10 from ROOT
import Belle2
16 ROOT.gSystem.Load(
"libtracking")
20 """ A dedicated module to save the variables using in flipping steps"""
22 def __init__(self, name, contact=None, checkObj='RecoTracks', output_file_name='flip-refit-MVA1.root'):
24 super().
__init__(foreach=checkObj, name=name, contact=contact, output_file_name=output_file_name)
39 """Initialization at the start of the event processing"""
42 output_tfile = ROOT.TFile(self.
outputnameoutputname,
"RECREATE")
46 """preparation at the start of each event.
47 make sure the checkObj exist
55 """pick every recoTrack"""
59 """store the information for each recoTrack"""
63 seed_pz_estimate = nan
66 seed_pz_variance = nan
69 tan_lambda_estimate = nan
71 seed_tan_lambda_estimate = nan
73 seed_pt_estimate = nan
74 cdc_qualityindicator = nan
79 seed_pt_resolution = nan
80 seed_py_variance = nan
81 seed_d0_estimate = nan
82 seed_omega_variance = nan
83 tan_lambda_variance = nan
84 svd_layer6_clsTime = nan
85 seed_tan_lambda_variance = nan
91 svd_layer3_positionSigma = nan
95 isPrimary_misID =
False
107 inGoingArmTimeError = nan
108 outGoingArmTime = nan
109 outGoingArmTimeError = nan
110 InOutArmTimeDifference = nan
111 InOutArmTimeDifferenceError = nan
114 quality_flip_indicator = nan
115 quality_2ndflip_indicator = nan
119 mc_particle = track_match_look_up.getRelatedMCParticle(recoTrack)
120 fit_result = track_match_look_up.getRelatedTrackFitResult(recoTrack)
122 inGoingArmTime = recoTrack.getIngoingArmTime()
123 inGoingArmTimeError = recoTrack.getIngoingArmTimeError()
124 outGoingArmTime = recoTrack.getOutgoingArmTime()
125 outGoingArmTimeError = recoTrack.getOutgoingArmTimeError()
126 InOutArmTimeDifference = recoTrack.getInOutArmTimeDifference()
127 InOutArmTimeDifferenceError = recoTrack.getInOutArmTimeDifferenceError()
129 ismatched = track_match_look_up.isAnyChargeMatchedPRRecoTrack(recoTrack)
130 ismatched_CC = track_match_look_up.isCorrectChargeMatchedPRRecoTrack(recoTrack)
131 ismatched_WC = track_match_look_up.isWrongChargeMatchedPRRecoTrack(recoTrack)
133 isclone = track_match_look_up.isAnyChargeClonePRRecoTrack(recoTrack)
134 isclone_CC = track_match_look_up.isCorrectChargeClonePRRecoTrack(recoTrack)
135 isclone_WC = track_match_look_up.isWrongChargeClonePRRecoTrack(recoTrack)
137 isbackground = track_match_look_up.isBackgroundPRRecoTrack(recoTrack)
138 isghost = track_match_look_up.isGhostPRRecoTrack(recoTrack)
139 quality_flip_indicator = recoTrack.getFlipQualityIndicator()
140 quality_2ndflip_indicator = recoTrack.get2ndFlipQualityIndicator()
142 if mc_particle
and fit_result:
143 isprimary = bool(mc_particle.hasStatus(Belle2.MCParticle.c_PrimaryParticle))
144 charge_truth = mc_particle.getCharge()
145 track_charge = fit_result.getChargeSign()
147 if mc_particle.getCharge() != track_charge:
148 isPrimary_misID =
True
150 cdc_track_cand = recoTrack.getRelated(
'CDCRecoTracks')
152 cdc_qualityindicator = cdc_track_cand.getQualityIndicator()
155 omega_estimate = fit_result.getOmega()
156 z0_estimate = fit_result.getZ0()
157 d0_estimate = fit_result.getD0()
158 phi0_estimate = fit_result.getPhi() % (2.0 * math.pi)
159 tan_lambda_estimate = fit_result.getCotTheta()
161 mom = fit_result.getMomentum()
162 pt_estimate = mom.Rho()
164 d0_variance = fit_result.getCov()[0]
165 z0_variance = fit_result.getCov()[12]
166 phi0_variance = fit_result.getCov()[5]
167 omega_variance = fit_result.getCov()[9]
169 reco_svdcdc_track = recoTrack.getRelated(
"SVDCDCRecoTracks")
171 seed_fit_result = peelers.get_seed_track_fit_result(reco_svdcdc_track)
172 seed_mom = seed_fit_result.getMomentum()
173 seed_pos = seed_fit_result.getPosition()
174 seed_cov6 = seed_fit_result.getCovariance6()
