14 import multiprocessing
17 if __name__ ==
"__main__":
19 train_file = basf2.find_file(
"mva/train_D0toKpipi.root",
"examples")
20 test_file = basf2.find_file(
"mva/test_D0toKpipi.root",
"examples")
22 training_data = basf2_mva.vector(train_file)
23 test_data = basf2_mva.vector(test_file)
26 general_options = basf2_mva.GeneralOptions()
27 general_options.m_datafiles = training_data
28 general_options.m_treename =
"tree"
29 general_options.m_identifier =
"test.xml"
30 general_options.m_variables = basf2_mva.vector(
'p',
'pz',
'daughter(0, kaonID)',
'chiProb',
'M')
31 general_options.m_target_variable =
"isSignal"
33 fastbdt_options = basf2_mva.FastBDTOptions()
34 basf2_mva.teacher(general_options, fastbdt_options)
38 nTrees, depth = hyperparameters
40 options = basf2_mva.FastBDTOptions()
41 options.m_nTrees = nTrees
42 options.m_nLevels = depth
43 m = method.train_teacher(training_data, general_options.m_treename, specific_options=options)
44 p, t = m.apply_expert(test_data, general_options.m_treename)
47 p = multiprocessing.Pool(
None, maxtasksperchild=1)
48 results = p.map(grid_search, itertools.product([10, 50, 100, 500, 1000], [2, 4, 6]))
49 for hyperparameters, auc
in results:
50 print(
"Hyperparameters", hyperparameters,
"AUC", auc)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)