::c_NCrystals, 1,
325  auto clusterTimeFractionInWindow = new TH1F("clusterTimeFractionInWindow", fracWindowHistTitle, 110, 0.0, 1.1);
326 
327  clusterTimeNumberInWindow__cid->Sumw2();
328  clusterTimeNumberInWindowInGoodECLRings__cid->Sumw2();
329  clusterTimeNumber__cid->Sumw2();
330 
331 
332 
333  /* CRYSTAL BY CRYSTAL VALIDATION */
334 
336 
337  // Loop over all the crystals for doing the crystal calibation
338  for (int crys_id = cellIDLo; crys_id <= cellIDHi; crys_id++) {
339  double clusterTime_mean = 0;
340  double clusterTime_mean_unc = 0;
341 
342  B2INFO("Crystal cell id = " << crys_id);
343 
344  eclgeo->Mapping(crys_id - 1);
345  int thetaID = eclgeo->GetThetaID();
346 
347 
348  /* Determining which bins to mask out for mean calculation
349  */
350 
351  TH1D* h_time = clusterTime_cid->ProjectionY((std::string("h_time_psi__") + std::to_string(crys_id)).c_str(),
352  crys_id, crys_id);
353  TH1D* h_timeMask = (TH1D*)h_time->Clone();
354  TH1D* h_timeMasked = (TH1D*)h_time->Clone((std::string("h_time_psi_masked__") + std::to_string(crys_id)).c_str());
355  TH1D* h_timeRebin = (TH1D*)h_time->Clone();
356 
357  // Do rebinning and cleaning of some bins but only if the user selection values call for it since it slows the code down
358  if (meanCleanRebinFactor != 1 || meanCleanCutMinFactor != 1) {
359 
360  h_timeRebin->Rebin(meanCleanRebinFactor);
361 
362  h_timeMask->Scale(0.0); // set all bins to being masked off
363 
364  time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
365  time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
366 
367  // Find value of bin with max value
368  double histRebin_max = h_timeRebin->GetMaximum();
369 
370  bool maskedOutNonZeroBin = false;
371  // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
372  for (int bin = 1; bin <= h_timeRebin->GetNbinsX(); bin++) {
373  for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
374  int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
375  if (nonRebinnedBinNumber < h_time->GetNbinsX()) {
376  if (h_timeRebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
377  h_timeMask->SetBinContent(nonRebinnedBinNumber, 1);
378 
379  // Save the lower and upper edges of the rebin histogram time range for fitting purposes
380  double x_lower = h_timeRebin->GetXaxis()->GetBinLowEdge(bin);
381  double x_upper = h_timeRebin->GetXaxis()->GetBinUpEdge(bin);
382  if (x_lower < time_fit_min) {
383  time_fit_min = x_lower;
384  }
385  if (x_upper > time_fit_max) {
386  time_fit_max = x_upper;
387  }
388 
389  } else {
390  if (h_time->GetBinContent(nonRebinnedBinNumber) > 0) {
391  B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_timeMasked->GetBinContent(nonRebinnedBinNumber) << " to 0");
392  maskedOutNonZeroBin = true;
393  }
394  h_timeMasked->SetBinContent(nonRebinnedBinNumber, 0);
395  }
396  }
397  }
398  }
399  B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
400  h_timeMasked->ResetStats();
401  h_timeMask->ResetStats();
402 
403  }
404 
405  // Calculate mean from masked histogram
406  double default_meanMasked = h_timeMasked->GetMean();
407  //double default_meanMasked_unc = h_timeMasked->GetMeanError();
408  B2INFO("default_meanMasked = " << default_meanMasked);
409 
410 
411  // Get the overall mean and standard deviation of the distribution within the plot. This doesn't require a fit.