175 seed_tan_lambda_estimate = seed_fit_result.getCotTheta()
177 seed_pz_estimate = seed_mom.Z()
178 seed_pz_variance = seed_cov6(5, 5)
179 seed_z_estimate = seed_pos.Z()
180 seed_x_estimate = seed_pos.X()
181 seed_y_estimate = seed_pos.Y()
183 seed_pt_estimate = seed_mom.Rho()
184 seed_py_variance = seed_cov6(4, 4)
185 seed_d0_estimate = seed_fit_result.getD0()
186 seed_omega_variance = seed_fit_result.getCov()[9]
187 seed_tan_lambda_variance = seed_fit_result.getCov()[14]
188 seed_z_variance = seed_cov6(2, 2)
190 tan_lambda_variance = seed_fit_result.getCov()[14]
191 for svd_hit
in getObjectList(recoTrack.getSVDHitList()):
192 if svd_hit.getSensorID().getLayerNumber() == 3:
193 svd_layer3_positionSigma = svd_hit.getPositionSigma()
194 if svd_hit.getSensorID().getLayerNumber() == 6:
195 svd_layer6_clsTime = svd_hit.getClsTime()
197 cdc_hits = [hit.getICLayer()
for hit
in getObjectList(recoTrack.getCDCHitList())]
199 first_cdc_layer = min(cdc_hits)
200 last_cdc_layer = max(cdc_hits)
202 n_cdc_hits = recoTrack.getNumberOfCDCHits()
203 n_svd_hits = recoTrack.getNumberOfSVDHits()
204 n_pxd_hits = recoTrack.getNumberOfPXDHits()
206 n_hits = n_pxd_hits + n_svd_hits + n_cdc_hits
207 ndf_hits = 2 * n_pxd_hits + n_svd_hits + n_cdc_hits
210 d0_variance=d0_variance,
211 seed_pz_estimate=seed_pz_estimate,
213 z0_estimate=z0_estimate,
214 seed_pz_variance=seed_pz_variance,
215 phi0_variance=phi0_variance,
216 seed_z_estimate=seed_z_estimate,
217 tan_lambda_estimate=tan_lambda_estimate,
218 omega_variance=omega_variance,
219 seed_tan_lambda_estimate=seed_tan_lambda_estimate,
220 d0_estimate=d0_estimate,
221 seed_pt_estimate=seed_pt_estimate,
222 cdc_qualityindicator=cdc_qualityindicator,
223 omega_estimate=omega_estimate,
224 z0_variance=z0_variance,
225 seed_x_estimate=seed_x_estimate,
226 seed_y_estimate=seed_y_estimate,
227 seed_pt_resolution=seed_pt_resolution,
228 seed_py_variance=seed_py_variance,
229 seed_d0_estimate=seed_d0_estimate,
230 seed_omega_variance=seed_omega_variance,
231 tan_lambda_variance=tan_lambda_variance,
232 svd_layer6_clsTime=svd_layer6_clsTime,
233 seed_tan_lambda_variance=seed_tan_lambda_variance,
234 seed_z_variance=seed_z_variance,
235 n_svd_hits=n_svd_hits,
236 phi0_estimate=phi0_estimate,
237 n_cdc_hits=n_cdc_hits,
238 n_pxd_hits=n_pxd_hits,
239 svd_layer3_positionSigma=svd_layer3_positionSigma,
240 first_cdc_layer=first_cdc_layer,
241 last_cdc_layer=last_cdc_layer,
243 isPrimary_misID=isPrimary_misID,
245 ismatched_CC=ismatched_CC,
246 ismatched_WC=ismatched_WC,
247 isclone_CC=isclone_CC,
248 isclone_WC=isclone_WC,
250 isbackground=isbackground,
253 charge_truth=charge_truth,
254 track_charge=track_charge,
255 inGoingArmTime=inGoingArmTime,
256 inGoingArmTimeError=inGoingArmTimeError,
257 outGoingArmTime=outGoingArmTime,
258 outGoingArmTimeError=outGoingArmTimeError,
259 InOutArmTimeDifference=InOutArmTimeDifference,
260 InOutArmTimeDifferenceError=InOutArmTimeDifferenceError,
261 pt_estimate=pt_estimate,
262 quality_flip_indicator=quality_flip_indicator,
263 quality_2ndflip_indicator=quality_2ndflip_indicator,
268 save_tree = refiners.save_tree(name=
"data")
A (simplified) python wrapper for StoreArray.
Class to provide convenient methods to look up matching information between pattern recognition and M...
outputname
Name of the output file.
def peel(self, recoTrack)
def pick(self, recoTrack)
track_match_look_up
Reference to the track match lookup object reading the relation information.
def __init__(self, name, contact=None, checkObj='RecoTracks', output_file_name='flip-refit-MVA1.root')
mcRecoTracks
Name of the StoreArray of the mc tracks.
checkObj
Name of the Obj to be picked.