15 import tensorflow
as tf
21 """ Using class to stop training early if it's not getting better"""
32 Check if validation result is better than the best validation result.
33 Decide if training should be continued.
48 def get_model(number_of_features, number_of_spectators, number_of_events, training_fraction, parameters):
49 """Building Graph inside tensorflow"""
51 gpus = tf.config.list_physical_devices(
'GPU')
54 tf.config.experimental.set_memory_growth(gpu,
True)
56 class my_model(tf.Module):
61 self.optimizer = tf.optimizers.Adam(0.01)
62 self.pre_optimizer = tf.optimizers.Adam(0.01)
64 def create_layer_variables(shape, name, activation_function):
65 weights = tf.Variable(
66 tf.random.truncated_normal(shape, stddev=1.0 / np.sqrt(float(shape[0]))),
67 name=f
'{name}_weights')
68 biases = tf.Variable(tf.zeros(shape=[shape[1]]), name=f
'{name}_biases')
69 return weights, biases, activation_function
71 n = int(number_of_features / 6)
72 self.number_of_track_pairs = int(n * (n - 1) / 2)
73 self.number_of_features_per_relation = 1
74 self.parameters = parameters
77 self.rel_net_vars = []
78 shape = [12, 50, 50, 1]
79 for i
in range(len(shape) - 1):
81 if i == len(shape) - 2:
83 self.rel_net_vars.append(create_layer_variables(shape[i:i + 2], f
'relation_{i}', unit))
85 self.inference_vars = []
87 n_features_in = (self.number_of_track_pairs
if self.parameters[
'use_relations']
else number_of_features)
89 if self.parameters[
'use_feed_forward']:
90 self.inference_vars.append(create_layer_variables([n_features_in, 50],
'inf_hidden_1', tf.nn.relu))
91 self.inference_vars.append(create_layer_variables([50, 50],
'inf_hidden_2', tf.nn.relu))
92 self.inference_vars.append(create_layer_variables([50, 1],
'inf_activation', tf.nn.sigmoid))
94 self.inference_vars.append(create_layer_variables([n_features_in, 1],
'inf_activation', tf.nn.sigmoid))
96 def dense(self, x, W, b, activation_function):
97 return activation_function(tf.matmul(x, W) + b)
99 @tf.function(input_signature=[tf.TensorSpec(shape=[None, number_of_features], dtype=tf.float32)])
100 def prepare_x(self, x):
101 """ prepare the features for use in the relation net """
102 if not self.parameters[
'use_relations']:
106 for i
in range(int(number_of_features / 6)):
107 tracks.append(tf.slice(x, [0, i * 6], [-1, 6]))
111 for feature_number
in range(self.number_of_features_per_relation):
113 for counter, track1
in enumerate(tracks):
114 for track2
in tracks[counter + 1:]:
115 relations.append(self.relation_net(tf.concat([track1, track2], 1), self.rel_net_vars))
120 return tf.concat(relations, 1)
124 @tf.function(input_signature=[tf.TensorSpec(shape=[None, 12], dtype=tf.float32)])
125 def pre_train(self, z):
126 """build net for pre-training with the same shared variables """
127 if not self.parameters[
'use_relations']:
130 pre_training_relations = []
131 for feature_number
in range(self.number_of_features_per_relation):
132 if self.parameters[
'pre_training_epochs'] > 0:
133 pre_training_relations.append(self.relation_net(z, self.rel_net_vars))
135 if pre_training_relations:
136 return tf.concat(pre_training_relations, 1)
140 def relation_net(self, x, variables):
141 """Build one relation net between 2 object using pre-build variables"""
142 for layer
in variables:
143 x = self.dense(x, *layer)
146 @tf.function(input_signature=[tf.TensorSpec(shape=[None, number_of_features], dtype=tf.float32)])
147 def __call__(self, x):
148 x = self.prepare_x(x)
149 for variables
in self.inference_vars:
150 x = self.dense(x, *variables)
154 def loss(self, predicted_y, target_y, w):
156 diff_from_truth = tf.where(target_y == 1., predicted_y, 1. - predicted_y)
157 return - tf.reduce_sum(w * tf.math.log(diff_from_truth + epsilon)) / tf.reduce_sum(w)
159 state =
State(model=my_model())
163 def begin_fit(state, Xtest, Stest, ytest, wtest, nBatches):
164 """Saves the training validation set for monitoring."""