412  double default_mean = h_time->GetMean();
413  double default_mean_unc = h_time->GetMeanError();
414  double default_sigma = h_time->GetStdDev();
415 
416  B2INFO("Fitting crystal between " << time_fit_min << " and " << time_fit_max);
417 
418  // gaus(0) is a substitute for [0]*exp(-0.5*((x-[1])/[2])**2)
419  TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
420  gaus->SetParNames("numCrystalHitsNormalization", "mean", "sigma");
421  /*
422  gaus->ReleaseParameter(0); // number of crystals
423  gaus->ReleaseParameter(1); // mean
424  gaus->ReleaseParameter(2); // standard deviation
425  */
426 
427  double hist_max = h_time->GetMaximum();
428 
429  //=== Estimate initial value of sigma as std dev.
430  double stddev = h_time->GetStdDev();
431  sigma = stddev;
432  mean = default_mean;
433 
434  //=== Setting parameters for initial iteration
435  gaus->SetParameter(0, hist_max / 2.);
436  gaus->SetParameter(1, mean);
437  gaus->SetParameter(2, sigma);
438  // L -- Use log likelihood method
439  // I -- Use integral of function in bin instead of value at bin center // not using
440  // R -- Use the range specified in the function range
441  // B -- Fix one or more parameters with predefined function // not using
442  // Q -- Quiet mode
443 
444  h_timeMasked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
445 
446  double fit_mean = gaus->GetParameter(1);
447  double fit_mean_unc = gaus->GetParError(1);
448  double fit_sigma = gaus->GetParameter(2);
449 
450  double meanDiff = fit_mean - default_mean;
451  double meanUncDiff = fit_mean_unc - default_mean_unc;
452  double sigmaDiff = fit_sigma - default_sigma;
453 
454  bool good_fit = false;
455 
456  if ((fabs(meanDiff) > 10) ||
457  (fabs(meanUncDiff) > 10) ||
458  (fabs(sigmaDiff) > 10) ||
459  (fit_mean_unc > 3) ||
460  (fit_sigma < 0.1) ||
461  (fit_mean < time_fit_min) ||
462  (fit_mean > time_fit_max)) {
463  B2INFO("Crystal cell id = " << crys_id);
464  B2INFO("fit mean, default mean = " << fit_mean << ", " << default_mean);
465  B2INFO("fit mean unc, default mean unc = " << fit_mean_unc << ", " << default_mean_unc);
466  B2INFO("fit sigma, default sigma = " << fit_sigma << ", " << default_sigma);
467 
468  B2INFO("crystal fit mean - hist mean = " << meanDiff);
469  B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
470  B2INFO("fit sigma - hist sigma = " << sigmaDiff);
471 
472  B2INFO("fit_mean = " << fit_mean);
473  B2INFO("time_fit_min = " << time_fit_min);
474  B2INFO("time_fit_max = " << time_fit_max);
475 
476  if (fabs(meanDiff) > 10) B2INFO("fit mean diff too large");
477  if (fabs(meanUncDiff) > 10) B2INFO("fit mean unc diff too large");
478  if (fabs(sigmaDiff) > 10) B2INFO("fit mean sigma diff too large");
479  if (fit_mean_unc > 3) B2INFO("fit mean unc too large");
480  if (fit_sigma < 0.1) B2INFO("fit sigma too small");
481 
482  } else {
483  good_fit = true;
484  numCrysWithGoodFit++;
485  crysHasGoodFit[crys_id - 1] = true ;
486  }
487 
488 
489  int numEntries = h_time->GetEntries();
490  // If number of entries in histogram is greater than X then use the statistical information from the data otherwise leave crystal uncalibrated. Histograms are still shown though.
491  // ALSO require the that fits are good.
