9 #include <mva/methods/PDF.h>
10 #include <mva/interface/Interface.h>
11 #include <framework/utilities/TestHelpers.h>
13 #include <gtest/gtest.h>
19 TEST(PDFTest, PDFOptions)
24 EXPECT_EQ(specific_options.m_mode,
"probability");
25 EXPECT_EQ(specific_options.m_binning,
"frequency");
26 EXPECT_EQ(specific_options.m_nBins, 100);
28 specific_options.m_mode =
"mode";
29 specific_options.m_binning =
"binning";
30 specific_options.m_nBins = 3;
32 boost::property_tree::ptree pt;
33 specific_options.save(pt);
34 EXPECT_EQ(pt.get<std::string>(
"PDF_mode"),
"mode");
35 EXPECT_EQ(pt.get<std::string>(
"PDF_binning"),
"binning");
36 EXPECT_EQ(pt.get<
unsigned int>(
"PDF_nBins"), 3);
40 specific_options2.
load(pt);
42 EXPECT_EQ(specific_options2.
m_mode,
"mode");
43 EXPECT_EQ(specific_options2.
m_binning,
"binning");
44 EXPECT_EQ(specific_options2.
m_nBins, 3);
46 EXPECT_EQ(specific_options.getMethod(), std::string(
"PDF"));
49 auto description = specific_options.getDescription();
50 EXPECT_EQ(description.options().size(), 3);
54 pt.put(
"PDF_version", 100);
56 EXPECT_B2ERROR(specific_options2.
load(pt));
60 EXPECT_THROW(specific_options2.
load(pt), std::runtime_error);
65 explicit TestDataset(
const std::vector<float>& data) : MVA::Dataset(MVA::GeneralOptions()), m_data(data)
73 [[nodiscard]]
unsigned int getNumberOfFeatures()
const override {
return 1; }
74 [[nodiscard]]
unsigned int getNumberOfSpectators()
const override {
return 0; }
75 [[nodiscard]]
unsigned int getNumberOfEvents()
const override {
return m_data.size(); }
76 void loadEvent(
unsigned int iEvent)
override { m_input[0] = m_data[iEvent]; m_target = iEvent % 2; m_isSignal = m_target == 1; };
77 float getSignalFraction()
override {
return 0.1; };
78 std::vector<float> getFeature(
unsigned int)
override {
return m_data; }
80 std::vector<float> m_data;
85 TEST(PDFTest, PDFInterface)
91 specific_options.m_nBins = 4;
92 TestDataset dataset({1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 3.0});
94 auto teacher = interface.
getTeacher(general_options, specific_options);
95 auto weightfile = teacher->train(dataset);
98 expert->load(weightfile);
99 auto probabilities = expert->apply(dataset);
100 EXPECT_EQ(probabilities.size(), dataset.getNumberOfEvents());
101 EXPECT_FLOAT_EQ(probabilities[0], 0.5);
102 EXPECT_FLOAT_EQ(probabilities[1], 0.5);
103 EXPECT_FLOAT_EQ(probabilities[2], 0.5);
104 EXPECT_FLOAT_EQ(probabilities[3], 0.5);
105 EXPECT_FLOAT_EQ(probabilities[4], 0.0);
106 EXPECT_FLOAT_EQ(probabilities[5], 1.0);
107 EXPECT_FLOAT_EQ(probabilities[6], 0.0);
108 EXPECT_FLOAT_EQ(probabilities[7], 1.0);
Abstract base class of all Datasets given to the MVA interface The current event can always be access...
General options which are shared by all MVA trainings.
Template class to easily construct a interface for an MVA library using a library-specific Options,...
virtual std::unique_ptr< Teacher > getTeacher(const GeneralOptions &general_options, const SpecificOptions &specific_options) const override
Get Teacher of this MVA library.
virtual std::unique_ptr< MVA::Expert > getExpert() const override
Get Exoert of this MVA library.
Options for the PDF MVA method.
unsigned int m_nBins
number of bins used to bin the data
std::string m_binning
which type of binning is performed e.g.
virtual void load(const boost::property_tree::ptree &pt) override
Load mechanism (used by Weightfile) to load Options from a xml tree.
std::string m_mode
mode which defines the final output e.g.
TEST(TestgetDetectorRegion, TestgetDetectorRegion)
Test Constructors.
Abstract base class for different kinds of events.