169 state.nBatches = nBatches
173 def partial_fit(state, X, S, y, w, epoch, batch):
174 """Pass received data to tensorflow session"""
176 def variable_is_trainable(var, parameters, pre_training=False):
178 if not parameters[
'use_relations']
and 'relation_' in var.name:
180 if pre_training
and 'inf_' in var.name:
186 if state.model.parameters[
'pre_training_epochs'] > epoch:
187 pre_trainable_variables = [
188 x
for x
in state.model.trainable_variables
if variable_is_trainable(
189 x, state.model.parameters,
True)]
190 with tf.GradientTape()
as tape:
191 avg_cost = state.model.loss(state.model.pre_train(S), y, w)
192 grads = tape.gradient(avg_cost, pre_trainable_variables)
193 state.model.pre_optimizer.apply_gradients(zip(grads, pre_trainable_variables))
195 if state.epoch == epoch:
196 state.avg_costs.append()
199 print(f
"Pre-Training: Epoch: {epoch-1:05d}, cost={np.mean(state.avg_costs):.5f}")
200 state.avg_costs = [avg_cost]
205 trainable_variables = [
206 x
for x
in state.model.trainable_variables
if variable_is_trainable(
207 x, state.model.parameters,
False)]
208 with tf.GradientTape()
as tape:
209 avg_cost = state.model.loss(state.model(X), y, w)
210 grads = tape.gradient(avg_cost, trainable_variables)
212 state.model.optimizer.apply_gradients(zip(grads, trainable_variables))
214 if batch == 0
and epoch == 0:
215 state.avg_costs = [avg_cost]
216 elif batch != state.nBatches-1:
217 state.avg_costs.append(avg_cost)
220 if epoch == state.model.parameters[
'pre_training_epochs']:
221 print(f
"Pre-Training: Epoch: {epoch:05d}, cost={np.mean(state.avg_costs):.5f}")
223 print(f
"Epoch: {epoch:05d}, cost={np.mean(state.avg_costs):.5f}")
225 early_stopper_flag = EARLY_STOPPER.check(np.mean(state.avg_costs))
226 state.avg_costs = [avg_cost]
227 return early_stopper_flag
231 if __name__ ==
"__main__":
239 import basf2_mva_util
250 number_total_lines = 5
252 for i
in range(number_total_lines):
253 variables += [
'px_' + str(i),
'py_' + str(i),
'pz_' + str(i),
'dx_' + str(i),
'dy_' + str(i),
257 spectators = [
'Spx1',
'Spy1',
'Spz1',
'Sdx1',
'Sdy1',
'Sdz1',
'Spx2',
'Spy2',
'Spz2',
'Sdx2',
'Sdy2',
'Sdz2']
259 number_of_events = 100000
261 def build_signal_event():
262 """Building two lines which are hitting each other"""
263 p_vec1, p_vec2 = np.random.normal(size=3), np.random.normal(size=3)
264 v_cross = np.random.normal(size=3)
265 epsilon1, epsilon2 = np.random.rand() * 2 - 1, np.random.rand() * 2 - 1
266 v_vec1 = v_cross + (p_vec1 * epsilon1)
267 v_vec2 = v_cross + (p_vec2 * epsilon2)
268 return np.concatenate([p_vec1, v_vec1]), np.concatenate([p_vec2, v_vec2])
271 with tempfile.TemporaryDirectory()
as path:
272 for filename
in [
'train.root',
'test.root']:
273 print(
'Building ' + filename)
275 data = np.random.normal(size=[number_of_events, number_total_lines * 6 + 12])
276 target = np.zeros([number_of_events], dtype=bool)
280 for index, sample
in enumerate(data):
281 if np.random.rand() > 0.5:
283 i1, i2 = int(np.random.rand() * number_total_lines), int(np.random.rand() * (number_total_lines - 1))
284 i2 = (i1 + i2) % number_total_lines
285 track1, track2 = build_signal_event()
286 data[index, i1 * 6:(i1 + 1) * 6] = track1
287 data[index, i2 * 6:(i2 + 1) * 6] = track2
288 data[index, number_total_lines * 6:] = np.append(track1, track2)
292 for i, name
in enumerate(variables + spectators):
293 dic.update({name: data[:, i]})
294 dic.update({
'isSignal': target})
296 df = pandas.DataFrame(dic, dtype=np.float32)
297 with uproot.recreate(os.path.join(path, filename))
as outfile:
298 outfile[
'variables'] = df
303 general_options = basf2_mva.GeneralOptions()
304 general_options.m_datafiles = basf2_mva.vector(os.path.join(path,
'train.root'))
305 general_options.m_treename =
"variables"
306 general_options.m_variables = basf2_mva.vector(*variables)
307 general_options.m_target_variable =
"isSignal"
308 general_options.m_spectators = basf2_mva.vector(*spectators)
310 specific_options = basf2_mva.PythonOptions()
311 specific_options.m_framework =
"tensorflow"
312 specific_options.m_steering_file =
'mva/examples/tensorflow/relations.py'
313 specific_options.m_nIterations = 100
314 specific_options.m_mini_batch_size = 100
316 print(
'Train relational net with pre-training')
317 general_options.m_identifier = os.path.join(path,
'relation_2.xml')
318 specific_options.m_config = json.dumps({
'use_relations':
True,
'use_feed_forward':
False,
'pre_training_epochs': 10})
319 basf2_mva.teacher(general_options, specific_options)
321 print(
'Train feed forward net')
322 general_options.m_identifier = os.path.join(path,
'feed_forward.xml')
323 specific_options.m_config = json.dumps({
'use_relations':
False,
'use_feed_forward':
True,
'pre_training_epochs': 0})
324 basf2_mva.teacher(general_options, specific_options)
326 print(
'Train relational net')
327 general_options.m_identifier = os.path.join(path,
'relation.xml')
328 specific_options.m_config = json.dumps({
'use_relations':
True,
'use_feed_forward':
True,
'pre_training_epochs': 0})
329 basf2_mva.teacher(general_options, specific_options)
337 test_data = basf2_mva.vector(os.path.join(path,
'test.root'))
338 print(
'Apply feed forward net')
339 p1, t1 = method1.apply_expert(test_data, general_options.m_treename)
340 print(
'Apply relational net')
341 p2, t2 = method2.apply_expert(test_data, general_options.m_treename)
342 print(
'Apply special relational net')
343 p3, t3 = method3.apply_expert(test_data, general_options.m_treename)
def calculate_auc_efficiency_vs_background_retention(p, t, w=None)
best_result
saves best training result
counter
counts how many times training is not getting better