492  if ((numEntries >= minNumEntries) && good_fit) {
493  clusterTime_mean = fit_mean;
494  clusterTime_mean_unc = fit_mean_unc;
495  crysHasGoodFitandStats[crys_id - 1] = true ;
496  } else {
497  clusterTime_mean = default_mean;
498  clusterTime_mean_unc = default_mean_unc;
499  }
500 
501  if (numEntries < minNumEntries) B2INFO("Number of entries less than minimum");
502  if (numEntries == 0) B2INFO("Number of entries == 0");
503 
504 
505  t_offsets[crys_id - 1] = clusterTime_mean ;
506  t_offsets_unc[crys_id - 1] = clusterTime_mean_unc ;
507  numClusterPerCrys[crys_id - 1] = numEntries ;
508 
509  histfile->WriteTObject(h_time, (std::string("h_time_psi") + std::to_string(crys_id)).c_str());
510  histfile->WriteTObject(h_timeMasked, (std::string("h_time_psi_masked") + std::to_string(crys_id)).c_str());
511 
512  // Set this for each crystal even if there are zero entries
513  peakClusterTime_cid->SetBinContent(crys_id, t_offsets[crys_id - 1]);
514  peakClusterTime_cid->SetBinError(crys_id, t_offsets_unc[crys_id - 1]);
515 
516  /* Store mean cluster time info in a separate histogram but only if there is at
517  least one entry for that crystal. */
518  if (numEntries > 0) {
519  peakClusterTimes->Fill(t_offsets[crys_id - 1]);
520  numCrysWithNonZeroEntries++ ;
521  }
522  if ((numEntries >= minNumEntries) && good_fit) {
523  peakClusterTimesGoodFit->Fill(t_offsets[crys_id - 1]);
524  peakClusterTimesGoodFit__cid->SetBinContent(crys_id, t_offsets[crys_id - 1]);
525  peakClusterTimesGoodFit__cid->SetBinError(crys_id, t_offsets_unc[crys_id - 1]);
526  }
527 
528 
529  // Find the fraction of cluster times within +-X ns and fill histograms
530  double numClusterTimesWithinWindowFraction = h_time->Integral(binyLeft, binyRight) ;
531  double clusterTimesWithinWindowFraction = numClusterTimesWithinWindowFraction;
532  if (numEntries > 0) {
533  clusterTimesWithinWindowFraction /= numEntries;
534  } else {
535  clusterTimesWithinWindowFraction = -0.1;
536  }
537 
538  B2INFO("Crystal cell id = " << crys_id << ", theta id = " <<
539  thetaID << ", clusterTimesWithinWindowFraction = " <<
540  numClusterTimesWithinWindowFraction << " / " << numEntries << " = " <<
541  clusterTimesWithinWindowFraction);
542 
543  clusterTimeFractionInWindow->Fill(clusterTimesWithinWindowFraction);
544  clusterTimeNumberInWindow__cid->SetBinContent(crys_id, numClusterTimesWithinWindowFraction);
545  clusterTimeNumber__cid->SetBinContent(crys_id, numEntries);
546 
547  if ((thetaID >= 3 && thetaID <= 10) ||
548  (thetaID >= 15 && thetaID <= 39) ||
549  (thetaID >= 44 && thetaID <= 56) ||
550  (thetaID >= 61 && thetaID <= 66)) {
551  clusterTimeNumberInWindowInGoodECLRings__cid->SetBinContent(crys_id, numClusterTimesWithinWindowFraction);
552  }
553 
554 
555  delete gaus;
556  }
557 
558  // Find the fraction of cluster times within +-X ns and fill histogram
559  auto g_clusterTimeFractionInWindow__cid = new TGraphAsymmErrors(clusterTimeNumberInWindow__cid, clusterTimeNumber__cid, "w");
560  auto g_clusterTimeFractionInWindowInGoodECLRings__cid = new TGraphAsymmErrors(clusterTimeNumberInWindowInGoodECLRings__cid,
561  clusterTimeNumber__cid, "w");
562  g_clusterTimeFractionInWindow__cid->SetTitle(fracWindowTitle);
563  g_clusterTimeFractionInWindowInGoodECLRings__cid->SetTitle(fracWindowInGoodECLRingsTitle);
564 
565 
566  peakClusterTime_cid->ResetStats();
567  peakClusterTimesGoodFit__cid->ResetStats();
568 
569  histfile->WriteTObject(peakClusterTime_cid, "peakClusterTime_cid");
570  histfile->WriteTObject(peakClusterTimes, "peakClusterTimes");
571  histfile->WriteTObject(peakClusterTimesGoodFit__cid, "peakClusterTimesGoodFit__cid");
572  histfile->WriteTObject(peakClusterTimesGoodFit, "peakClusterTimesGoodFit");
573  histfile->WriteTObject(g_clusterTimeFractionInWindow__cid, "g_clusterTimeFractionInWindow__cid");
574  histfile->WriteTObject(g_clusterTimeFractionInWindowInGoodECLRings__cid, "g_clusterTimeFractionInWindowInGoodECLRings__cid");
575  histfile->WriteTObject(clusterTimeFractionInWindow, "clusterTimeFractionInWindow");
576 
577 
578 
579  /* -----------------------------------------------------------
580  Fit the time histograms for different energy slices */
581 
582  vector <int> binProjectionLeft = binProjectionLeft_Time_vs_E_runDep;
583  vector <int> binProjectionRight = binProjectionRight_Time_vs_E_runDep;
584 
585  auto h2 = clusterTimeClusterE;
586 
587 
588  double max_E = h2->GetXaxis()->GetXmax();
589 
590  // Determine the energy bins. Save the left edge for histogram purposes
591  vector <double> E_binEdges(binProjectionLeft.size() + 1);
592  for (long unsigned int x_bin = 0; x_bin < binProjectionLeft.size(); x_bin++) {
593  TH1D* h_E_t_slice = h2->ProjectionX("h_E_t_slice", 1, 1) ;
594  E_binEdges[x_bin] = h_E_t_slice->GetXaxis()->GetBinLowEdge(binProjectionLeft[x_bin]) ;
595  B2INFO("E_binEdges[" << x_bin << "] = " << E_binEdges[x_bin]);
596  if (x_bin == binProjectionLeft.size() - 1) {
597  E_binEdges[x_bin + 1] = max_E ;
598  B2INFO("E_binEdges[" << x_bin + 1 << "] = " << E_binEdges[x_bin + 1]);
599  }
600  }
601 
602 
603  auto clusterTimePeak_ClusterEnergy_varBin = new TH1F("clusterTimePeak_ClusterEnergy_varBin",
604  ";ECL cluster energy [GeV];Cluster time fit position [ns]", E_binEdges.size() - 1, &(E_binEdges[0]));
605  auto clusterTimePeakWidth_ClusterEnergy_varBin = new TH1F("clusterTimePeakWidth_ClusterEnergy_varBin",
606  ";ECL cluster energy [GeV];Cluster time fit width [ns]", E_binEdges.size() - 1, &(E_binEdges[0]));
607 
608  int Ebin_counter = 1 ;
609 
610  // Loop over all the energy bins
611  for (long unsigned int x_bin = 0; x_bin < binProjectionLeft.size(); x_bin++) {
612  double clusterTime_mean = 0;
613  double clusterTime_mean_unc = 0;
614  double clusterTime_sigma = 0;
615 
616  B2INFO("x_bin = " << x_bin);
617 
618  /* Determining which bins to mask out for mean calculation
619  */
620  TH1D* h_time = h2->ProjectionY(("h_time_E_slice_" + std::to_string(x_bin)).c_str(), binProjectionLeft[x_bin],
621  binProjectionRight[x_bin]) ;
622 
623 
624  TH1D* h_E_t_slice = h2->ProjectionX("h_E_t_slice", 1, 1) ;
625  double lowE = h_E_t_slice->GetXaxis()->GetBinLowEdge(binProjectionLeft[x_bin]) ;
626  double highE = h_E_t_slice->GetXaxis()->GetBinUpEdge(binProjectionRight[x_bin]) ;
627  double meanE = (lowE + highE) / 2.0 ;
628 
629  B2INFO("bin " << Ebin_counter << ": low E = " << lowE << ", high E = " << highE << " GeV");
630 
631  TH1D* h_timeMask = (TH1D*)h_time->Clone();
632  TH1D* h_timeMasked = (TH1D*)h_time->Clone((std::string("h_time_E_slice_masked__") + std::to_string(meanE)).c_str());
633  TH1D* h_timeRebin = (TH1D*)h_time->Clone();
634 
635 
636  if (meanCleanRebinFactor != 1 || meanCleanCutMinFactor != 1) {
637 
638  h_timeRebin->Rebin(meanCleanRebinFactor);
639 
640  h_timeMask->Scale(0.0); // set all bins to being masked off
641 
642  time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
643  time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
644 
645  // Find value of bin with max value
646  double histRebin_max = h_timeRebin->GetMaximum();
647 
648  bool maskedOutNonZeroBin = false;
649  // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
650  for (int bin = 1; bin <= h_timeRebin->GetNbinsX(); bin++) {
651  for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
652  int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
653  if (nonRebinnedBinNumber < h_time->GetNbinsX()) {
654  if (h_timeRebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
655  h_timeMask->SetBinContent(nonRebinnedBinNumber, 1);
656 
657  // Save the lower and upper edges of the rebin histogram time range for fitting purposes
658  double x_lower = h_timeRebin->GetXaxis()->GetBinLowEdge(bin);
659  double x_upper = h_timeRebin->GetXaxis()->GetBinUpEdge(bin);
660  if (x_lower < time_fit_min) {
661  time_fit_min = x_lower;
662  }
663  if (x_upper > time_fit_max) {
664  time_fit_max = x_upper;
665  }
666 
667  } else {
668  if (h_time->GetBinContent(nonRebinnedBinNumber) > 0) {
669  B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_timeMasked->GetBinContent(nonRebinnedBinNumber) << " to 0");
670  maskedOutNonZeroBin = true;
671  }
672  h_timeMasked->SetBinContent(nonRebinnedBinNumber, 0);
673  }
674  }
675  }
676  }
677  B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
678  h_timeMasked->ResetStats();
679  h_timeMask->ResetStats();
680 
681  }
682 
683 
684  // Calculate mean from masked histogram
685  double default_meanMasked = h_timeMasked->GetMean();
686  //double default_meanMasked_unc = h_timeMasked->GetMeanError();
687  B2INFO("default_meanMasked = " << default_meanMasked);
688 
689 
690  // Get the overall mean and standard deviation of the distribution within the plot. This doesn't require a fit.
691  double default_mean = h_time->GetMean();
692  double default_mean_unc = h_time->GetMeanError();
693  double default_sigma = h_time->GetStdDev();
694 
695  B2INFO("Fitting crystal between " << time_fit_min << " and " << time_fit_max);
696 
697  // gaus(0) is a substitute for [0]*exp(-0.5*((x-[1])/[2])**2)
698  TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
699  gaus->SetParNames("numCrystalHitsNormalization", "mean", "sigma");
700  /*
701  gaus->ReleaseParameter(0); // number of crystals
702  gaus->ReleaseParameter(1); // mean
703  gaus->ReleaseParameter(2); // standard deviation
704  */
705 
706  double hist_max = h_time->GetMaximum();
707 
708  //=== Estimate initial value of sigma as std dev.
709  double stddev = h_time->GetStdDev();
710  sigma = stddev;
711  mean = default_mean;
712 
713  //=== Setting parameters for initial iteration
714  gaus->SetParameter(0, hist_max / 2.);
715  gaus->SetParameter(1, mean);
716  gaus->SetParameter(2, sigma);
717  // L -- Use log likelihood method
718  // I -- Use integral of function in bin instead of value at bin center // not using
719  // R -- Use the range specified in the function range
720  // B -- Fix one or more parameters with predefined function // not using
721  // Q -- Quiet mode
722 
723  h_timeMasked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
724 
725  double fit_mean = gaus->GetParameter(1);
726  double fit_mean_unc = gaus->GetParError(1);
727  double fit_sigma = gaus->GetParameter(2);
728 
729  double meanDiff = fit_mean - default_mean;
730  double meanUncDiff = fit_mean_unc - default_mean_unc;
731  double sigmaDiff = fit_sigma - default_sigma;
732 
733  bool good_fit = false;
734 
735  if ((fabs(meanDiff) > 10) ||
736  (fabs(meanUncDiff) > 10) ||
737  (fabs(sigmaDiff) > 10) ||
738  (fit_mean_unc > 3) ||
739  (fit_sigma < 0.1) ||
740  (fit_mean < time_fit_min) ||
741  (fit_mean > time_fit_max)) {
742  B2INFO("x_bin = " << x_bin);
743  B2INFO("fit mean, default mean = " << fit_mean << ", " << default_mean);
744  B2INFO("fit mean unc, default mean unc = " << fit_mean_unc << ", " << default_mean_unc);
745  B2INFO("fit sigma, default sigma = " << fit_sigma << ", " << default_sigma);
746 
747  B2INFO("crystal fit mean - hist mean = " << meanDiff);
748  B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
749  B2INFO("fit sigma - hist sigma = " << sigmaDiff);
750 
751  B2INFO("fit_mean = " << fit_mean);
752  B2INFO("time_fit_min = " << time_fit_min);
753  B2INFO("time_fit_max = " << time_fit_max);
754 
755  if (fabs(meanDiff) > 10) B2INFO("fit mean diff too large");
756  if (fabs(meanUncDiff) > 10) B2INFO("fit mean unc diff too large");
757  if (fabs(sigmaDiff) > 10) B2INFO("fit mean sigma diff too large");
758  if (fit_mean_unc > 3) B2INFO("fit mean unc too large");
759  if (fit_sigma < 0.1) B2INFO("fit sigma too small");
760 
761  } else {
762  good_fit = true;
763  }
764 
765 
766  int numEntries = h_time->GetEntries();
767  /* If number of entries in histogram is greater than X then use the statistical information
768  from the data otherwise leave crystal uncalibrated. Histograms are still shown though.
769  ALSO require the that fits are good. */
770  if ((numEntries >= minNumEntries) && good_fit) {
771  clusterTime_mean = fit_mean;
772  clusterTime_mean_unc = fit_mean_unc;
773  clusterTime_sigma = fit_sigma;
774  } else {
775  clusterTime_mean = default_mean;
776  clusterTime_mean_unc = default_mean_unc;
777  clusterTime_sigma = default_sigma;
778  }
779 
780  if (numEntries < minNumEntries) B2INFO("Number of entries less than minimum");
781  if (numEntries == 0) B2INFO("Number of entries == 0");
782 
783  histfile->WriteTObject(h_time, (std::string("h_time_E_slice") + std::to_string(meanE)).c_str());
784  histfile->WriteTObject(h_timeMasked, (std::string("h_time_E_slice_masked") + std::to_string(meanE)).c_str());
785 
786  // store mean cluster time info in a separate histogram
787  clusterTimePeak_ClusterEnergy_varBin->SetBinContent(Ebin_counter, clusterTime_mean);
788  clusterTimePeak_ClusterEnergy_varBin->SetBinError(Ebin_counter, clusterTime_mean_unc);
789 
790  clusterTimePeakWidth_ClusterEnergy_varBin->SetBinContent(Ebin_counter, clusterTime_sigma);
791  clusterTimePeakWidth_ClusterEnergy_varBin->SetBinError(Ebin_counter, 0);
792 
793  Ebin_counter++;
794 
795  delete gaus;
796  }
797 
798 
799 
800  /***************************************************************************
801  For the user, print out some information about the peak cluster times.
802  It is sorted by the absolute value of the peak cluster time so that the
803  worst times are at the end.
804  ***************************************************************************/
805 
806  // Vector to store element with respective present index
807  vector< pair<double, int> > fitClusterTime__crystalIDBase0__pairs;
808 
809  // Prepare a vector of pairs containing the fitted cluster time and cell ID (base 0)
810  for (int cid = 0; cid < ECLElementNumbers::c_NCrystals; cid++) {
811  fitClusterTime__crystalIDBase0__pairs.push_back(make_pair(0.0, cid));
812  }
813 
814  // Inserting element in pair vector to keep track of crystal id.
815  for (int crys_id = cellIDLo; crys_id <= cellIDHi; crys_id++) {
816  fitClusterTime__crystalIDBase0__pairs[crys_id - 1] = make_pair(fabs(t_offsets[crys_id - 1]), crys_id - 1) ;
817  }
818 
819  // Sorting by the absolute value of the fitted cluster time for the crystal
820  sort(fitClusterTime__crystalIDBase0__pairs.begin(), fitClusterTime__crystalIDBase0__pairs.end());
821 
822 
823  // Print out the fitted peak cluster time values sorted by their absolute value
824  B2INFO("-------- List of the (fitted) peak cluster times sorted by their absolute value ----------");
825  B2INFO("------------------------------------------------------------------------------------------");
826  B2INFO("------------------------------------------------------------------------------------------");
827  B2INFO("Quoted # of clusters is before the cutting off of the distribution tails, cellID=1..ECLElementNumbers::c_NCrystals, crysID=0..8735");
828 
829  bool hasHitThresholdBadTimes = false ;
830  for (int iSortedTimes = 0; iSortedTimes < ECLElementNumbers::c_NCrystals; iSortedTimes++) {
831  int cid = fitClusterTime__crystalIDBase0__pairs[iSortedTimes].second ;
832  if (!hasHitThresholdBadTimes && fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first > 2) {
833  B2INFO("======== |t_fit| > Xns threshold ======");
834  hasHitThresholdBadTimes = true;
835  }
836  //B2INFO("crystal ID = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << ", # clusters = " << numClusterPerCrys[cid] << ", fabs(t) = " << fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first );
837  B2INFO("cid = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << " ns, # clust = " <<
838  numClusterPerCrys[cid] << ", good fit = " << crysHasGoodFit[cid] << ", good fit & stats = " << crysHasGoodFitandStats[cid]);
839  }
840 
841 
842 
843 
844 
845  // Print out just a subset that definitely don't look good even though they have good stats.
846  B2INFO("######## List of poor (fitted) peak cluster times sorted by their absolute value #########");
847  B2INFO("##########################################################################################");
848  B2INFO("##########################################################################################");
849 
850  for (int iSortedTimes = 0; iSortedTimes < ECLElementNumbers::c_NCrystals; iSortedTimes++) {
851  int cid = fitClusterTime__crystalIDBase0__pairs[iSortedTimes].second ;
852  if (fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first > 2 && crysHasGoodFitandStats[cid]) {
853  B2INFO("WARNING: cid = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << " ns, # clust = " <<
854  numClusterPerCrys[cid] << ", good fit = " << crysHasGoodFit[cid] << ", good fit & stats = " << crysHasGoodFitandStats[cid]);
855  }
856  }
857 
858 
859  B2INFO("~~~~~~~~");
860  B2INFO("Number of crystals with non-zero number of hits = " << numCrysWithNonZeroEntries);
861  B2INFO("Number of crystals with good quality fits = " << numCrysWithGoodFit);
862 
863 
864  clusterTimePeak_ClusterEnergy_varBin->ResetStats();
865  clusterTimePeakWidth_ClusterEnergy_varBin->ResetStats();
866 
867  histfile->WriteTObject(clusterTimePeak_ClusterEnergy_varBin, "clusterTimePeak_ClusterEnergy_varBin");
868  histfile->WriteTObject(clusterTimePeakWidth_ClusterEnergy_varBin, "clusterTimePeakWidth_ClusterEnergy_varBin");
869 
870 
871 
872  /* Fill histograms with the difference in the ts values from this iteration
873  and the previous values read in from the payload. */
874  B2INFO("Filling histograms for difference in crystal payload values and the pre-calibration values. These older values may be from a previous bucket or older reprocessing of the data.");
875  for (int crys_id = 1; crys_id <= ECLElementNumbers::c_NCrystals; crys_id++) {
876  double tsDiffCustomOld_ns = -999;
877  if (readPrevCrysPayload) {
878  tsDiffCustomOld_ns = (currentValuesCrys[crys_id - 1] - prevValuesCrys[crys_id - 1]) * TICKS_TO_NS;
879  B2INFO("Crystal " << crys_id << ": ts new merged - 'before 1st iter' merged = (" <<
880  currentValuesCrys[crys_id - 1] << " - " << prevValuesCrys[crys_id - 1] <<
881  ") ticks * " << TICKS_TO_NS << " ns/tick = " << tsDiffCustomOld_ns << " ns");
882 
883  }
884  tsNew_MINUS_tsCustomPrev__cid->SetBinContent(crys_id, tsDiffCustomOld_ns);
885  tsNew_MINUS_tsCustomPrev__cid->SetBinError(crys_id, 0);
886  tsNew_MINUS_tsCustomPrev__cid->ResetStats();
887 
888  tsNew_MINUS_tsCustomPrev->Fill(tsDiffCustomOld_ns);
889  tsNew_MINUS_tsCustomPrev->ResetStats();
890  }
891 
892  histfile->WriteTObject(tsNew_MINUS_tsCustomPrev__cid, "tsNew_MINUS_tsCustomPrev__cid");
893  histfile->WriteTObject(tsNew_MINUS_tsCustomPrev, "tsNew_MINUS_tsCustomPrev");
894 
895 
896  histfile->Close();
897 
898  B2INFO("Finished validations algorithm");
899  return c_OK;
900 }
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
@ c_OK
Finished successfuly =0 in Python.
@ c_Failure
Failed =3 in Python.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
Singleton class to cache database objects.
Definition: DBStore.h:31
static DataStore & Instance()
Instance of singleton Store.
Definition: DataStore.cc:54
void setInitializeActive(bool active)
Setter for m_initializeActive.
Definition: DataStore.cc:94
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
void Mapping(int cid)
Mapping theta, phi Id.
int GetThetaID()
Get Theta Id.
static double getRF()
See m_rf.
int cellIDHi
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
int cellIDLo
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
double meanCleanRebinFactor
Rebinning factor for mean calculation.
double clusterTimesFractionWindow_maxtime
Maximum time for window to calculate cluster time fraction, in ns.
double meanCleanCutMinFactor
After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the ma...
bool readPrevCrysPayload
Read the previous crystal payload values for comparison.
std::string debugFilenameBase
Name of file with debug output, eclTValidationAlgorithm.root by default.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool construct(Args &&... params)
Construct an object of type T in this StoreObjPtr, using the provided constructor arguments.
Definition: StoreObjPtr.h:119
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79
const int c_NCrystals
Number of crystals.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

◆ execute()

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorihtm.

Definition at line 164 of file CalibrationAlgorithm.h.

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

Member Data Documentation

◆ meanCleanCutMinFactor

double meanCleanCutMinFactor

After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value.

Expand mask and apply to non-rebinned histogram.

Definition at line 49 of file eclTValidationAlgorithm.h.


The documentation for this class was generated from the following files: