Belle II Software release-09-00-00
SVDDigitizerModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <svd/modules/svdSimulation/SVDDigitizerModule.h>
10#include <vxd/geometry/GeoCache.h>
11
12#include <framework/dataobjects/EventMetaData.h>
13#include <framework/logging/Logger.h>
14#include <framework/gearbox/Unit.h>
15#include <framework/gearbox/Const.h>
16#include <framework/datastore/DataStore.h>
17#include <framework/datastore/StoreArray.h>
18#include <framework/datastore/StoreObjPtr.h>
19#include <framework/datastore/RelationArray.h>
20#include <framework/datastore/RelationIndex.h>
21#include <mdst/dataobjects/MCParticle.h>
22#include <svd/dataobjects/SVDTrueHit.h>
23#include <svd/dataobjects/SVDShaperDigit.h>
24#include <svd/dataobjects/SVDEventInfo.h>
25#include <fstream>
26#include <sstream>
27#include <regex>
28#include <algorithm>
29#include <deque>
30#include <cmath>
31#include <root/TMath.h>
32#include <root/TRandom.h>
33
34using namespace std;
35using namespace Belle2;
36using namespace Belle2::SVD;
37
38//-----------------------------------------------------------------
39// Auxiliaries for waveform storage
40//-----------------------------------------------------------------
41// FIXME: I believe this is wrong, these things must be created separately for
42// each instance of the digitizer, otherwise it can crash in parallel mode.
43int tree_vxdID = 0; // VXD ID of a sensor
44int tree_uv = 0; // U or V coordinate
45int tree_strip = 0; // number of strip
46double tree_signal[20]; // array for 20 samples of 10 ns
47
48//-----------------------------------------------------------------
49// Register the Module
50//-----------------------------------------------------------------
51REG_MODULE(SVDDigitizer);
52
53//-----------------------------------------------------------------
54// Implementation
55//-----------------------------------------------------------------
56
57std::string Belle2::SVD::SVDDigitizerModule::m_xmlFileName = std::string("SVDChannelMapping.xml");
59 m_currentSensorWaveforms(nullptr),
60 m_mapping(m_xmlFileName)
61{
62 //Set module properties
63 setDescription("Creates SVDShaperDigits from SVDSimHits");
65
66 // Define module parameters
67
68 // 1. Collections
69 addParam("MCParticles", m_storeMCParticlesName,
70 "MCParticle collection name", m_storeMCParticlesName);
71 addParam("SimHits", m_storeSimHitsName, "SimHit collection name",
73 addParam("TrueHits", m_storeTrueHitsName, "TrueHit collection name",
75 addParam("ShaperDigits", m_storeShaperDigitsName, "ShaperDigits collection name", m_storeShaperDigitsName);
76 addParam("SVDEventInfo", m_svdEventInfoName, "SVDEventInfo name", m_svdEventInfoName);
77
78 // 2. Physics
79 addParam("SegmentLength", m_segmentLength,
80 "Maximum segment length (in millimeters)", m_segmentLength);
81
82 // 3. Noise
83 addParam("PoissonSmearing", m_applyPoisson,
84 "Apply Poisson smearing on chargelets", m_applyPoisson);
85 addParam("ZeroSuppressionCut", m_SNAdjacent,
86 "Zero suppression cut in sigmas of strip noise", m_SNAdjacent);
87 addParam("FADCmode", m_roundZS,
88 "FADC mode: if True, ZS cut is rounded to nearest ADU ", m_roundZS);
89 addParam("numberOfSamples", m_nSamplesOverZS,
90 "Keep digit if numberOfSamples or more samples are over ZS threshold",
92
93 // 4. Timing
94 addParam("BetaPrimeDecayTimeU", m_betaPrimeDecayTimeU, "Decay time of betaprime waveform in ns, U-side",
96 addParam("BetaPrimeDecayTimeV", m_betaPrimeDecayTimeV, "Decay time of betaprime waveform in ns, V-side",
98 addParam("ADCSamplingTime", m_samplingTime,
99 "Interval between ADC samples in ns, if = -1 taken from HardwareClockSettings payload (default).", m_samplingTime);
100 addParam("StartSampling", m_startSampling,
101 "Start of the sampling window, in ns. Used to tune the SVD latency.", m_startSampling);
102 addParam("RandomizeEventTimes", m_randomizeEventTimes,
103 "Randomize event times over a frame interval", m_randomizeEventTimes);
104 addParam("TimeFrameLow", m_minTimeFrame,
105 "Left edge of event time randomization window, ns", m_minTimeFrame);
106 addParam("TimeFrameHigh", m_maxTimeFrame,
107 "Right edge of event time randomization window, ns", m_maxTimeFrame);
108
109
110 // 6. Reporting
111 addParam("statisticsFilename", m_rootFilename,
112 "ROOT Filename for statistics generation. If filename is empty, no statistics will be produced",
114 addParam("storeWaveforms", m_storeWaveforms,
115 "Store waveforms in a TTree in the statistics file.", m_storeWaveforms);
116 addParam("signalsList", m_signalsList,
117 "Store signals (time/charge/tau) in a tab-delimited file",
119}
120
122{
123
124 //Register all required collections
126
128
130 storeShaperDigits.registerInDataStore();
131 storeShaperDigits.registerRelationTo(storeMCParticles);
132 storeShaperDigits.registerRelationTo(storeTrueHits);
133
135 DataStore::arrayName<SVDShaperDigit>(m_storeShaperDigitsName),
136 DataStore::arrayName<MCParticle>(m_storeMCParticlesName));
138 DataStore::arrayName<SVDShaperDigit>(m_storeShaperDigitsName),
139 DataStore::arrayName<SVDTrueHit>(m_storeTrueHitsName));
140
142 StoreObjPtr<EventMetaData> storeEvents;
143
144 //Set names in case default was used. We need the names to initialize the RelationIndices.
146 DataStore::arrayName<MCParticle>(m_storeMCParticlesName),
147 DataStore::arrayName<SVDSimHit>(m_storeSimHitsName));
149 DataStore::arrayName<SVDTrueHit>(m_storeTrueHitsName),
150 DataStore::arrayName<SVDSimHit>(m_storeSimHitsName));
151
152 // Convert parameters to correct units
154 m_noiseFraction = TMath::Freq(m_SNAdjacent); // 0.9... !
160
161 B2DEBUG(29,
162 "SVDDigitizer parameters (in default system units, *=cannot be set directly):");
163 B2DEBUG(29, " DATASTORE COLLECTIONS:");
164 B2DEBUG(29,
165 " --> MCParticles: " << DataStore::arrayName<MCParticle>(m_storeMCParticlesName));
166 B2DEBUG(29,
167 " --> Digits: " << DataStore::arrayName<SVDShaperDigit>(m_storeShaperDigitsName));
168 B2DEBUG(29,
169 " --> SimHits: " << DataStore::arrayName<SVDSimHit>(m_storeSimHitsName));
170 B2DEBUG(29,
171 " --> TrueHits: " << DataStore::arrayName<SVDTrueHit>(m_storeTrueHitsName));
172 B2DEBUG(29, " --> MCSimHitRel: " << m_relMCParticleSimHitName);
173 B2DEBUG(29, " --> DigitMCRel: " << m_relShaperDigitMCParticleName);
174 B2DEBUG(29, " --> TrueSimRel: " << m_relTrueHitSimHitName);
175 B2DEBUG(29, " --> DigitTrueRel: " << m_relShaperDigitTrueHitName);
176 B2DEBUG(29, " PHYSICS: ");
177 B2DEBUG(29, " --> SegmentLength: " << m_segmentLength);
178 B2DEBUG(29, " NOISE: ");
179 B2DEBUG(29, " --> Add Poisson noise " << (m_applyPoisson ? "true" : "false"));
180 B2DEBUG(29, " --> Zero suppression cut" << m_SNAdjacent);
181 B2DEBUG(29, " --> Round ZS cut: " << (m_roundZS ? "true" : "false"));
182 B2DEBUG(29, " --> Samples over ZS cut:" << m_nSamplesOverZS);
183 B2DEBUG(29, " --> Noise fraction*: " << 1.0 - m_noiseFraction);
184 B2DEBUG(29, " TIMING: ");
185 B2DEBUG(29, " --> Sampling time: " << m_samplingTime);
186 B2DEBUG(29, " --> Start of int. wind.:" << m_startSampling);
187 B2DEBUG(29, " --> Random event times. " << (m_randomizeEventTimes ? "true" : "false"));
188 B2DEBUG(29, " REPORTING: ");
189 B2DEBUG(29, " --> statisticsFilename: " << m_rootFilename);
190 B2DEBUG(29,
191 " --> storeWaveforms: " << (m_storeWaveforms ? "true" : "false"));
192
193 if (!m_rootFilename.empty()) {
194 m_rootFile = new TFile(m_rootFilename.c_str(), "RECREATE");
195 m_rootFile->cd();
196 m_histChargeSharing_v = new TH1D("h_Diffusion_v", " 'Diffusion' distance, v",
197 200, -500, 500);
198 m_histChargeSharing_v->GetXaxis()->SetTitle(" distance v [um]");
199 m_histChargeSharing_u = new TH1D("h_Diffusion_u",
200 " 'Diffusion' distance, u", 100, -200, 200);
201 m_histChargeSharing_u->GetXaxis()->SetTitle("distance u [um]");
202 m_histLorentz_u = new TH1D("h_LorentzAngle_u", "Lorentz angle, holes",
203 100, -0.08, 0);
204 m_histLorentz_u->GetXaxis()->SetTitle("Lorentz angle");
205 m_histLorentz_v = new TH1D("h_LorentzAngle_v",
206 "Lorentz angle, electrons", 100, -0.002, 0.002);
207 m_histLorentz_v->GetXaxis()->SetTitle("Lorentz angle");
208 m_signalDist_u = new TH1D("h_signalDist_u",
209 "Strip signals vs. TrueHits, holes", 100, -400, 400);
210 m_signalDist_u->GetXaxis()->SetTitle("U strip position - TrueHit u [um]");
211 m_signalDist_v = new TH1D("h_signalDist_v",
212 "Strip signals vs. TrueHits, electrons", 100, -400, 400);
213 m_signalDist_v->GetXaxis()->SetTitle("V strip position - TrueHit v [um]");
214
215 m_histMobility_e = new TH1D("h_elecMobility", "electron Mobility",
216 30, 900, 1200);
217 m_histMobility_e->GetXaxis()->SetTitle("Electron Mobility");
218 m_histMobility_h = new TH1D("h_holeMobility", "hole Mobility",
219 30, 400, 500);
220 m_histMobility_h->GetXaxis()->SetTitle("Holes Mobility");
221
222 m_histDistanceToPlane_e = new TH1D("h_elecDistToPlane", "electron Distance to Plane",
223 50, -0.05, 0.05);
224 m_histDistanceToPlane_e->GetXaxis()->SetTitle("Electron Distance To Plane [cm]");
225 m_histDistanceToPlane_h = new TH1D("h_holeDistToPlane", "holes Distance to Plane",
226 50, -0.05, 0.05);
227 m_histDistanceToPlane_h->GetXaxis()->SetTitle("Holes Distance To Plane [cm]");
228
229 m_histVelocity_e = new TH1D("h_elecVelocity", "electrons Velocity (z)",
230 100, 0.001, 0.01);
231
232 m_histVelocity_e->GetXaxis()->SetTitle("Electron Velocity [cm/s]");
233 m_histVelocity_h = new TH1D("h_holeVelocity", "holes Velocity (z)",
234 30, -0.002, -0.0004);
235 m_histVelocity_h->GetXaxis()->SetTitle("holes Velocity [cm/s]");
236
237 m_histDriftTime_e = new TH1D("h_elecDriftTime", "electron Drift Time",
238 30, 0, 30);
239 m_histDriftTime_e->GetXaxis()->SetTitle("Electron Drift Time");
240 m_histDriftTime_h = new TH1D("h_holeDriftTime", "hole Drift Time",
241 30, 0, 30);
242 m_histDriftTime_h->GetXaxis()->SetTitle("Hole Drift Time");
243
244 m_histHitTime = new TH1D("h_startAPVTime", "start APV Time",
245 200, -100, 100);
246 m_histHitTime->GetXaxis()->SetTitle("time (ns)");
247 m_histHitTimeTB = new TH2F("h_startAPVTimeTB", "start APV Time vs TB",
248 200, -100, 100, 4, -0.5, 3.5);
249 m_histHitTimeTB->GetXaxis()->SetTitle("time (ns)");
250 m_histHitTimeTB->GetYaxis()->SetTitle("TB");
251
252 if (m_storeWaveforms) {
253 m_waveTree = new TTree("waveTree", "SVD waveforms");
254 m_waveTree->Branch("sensor", &tree_vxdID, "sensor/I");
255 m_waveTree->Branch("u_or_v", &tree_uv, "u_or_v/I");
256 m_waveTree->Branch("strip", &tree_strip, "strip/I");
257 m_waveTree->Branch("signal", tree_signal, "signal[20]/D");
258 }
259 } else {
260 // No waveforms can be stored if there is no statistics file.
261 m_storeWaveforms = false;
262 }
263}
264
266{
267
268 if (m_mapping.hasChanged()) { m_map = std::make_unique<SVDOnlineToOfflineMap>(m_mapping->getFileName()); }
269
270 //read sampling time from HardwareClockSettings
271 if (m_samplingTime == -1 && m_hwClock.isValid())
272 m_samplingTime = 1. / m_hwClock->getClockFrequency(Const::EDetector::SVD, "sampling");
273 else if (m_samplingTime == -1)
274 m_samplingTime = 16000. / 509;
275
276 //Fill map with all possible sensors This is too slow to be done every event so
277 //we fill it once and only clear the content of the sensors per event, not
278 //the whole map
279 m_waveforms.clear();
281 for (VxdID layer : geo.getLayers(SensorInfo::SVD)) {
282 for (VxdID ladder : geo.getLadders(layer)) {
283 for (VxdID sensor : geo.getSensors(ladder)) {
284 m_waveforms[sensor] = SensorWaveforms();
285 }
286 }
287 }
288
289 if (!m_MaskedStr.isValid())
290 B2WARNING("No valid SVDFADCMaskedStrip for the requested IoV -> no strips masked");
291 if (!m_map)
292 B2WARNING("No valid channel mapping -> all APVs will be enabled");
293
294
295}
296
298{
299
300 //get number of samples and relativeShift
302 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
303 m_relativeShift = storeSVDEvtInfo->getRelativeShift();
304 m_nAPV25Samples = storeSVDEvtInfo->getNSamples();
305
306 //Compute time of the first sample, update latency
307 const double systemClockPeriod = 1. / m_hwClock->getGlobalClockFrequency();
308 int triggerBin = modeByte.getTriggerBin();
309
310 m_initTime = m_startSampling - systemClockPeriod * triggerBin;
311
312 m_is3sampleEvent = false;
313 if (m_nAPV25Samples == 3) {
314 m_is3sampleEvent = true;
316 B2DEBUG(25, "3-sample event, starting sample = " << m_startingSample);
317 } else m_startingSample = 0; //not used
318
319 // set APV mode for background overlay
321
322 // Generate current event time
326 // We have negative event times, so we have to encode!
327 storeEvent->setTime(static_cast<unsigned long>(1000 + m_currentEventTime));
328 } else
329 m_currentEventTime = 0.0;
330
331 // Clear sensors' waveforms and process SimHits
332 for (Waveforms::value_type& sensorWaveforms : m_waveforms) {
333 sensorWaveforms.second.first.clear(); // u-side channels
334 sensorWaveforms.second.second.clear(); // v-side channels
335 }
336 // m_currentSensorWaveforms = 0;
337 // m_currentSensorInfo = 0;
338
342
343 RelationArray mcParticlesToSimHits(storeMCParticles, storeSimHits, m_relMCParticleSimHitName);
344 RelationArray trueHitsToSimHits(storeTrueHits, storeSimHits, m_relTrueHitSimHitName);
345
346 RelationIndex<MCParticle, SVDSimHit> relMCParticleSimHit(storeMCParticles, storeSimHits, m_relMCParticleSimHitName);
347 RelationIndex<SVDTrueHit, SVDSimHit> relTrueHitSimHit(storeTrueHits, storeSimHits, m_relTrueHitSimHitName);
348
349 unsigned int nSimHits = storeSimHits.getEntries();
350 if (nSimHits == 0) {
351 return;
352 }
353
354 //Check sensor info and set pointers to current sensor
355 for (unsigned int i = 0; i < nSimHits; ++i) {
356 m_currentHit = storeSimHits[i];
358 relMCParticleSimHit.getFirstElementTo(m_currentHit);
359 if (mcRel) {
361 if (mcRel->weight < 0) {
362 //This simhit is from a particle which was not saved by the simulation
363 //so we do not take it into account for relations. Otherwise we might
364 //end up adding positive and negative weights together
366 }
367 } else {
368 // Don't bother with warnings for background SimHits
370 B2WARNING(
371 "Could not find MCParticle which produced SVDSimhit " << i);
373 }
375 relTrueHitSimHit.getFirstElementTo(m_currentHit);
376 //We only care about true hits from particles which have not been ignored
377 if (trueRel && trueRel->weight > 0) {
378 m_currentTrueHit = trueRel->indexFrom;
379 } else {
380 m_currentTrueHit = -1;
381 }
382
383 VxdID sensorID = m_currentHit->getSensorID();
384 if (!m_currentSensorInfo || sensorID != m_currentSensorInfo->getID()) {
386 dynamic_cast<const SensorInfo*>(&VXD::GeoCache::get(sensorID));
388 B2FATAL(
389 "Sensor Information for Sensor " << sensorID << " not found, make sure that the geometry is set up correctly");
390
391 const SensorInfo& info = *m_currentSensorInfo;
392 // Publish some useful data
393 m_sensorThickness = info.getThickness();
395 B2DEBUG(29,
396 "Sensor Parameters for Sensor " << sensorID << ": " << endl
397 << " --> Width: " << m_currentSensorInfo->getWidth() << endl
398 << " --> Length: " << m_currentSensorInfo->getLength() << endl
399 << " --> uPitch: " << m_currentSensorInfo->getUPitch() << endl
400 << " --> vPitch: " << m_currentSensorInfo->getVPitch(-m_currentSensorInfo->getLength() / 2.0)
401 << ", " << m_currentSensorInfo->getVPitch(m_currentSensorInfo->getLength() / 2.0) << endl
402 << " --> Thickness: " << m_currentSensorInfo->getThickness() << endl
403 << " --> Deplet. voltage:" << m_currentSensorInfo->getDepletionVoltage() << endl
404 << " --> Bias voltage: " << m_currentSensorInfo->getBiasVoltage() << endl
405 );
406
407 }
408 B2DEBUG(28,
409 "Processing hit " << i << " in Sensor " << sensorID << ", related to MCParticle " << m_currentParticle);
410 processHit();
411 }
412 // If storage of waveforms is required, store them in the statistics file.
413 if (m_storeWaveforms) {
414 m_rootFile->cd();
416 }
417 if (m_signalsList != "")
418 saveSignals();
419
420
421 saveDigits();
422
423
424
425}
426
428{
429 // Set time of the hit
431
432 //Get Steplength and direction
433 const ROOT::Math::XYZVector& startPoint = m_currentHit->getPosIn();
434 const ROOT::Math::XYZVector& stopPoint = m_currentHit->getPosOut();
435 ROOT::Math::XYZVector direction = stopPoint - startPoint;
436 double trackLength = direction.R();
437
438 if (m_currentHit->getPDGcode() == Const::photon.getPDGCode() || trackLength < 0.1 * Unit::um) {
439 //Photons deposit energy at the end of their step
440 driftCharge(stopPoint, m_currentHit->getElectrons(), SVD::SensorInfo::electron);
442 } else {
443 //Otherwise, split into segments of (default) max. 5µm and
444 //drift the charges from the center of each segment
446 double lastFraction {0};
447 double lastElectrons {0};
448
449 for (auto& segment : segments) {
450 //Simhit returns step fraction and cumulative electrons. We want the
451 //center of these steps and electrons in this step
452 const double f = (segment.first + lastFraction) / 2;
453 const double e = segment.second - lastElectrons;
454 //Update last values
455 std::tie(lastFraction, lastElectrons) = segment;
456
457 //And drift charge from that position
458 const ROOT::Math::XYZVector position = startPoint + f * direction;
459 driftCharge(position, e, SVD::SensorInfo::electron);
461 }
462 }
463}
464
465
466void SVDDigitizerModule::driftCharge(const ROOT::Math::XYZVector& position, double carriers,
468{
469 bool have_electrons = (carrierType == SVD::SensorInfo::electron);
470
471 string carrierName = (have_electrons) ? "electron" : "hole";
472 B2DEBUG(29,
473 "Drifting " << carriers << " " << carrierName << "s at position (" << position.X() << ", " << position.Y() << ", " << position.Z()
474 << ").");
475 B2DEBUG(29, "@@@ driftCharge: drifting " << carriers << " " << carrierName << "s at position (" << position.X() << ", " <<
476 position.Y() << ", " << position.Z()
477 << ").");
478
479 // Get references to current sensor/info for ease of use
480 const SensorInfo& info = *m_currentSensorInfo;
481 StripWaveforms& waveforms = (!have_electrons) ? m_currentSensorWaveforms->first : m_currentSensorWaveforms->second;
482
483 double distanceToPlane = (have_electrons) ?
484 0.5 * m_sensorThickness - position.Z() :
485 -0.5 * m_sensorThickness - position.Z(); //cm
486
487 if (m_histDistanceToPlane_e && have_electrons) m_histDistanceToPlane_e->Fill(distanceToPlane);
488 if (m_histDistanceToPlane_h && !have_electrons) m_histDistanceToPlane_h->Fill(distanceToPlane);
489
490 // Approximation: calculate drift velocity at the point halfway towards
491 // the respective sensor surface.
492 ROOT::Math::XYZVector mean_pos(position.X(), position.Y(), position.Z() + 0.5 * distanceToPlane);
493
494 // Calculate drift times and widths of charge clouds.
495 ROOT::Math::XYZVector v = info.getVelocity(carrierType, mean_pos);
496 if (m_histVelocity_e && have_electrons) m_histVelocity_e->Fill(v.Z()); //Unit::cm/Unit::cm*Unit::eV/Unit::e*Unit::s);
497 if (m_histVelocity_h && !have_electrons) m_histVelocity_h->Fill(v.Z()); //Unit::cm/Unit::cm*Unit::eV/Unit::e*Unit::s);
498
499 double driftTime = distanceToPlane / v.Z(); //ns
500 if (m_histDriftTime_e && have_electrons) m_histDriftTime_e->Fill(driftTime); //ns
501 if (m_histDriftTime_h && !have_electrons) m_histDriftTime_h->Fill(driftTime); //ns
502
503 ROOT::Math::XYZVector center = position + driftTime * v; //cm
504 double mobility = (have_electrons) ?
505 info.getElectronMobility(info.getEField(mean_pos).R()) :
506 info.getHoleMobility(info.getEField(mean_pos).R());
507
508 if (m_histMobility_e && have_electrons) m_histMobility_e->Fill(mobility); //cm2/V/ns
509 if (m_histMobility_h && !have_electrons) m_histMobility_h->Fill(mobility); //cm2/V/ns
510
511 double D = Const::kBoltzmann * info.getTemperature() / Unit::e * mobility;
512 double sigma = std::max(1.0e-4, sqrt(2.0 * D * driftTime));
513 double tanLorentz = (!have_electrons) ? v.X() / v.Z() : v.Y() / v.Z();
514
515 B2DEBUG(29, "velocity (" << v.X() / Unit::um << ", " << v.Y() / Unit::um << ", " << v.Z() / Unit::um << ") um/ns");
516 B2DEBUG(29, "D = " << D << ", driftTime = " << driftTime / Unit::ns << " ns");
517 B2DEBUG(29, "sigma = " << sigma / Unit::um << " um");
518 B2DEBUG(29, "tan Lorentz = " << tanLorentz);
519
520 sigma *= sqrt(1.0 + tanLorentz * tanLorentz);
521 if (m_histLorentz_u && !have_electrons) m_histLorentz_u->Fill(tanLorentz);
522 if (m_histLorentz_v && have_electrons) m_histLorentz_v->Fill(tanLorentz);
523
524 //Distribute carrier cloud on strips
525 int vID = info.getVCellID(center.Y(), true);
526 int uID = info.getUCellID(center.X(), center.Y(), true);
527 int seedStrip = (!have_electrons) ? uID : vID;
528 double seedPos = (!have_electrons) ?
529 info.getUCellPosition(seedStrip, vID) :
530 info.getVCellPosition(seedStrip);
531 double geomPitch = (!have_electrons) ? 0.5 * info.getUPitch(center.Y()) : 0.5 * info.getVPitch();
532 int nCells = (!have_electrons) ? info.getUCells() : info.getVCells();
533 std::deque<double> stripCharges;
534 std::deque<double> strips; // intermediate strips will be half-integers, like 2.5.
535#define NORMAL_CDF(z) 0.5 * std::erfc( - (z) * 0.707107)
536 double current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
537 double current_strip = seedStrip;
538 double cdf_low = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
539 double cdf_high = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
540 double charge = carriers * (cdf_high - cdf_low);
541
542 B2DEBUG(29, "geomPitch = " << geomPitch / Unit::um << " um");
543 B2DEBUG(29, "charge = " << charge << " = " << carriers << "(carriers) * (" << cdf_high << "(cdf_high) - " << cdf_low <<
544 "(cdf_low));");
545
546 stripCharges.push_back(charge);
547 strips.push_back(current_strip);
548 while (cdf_low > 1.0e-5) {
549 current_pos -= geomPitch;
550 current_strip -= 0.5;
551 double cdf_current = NORMAL_CDF((current_pos - 0.5 * geomPitch) / sigma);
552 charge = carriers * (cdf_low - cdf_current);
553 stripCharges.push_front(charge);
554 strips.push_front(current_strip);
555 cdf_low = cdf_current;
556 }
557 current_pos = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
558 current_strip = seedStrip;
559 while (cdf_high < 1.0 - 1.0e-5) {
560 current_pos += geomPitch;
561 current_strip += 0.5;
562 double cdf_current = NORMAL_CDF((current_pos + 0.5 * geomPitch) / sigma);
563 charge = carriers * (cdf_current - cdf_high);
564 stripCharges.push_back(charge);
565 strips.push_back(current_strip);
566 cdf_high = cdf_current;
567 }
568#undef NORMAL_CDF
569
570 // Pad with zeros for smoothing
571 int npads = (strips.front() - floor(strips.front()) == 0) ? 5 : 4;
572 for (int i = 0; i < npads; ++i) {
573 strips.push_front(strips.front() - 0.5);
574 stripCharges.push_front(0);
575 }
576 npads = (strips.back() - floor(strips.back()) == 0) ? 5 : 4;
577 for (int i = 0; i < npads; ++i) {
578 strips.push_back(strips.back() + 0.5);
579 stripCharges.push_back(0);
580 }
581 // Charge sharing
582 B2DEBUG(29, " --> charge sharing simulation, # strips = " << strips.size());
583 std::deque<double> readoutCharges;
584 std::deque<int> readoutStrips;
585 VxdID currentSensorID = m_currentHit->getSensorID();
586 for (std::size_t index = 3; index < strips.size() - 3; index += 2) {
587 B2DEBUG(29, " index = " << index << ", strip = " << strips[index] << ", stripCharge = " << stripCharges[index]);
588 int currentStrip = static_cast<int>(strips[index]);
589
590 double c0 = m_ChargeSimCal.getCouplingConstant(currentSensorID, !have_electrons, "C0");
591 double c1 = m_ChargeSimCal.getCouplingConstant(currentSensorID, !have_electrons, "C1");
592 double c2 = m_ChargeSimCal.getCouplingConstant(currentSensorID, !have_electrons, "C2");
593 double c3 = m_ChargeSimCal.getCouplingConstant(currentSensorID, !have_electrons, "C3");
594
595 B2DEBUG(29, " current strip = " << currentStrip);
596 B2DEBUG(29, " index-3 = " << index - 3 << ", strip = " << strips[index - 3] << ", stripCharge = " << stripCharges[index - 3]);
597 B2DEBUG(29, " index-2 = " << index - 2 << ", strip = " << strips[index - 2] << ", stripCharge = " << stripCharges[index - 2]);
598 B2DEBUG(29, " index-1 = " << index - 1 << ", strip = " << strips[index - 1] << ", stripCharge = " << stripCharges[index - 1]);
599 B2DEBUG(29, " index = " << index << ", strip = " << strips[index] << ", stripCharge = " << stripCharges[index]);
600 B2DEBUG(29, " index+1 = " << index + 1 << ", strip = " << strips[index + 1] << ", stripCharge = " << stripCharges[index + 1]);
601 B2DEBUG(29, " index+2 = " << index + 2 << ", strip = " << strips[index + 2] << ", stripCharge = " << stripCharges[index + 2]);
602 B2DEBUG(29, " index+3 = " << index + 3 << ", strip = " << strips[index + 3] << ", stripCharge = " << stripCharges[index + 3]);
603
604 readoutCharges.push_back(c3 * stripCharges[index - 3]
605 + c2 * stripCharges[index - 2]
606 + c1 * stripCharges[index - 1]
607 + c0 * stripCharges[index]
608 + c1 * stripCharges[index + 1]
609 + c2 * stripCharges[index + 2]
610 + c3 * stripCharges[index + 3]
611 );
612 readoutStrips.push_back(currentStrip);
613 B2DEBUG(29, " post simulation: " << index << ", strip = " << currentStrip << ", readoutCharge = " <<
614 readoutCharges[readoutCharges.size() - 1]);
615 }
616 // Trim at sensor edges
617 double tail = 0;
618 while (readoutStrips.size() > 0 && readoutStrips.front() < 0) {
619 readoutStrips.pop_front();
620 tail += readoutCharges.front();
621 readoutCharges.pop_front();
622 }
623 readoutCharges.front() += tail;
624 tail = 0;
625 while (readoutStrips.size() > 0 && readoutStrips.back() > nCells - 1) {
626 readoutStrips.pop_back();
627 tail += readoutCharges.back();
628 readoutCharges.pop_back();
629 }
630 readoutCharges.back() += tail;
631 // Poisson smearing - Gaussian approximation
632 if (m_applyPoisson)
633 for (auto& c : readoutCharges)
634 c = (c <= 0) ? 0 : std::max(0.0, gRandom->Gaus(c, std::sqrt(info.c_fanoFactorSi * c)));
635
636 // Fill diagnostic charts
638 TH1D* histo = (!have_electrons) ? m_histChargeSharing_u : m_histChargeSharing_v;
639 double d = (!have_electrons) ? seedPos - center.X() : seedPos - center.Y();
640 for (std::size_t index = 0; index < readoutStrips.size(); ++ index) {
641 double dist = d + (readoutStrips[index] - seedStrip) * 2 * geomPitch;
642 histo->Fill(dist / Unit::um, readoutCharges[index]);
643 }
644 }
645 if (m_histHitTime) {
648 SVDModeByte modeByte = storeSVDEvtInfo->getModeByte();
650 }
651
652 // Store
653 B2DEBUG(29, "currentTime = " << m_currentTime << " + 0.5 driftTime = " << 0.5 * driftTime << " = " << m_currentTime + 0.5 *
654 driftTime);
655
656 // Specify beta prime decay time
657 double betaPrimeDecayTime = (!have_electrons) ? m_betaPrimeDecayTimeU : m_betaPrimeDecayTimeV;
658
659 // Specify coupling and adjacent-channel waveform shape
660 double apvCoupling = m_ChargeSimCal.getCouplingConstant(currentSensorID, !have_electrons, "APVCoupling");
661 WaveformShape w_adjacent = (!have_electrons) ? w_adjacentU : w_adjacentV;
662
663 double recoveredCharge = 0;
664 for (std::size_t index = 0; index < readoutStrips.size(); index ++) {
665 // NB> To first approximation, we assign to the signal 1/2*driftTime.
666 // This doesn't change the charge collection, only charge collection timing.
667 waveforms[readoutStrips[index]].add(m_currentTime + 0.5 * driftTime, readoutCharges[index],
668 betaPrimeDecayTime, m_currentParticle, m_currentTrueHit, w_betaprime);
669 // coupled signal left neighbour
670 if (index > 0)
671 waveforms[readoutStrips[index]].add(m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index - 1],
672 1, m_currentParticle, m_currentTrueHit, w_adjacent);
673 // coupled signal right neighbour
674 if (index < readoutStrips.size() - 1)
675 waveforms[readoutStrips[index]].add(m_currentTime + 0.5 * driftTime, apvCoupling * readoutCharges[index + 1],
676 1, m_currentParticle, m_currentTrueHit, w_adjacent);
677 recoveredCharge += readoutCharges[index];
678 B2DEBUG(29, "strip: " << readoutStrips[index] << " charge: " << readoutCharges[index]);
679 }
680 B2DEBUG(29, "Digitized " << recoveredCharge << " of " << carriers << " original carriers.");
681}
682
683double SVDDigitizerModule::addNoise(double charge, double noise)
684{
685 charge += gRandom->Gaus(0., noise);
686 return charge;
687}
688
690{
691
695 RelationArray relShaperDigitMCParticle(storeShaperDigits, storeMCParticles,
697 RelationArray relShaperDigitTrueHit(storeShaperDigits, storeTrueHits,
699
700 //Get SVD config from SVDEventInfo
701 // int runType = (int) modeByte.getRunType();
702 // int eventType = (int) modeByte.getEventType();
703
704
705 // ... to store digit-digit relations
706 vector<pair<unsigned int, float> > digit_weights;
707
708 // Take samples at the desired times, add noise, zero-suppress and save digits.
709 for (Waveforms::value_type& sensorWaveforms : m_waveforms) {
710 int sensorID = sensorWaveforms.first;
711 // u-side digits:
712
713 // Cycle through signals and generate samples
714 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
715 short int iStrip = stripWaveform.first;
716 SVDWaveform& s = stripWaveform.second;
717 // Now generate samples in time and save as digits.
718 vector<double> samples;
719 // ... to store digit-digit relations
720 digit_weights.clear();
721 digit_weights.reserve(SVDShaperDigit::c_nAPVSamples);
722
723 double elNoise = m_NoiseCal.getNoiseInElectrons(sensorID, true, iStrip);
724 double gain = 1 / m_PulseShapeCal.getChargeFromADC(sensorID, true, iStrip, 1);
725 double electronWeight = m_ChargeSimCal.getElectronWeight(sensorID, true);
726
727 double t = m_initTime;
728 B2DEBUG(25, "start sampling at " << m_initTime);
729 for (int iSample = 0; iSample < (int) SVDShaperDigit::c_nAPVSamples; iSample ++) {
730 samples.push_back(addNoise(electronWeight * s(t), elNoise));
731 t += m_samplingTime;
732 }
733
734 SVDWaveform::relations_map particles = s.getMCParticleRelations();
735 SVDWaveform::relations_map truehits = s.getTrueHitRelations();
736
737 // Save SVDShaperDigits
738
739 // 1. Convert to ADU
741 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
742 [&](double x)->SVDShaperDigit::APVRawSampleType {
743 return SVDShaperDigit::trimToSampleRange(x * gain);
744 });
745
746 // 2.a Check if over threshold
747 auto rawThreshold = m_SNAdjacent * elNoise * gain;
748 if (m_roundZS) rawThreshold = round(rawThreshold);
749 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
750 std::bind2nd(std::greater<double>(), rawThreshold)
751 );
752 if (n_over < m_nSamplesOverZS) continue;
753
754 // 2.b check if the strip is masked
755 if (m_MaskedStr.isMasked(sensorID, true, iStrip)) continue;
756
757 // 2.c check if the APV is disabled
758 if (!m_map->isAPVinMap(sensorID, true, iStrip)) continue;
759
760 // 2.d.1 check if it's a 3-sample event
761 if (m_is3sampleEvent) {
762 rawSamples[0] = rawSamples[m_startingSample];
763 rawSamples[1] = rawSamples[m_startingSample + 1];
764 rawSamples[2] = rawSamples[m_startingSample + 2];
765 rawSamples[3] = 0.;
766 rawSamples[4] = 0.;
767 rawSamples[5] = 0.;
768 //2.d.2 check if still over threshold
769 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
770 std::bind2nd(std::greater<double>(), rawThreshold)
771 );
772 if (n_over < m_nSamplesOverZS) continue;
773
774 }
775
776 // 3. Save as a new digit
777 int digIndex = storeShaperDigits.getEntries();
778 storeShaperDigits.appendNew(sensorID, true, iStrip, rawSamples, 0);
779
780 //If the digit has any relations to MCParticles, add the Relation
781 if (particles.size() > 0) {
782 relShaperDigitMCParticle.add(digIndex, particles.begin(), particles.end());
783 }
784 //If the digit has any relations to truehits, add the Relations.
785 if (truehits.size() > 0) {
786 relShaperDigitTrueHit.add(digIndex, truehits.begin(), truehits.end());
787 }
788 // generate SVDShaperDigits
789 } // for stripSignals
790
791 // v-side digits:
792
793 // Cycle through signals and generate samples
794 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
795 short int iStrip = stripWaveform.first;
796 SVDWaveform& s = stripWaveform.second;
797 // Now generate samples in time and save as digits.
798 vector<double> samples;
799 // ... to store digit-digit relations
800 digit_weights.clear();
801 digit_weights.reserve(SVDShaperDigit::c_nAPVSamples);
802
803 double elNoise = m_NoiseCal.getNoiseInElectrons(sensorID, false, iStrip);
804 double gain = 1 / m_PulseShapeCal.getChargeFromADC(sensorID, false, iStrip, 1);
805 double electronWeight = m_ChargeSimCal.getElectronWeight(sensorID, false);
806
807 double t = m_initTime;
808 for (int iSample = 0; iSample < (int)SVDShaperDigit::c_nAPVSamples; iSample ++) {
809 samples.push_back(addNoise(electronWeight * s(t), elNoise));
810 t += m_samplingTime;
811 }
812
813 SVDWaveform::relations_map particles = s.getMCParticleRelations();
814 SVDWaveform::relations_map truehits = s.getTrueHitRelations();
815
816 // Save SVDShaperDigits
817 // 1. Convert to ADU
819 std::transform(samples.begin(), samples.end(), rawSamples.begin(),
820 [&](double x)->SVDShaperDigit::APVRawSampleType {
821 return SVDShaperDigit::trimToSampleRange(x * gain);
822 });
823
824 // 2.a Check if over threshold
825 auto rawThreshold = m_SNAdjacent * elNoise * gain;
826 if (m_roundZS) rawThreshold = round(rawThreshold);
827 auto n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
828 std::bind2nd(std::greater<double>(), rawThreshold)
829 );
830 if (n_over < m_nSamplesOverZS) continue;
831
832 // 2.b check if the strip is masked
833 if (m_MaskedStr.isMasked(sensorID, false, iStrip)) continue;
834
835 // 2.c check if the APV is disabled
836 if (!m_map->isAPVinMap(sensorID, false, iStrip)) continue;
837
838 // 2.d.1 check if it's a 3-sample event
839 if (m_is3sampleEvent) {
840 rawSamples[0] = rawSamples[m_startingSample];
841 rawSamples[1] = rawSamples[m_startingSample + 1];
842 rawSamples[2] = rawSamples[m_startingSample + 2];
843 rawSamples[3] = 0.;
844 rawSamples[4] = 0.;
845 rawSamples[5] = 0.;
846 //2.d.2 check if still over threshold
847 n_over = std::count_if(rawSamples.begin(), rawSamples.end(),
848 std::bind2nd(std::greater<double>(), rawThreshold)
849 );
850 if (n_over < m_nSamplesOverZS) continue;
851 }
852
853 // 3. Save as a new digit
854 int digIndex = storeShaperDigits.getEntries();
855 storeShaperDigits.appendNew(sensorID, false, iStrip, rawSamples, 0);
856
857 //If the digit has any relations to MCParticles, add the Relation
858 if (particles.size() > 0) {
859 relShaperDigitMCParticle.add(digIndex, particles.begin(), particles.end());
860 }
861 //If the digit has any relations to truehits, add the Relations.
862 if (truehits.size() > 0) {
863 relShaperDigitTrueHit.add(digIndex, truehits.begin(), truehits.end());
864 }
865 } // for stripSignals
866 } // FOREACH sensor
867}
868
870{
871 for (Waveforms::value_type& sensorWaveforms : m_waveforms) {
872 tree_vxdID = sensorWaveforms.first;
873 const SensorInfo& info =
874 dynamic_cast<const SensorInfo&>(VXD::GeoCache::get(sensorWaveforms.first));
875 // u-side digits:
876 tree_uv = 1;
877 double thresholdU = 3.0 * info.getElectronicNoiseU();
878 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
879 tree_strip = stripWaveform.first;
880 SVDWaveform& s = stripWaveform.second;
881 // Read the value only if the signal is large enough.
882 if (s.getCharge() < thresholdU)
883 continue;
884 for (int iTime = 0; iTime < 20; ++iTime) {
885 tree_signal[iTime] = s(10 * iTime);
886 }
887 m_waveTree->Fill();
888 } // FOREACH stripSignal
889 // v-side digits:
890 tree_uv = 0;
891 double thresholdV = 3.0 * info.getElectronicNoiseV();
892 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
893 tree_strip = stripWaveform.first;
894 SVDWaveform& s = stripWaveform.second;
895 // Read the values only if the signal is large enough
896 if (s.getCharge() < thresholdV)
897 continue;
898 for (int iTime = 0; iTime < 20; ++iTime) {
899 tree_signal[iTime] = s(10. * iTime);
900 }
901 m_waveTree->Fill();
902 } // FOREACH stripSignal
903 } // FOREACH sensor
904 m_rootFile->Flush();
905}
906
908{
909 static size_t recordNo = 0;
910 static const string header("Event\tSensor\tSide\tStrip\tContrib\tTime\tCharge\tTau");
911 regex startLine("^|\n"); // for inserting event/sensor/etc info
912 ofstream outfile(m_signalsList, ios::out | ios::app);
913 if (recordNo == 0) outfile << header << endl;
914 for (Waveforms::value_type& sensorWaveforms : m_waveforms) {
915 VxdID sensorID(sensorWaveforms.first);
916 const SensorInfo& info =
917 dynamic_cast<const SensorInfo&>(VXD::GeoCache::get(sensorWaveforms.first));
918 // u-side digits:
919 size_t isU = 1;
920 double thresholdU = 3.0 * info.getElectronicNoiseU();
921 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.first) {
922 size_t strip = stripWaveform.first;
923 SVDWaveform& s = stripWaveform.second;
924 // Read the value only if the signal is large enough.
925 if (s.getCharge() < thresholdU)
926 continue;
927 // Else print to a string
928 ostringstream preamble;
929 // We don't have eventNo, but we don't care about event boundaries.
930 preamble << "$&" << recordNo << '\t' << sensorID << '\t' << isU << '\t' << strip << '\t';
931 string signalString = s.toString();
932 signalString.pop_back(); // remove the last newline!!!
933 string tableString = regex_replace(signalString, startLine, preamble.str());
934 outfile << tableString << endl; // now we have to add the newline back.
935 } // FOREACH stripSignal
936 // x-side digits:
937 isU = 0;
938 double thresholdV = 3.0 * info.getElectronicNoiseV();
939 for (StripWaveforms::value_type& stripWaveform : sensorWaveforms.second.second) {
940 size_t strip = stripWaveform.first;
941 SVDWaveform& s = stripWaveform.second;
942 // Read the value only if the signal is large enough.
943 if (s.getCharge() < thresholdV)
944 continue;
945 // Else print to a string
946 ostringstream preamble;
947 // We don't have eventNo, but we don't care about event boundaries.
948 preamble << "$&" << recordNo << '\t' << sensorID << '\t' << isU << '\t' << strip << '\t';
949 string signalString = s.toString();
950 signalString.pop_back(); // remove the last newline!!!
951 string tableString = regex_replace(signalString, startLine, preamble.str());
952 outfile << tableString << endl; // now we have to add the newline back.
953 } // FOREACH stripSignal
954 } // for sensors
955 outfile.close();
956 recordNo++;
957}
958
960{
961 if (m_rootFile) {
962 m_rootFile->Write();
963 m_rootFile->Close();
964 }
965}
966
967int SVDDigitizerModule::getFirstSample(int triggerBin, int relativeShift)
968{
969 int nTriggerClocks = triggerBin + relativeShift;
970 return floor(nTriggerClocks / 4);
971}
int getPDGCode() const
PDG code.
Definition: Const.h:473
static const double kBoltzmann
Boltzmann constant in GeV/K.
Definition: Const.h:696
static const ParticleType photon
photon particle
Definition: Const.h:673
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
static std::string relationName(const std::string &fromName, const std::string &toName, std::string const &namedRelation="")
Return storage name for a relation between two arrays of the given names.
Definition: DataStore.h:180
Base class for Modules.
Definition: Module.h:72
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
std::string getFileName() const
Get the name of the downloaded payload file.
Definition: PayloadFile.h:35
Low-level class to create/modify relations between StoreArrays.
Definition: RelationArray.h:62
void add(index_type from, index_type to, weight_type weight=1.0)
Add a new element to the relation.
Provides access to fast ( O(log n) ) bi-directional lookups on a specified relation.
Definition: RelationIndex.h:76
const Element * getFirstElementTo(const TO &to) const
Return a pointer to the first relation Element of the given object.
float getCouplingConstant(const VxdID &sensorID, const bool &isU, const std::string &couplingName) const
Return coupling constant.
float getElectronWeight(const VxdID &sensorID, const bool &isU) const
Return Geant4 electron weight.
float isMasked(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This is the method for getting the comprehensive list of masked strips at FADC level.
bool isValid()
returns true if the m_aDBObtPtr is valid in the requested IoV
Class to store SVD mode information.
Definition: SVDModeByte.h:69
baseType getTriggerBin() const
Get the triggerBin id.
Definition: SVDModeByte.h:140
float getNoiseInElectrons(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This method provides the correct noise conversion into electrons, taking into account that the noise ...
double getChargeFromADC(const Belle2::VxdID &sensorID, const bool &isU, const unsigned short &strip, const double &pulseADC) const
Return the charge (number of electrons/holes) collected on a specific strip, given the number of ADC ...
static void setAPVMode(size_t mode, size_t firstSample)
set APV mode for the event
static const std::size_t c_nAPVSamples
Number of APV samples stored.
std::array< APVRawSampleType, c_nAPVSamples > APVRawSamples
array of APVRawSamplesType objects
double m_startSampling
Time window start, excluding trigger bin effect.
TH1D * m_histHitTime
Histogram showing the hit time.
TH1D * m_histDistanceToPlane_e
Histogram showing the distance to plane for e.
TH1D * m_histChargeSharing_u
Histogram showing the charge sharing + diffusion in u (r-phi).
double m_sensorThickness
Thickness of current sensor (read from m_currentSensorInfo)
void processHit()
Process one SVDSimHit by dividing the step in smaller steps and drifting the charge.
TH1D * m_histVelocity_h
Histogram showing the velocity of h.
SVDFADCMaskedStrips m_MaskedStr
FADC masked strip payload.
TH1D * m_histVelocity_e
Histogram showing the velocity of e-.
Waveforms m_waveforms
Structure containing waveforms in all existing sensors.
double m_samplingTime
Interval between two waveform samples, by default taken from HardwareClockSettings.
std::string m_relTrueHitSimHitName
Name of the relation between SVDTrueHits and SVDSimHits.
TH1D * m_histLorentz_v
Histogram showing the Lorentz angles in v (z).
void saveDigits()
Save digits to the DataStore Saves samples of generated waveforms.
bool m_randomizeEventTimes
Randomize event times? If set to true, event times will be randomized uniformly from m_minTimeFrame t...
int getFirstSample(int triggerBin, int relativShift)
return the starting sample
int m_startingSample
Starting sample for the selection of 3 samples in 3-mixed-6.
int m_currentParticle
Index of the particle which caused the current hit.
std::string m_relShaperDigitMCParticleName
Name of the relation between SVDShaperDigits and MCParticles.
int m_nSamplesOverZS
Keep digit if at least m_nSamplesOverZS are over threshold.
TH1D * m_histChargeSharing_v
Histogram showing the charge sharing + diffusion in v (z).
TH1D * m_histMobility_h
Histogram showing the mobility of h.
virtual void initialize() override
Initialize the module and check module parameters.
bool m_roundZS
Round ZS cut to nearest ADU.
std::string m_storeShaperDigitsName
Name of the collection for the SVDShaperDigits.
virtual void event() override
Digitize one event.
bool m_is3sampleEvent
True if the event should be simulated with 3 sample.
double m_SNAdjacent
Zero-suppression cut.
double m_currentTime
Time of the current SimHit.
TFile * m_rootFile
Pointer to the ROOT filename for statistics.
SVDNoiseCalibrations m_NoiseCal
SVDNoise calibrations db object.
SensorWaveforms * m_currentSensorWaveforms
Pointer to the sensor in which the current hit occurred.
std::string m_storeTrueHitsName
Name of the collection for the SVDTrueHits.
TH1D * m_signalDist_u
Histogram showing the distribution of digit signals in u (r-phi).
DBObjPtr< PayloadFile > m_mapping
channel mapping payload
virtual void terminate() override
Terminate the module.
void saveSignals()
Save signals to a root-delimited file (to be analyzed in Python).
std::string m_storeMCParticlesName
Name of the collection for the MCParticles.
TH1D * m_signalDist_v
Histogram showing the distribution of digit signals in v (z).
double m_noiseFraction
(derived from SNAdjacent) Fraction of noisy strips per sensor.
static std::string m_xmlFileName
< channel mapping xml filename
double m_betaPrimeDecayTimeU
Decay time of betaprime waveform U-side.
SVDPulseShapeCalibrations m_PulseShapeCal
SVDPulseShapeCalibrations calibrations db object.
TH1D * m_histMobility_e
Histogram showing the mobility of e-.
std::string m_relShaperDigitTrueHitName
Name of the relation between SVDShaperDigits and SVDTrueHits.
SVDChargeSimulationCalibrations m_ChargeSimCal
SVDChargeSimulationCalibrations calibrations db object.
int m_nAPV25Samples
number of digitized samples read from SVDEventInfo
TTree * m_waveTree
Tree for waveform storage.
bool m_applyPoisson
Whether or not to apply poisson fluctuation of charge (Fano factor)
virtual void beginRun() override
Initialize the list of existing SVD Sensors.
TH1D * m_histDistanceToPlane_h
Histogram showing the distance to plane for h.
TH1D * m_histDriftTime_e
Histogram showing the drift time of e.
DBObjPtr< HardwareClockSettings > m_hwClock
Hardware Clocks.
std::string m_svdEventInfoName
Name of the SVDEventInfo object.
std::string m_signalsList
Name of the tab-delimited listing of waveforms.
double addNoise(double charge, double noise)
Calculate the noise contribution to one strip with given charge.
const SensorInfo * m_currentSensorInfo
Pointer to the SensorInfo of the current sensor.
TH1D * m_histLorentz_u
Histogram showing the Lorentz angles in u (r-phi).
int m_relativeShift
relative shift in SVDEventInfo obj
TH2F * m_histHitTimeTB
Histogram showing the hit time vs TB.
bool m_storeWaveforms
Store waveform data in the reporting file?
void driftCharge(const ROOT::Math::XYZVector &position, double carriers, SVD::SensorInfo::CarrierType carrierType)
Drift the charge inside the silicon.
void saveWaveforms()
Save waveforms to the statistics file.
std::unique_ptr< SVDOnlineToOfflineMap > m_map
channel mapping map
float m_maxTimeFrame
High edge of randomization time frame.
TH1D * m_histDriftTime_h
Histogram showing the drift time of h.
double m_initTime
Time window start, including the triggerBin effect.
int m_currentTrueHit
Index of the TrueHit the current hit belongs to.
float m_minTimeFrame
Low edge of randomization time frame.
const SVDSimHit * m_currentHit
Pointer to the SVDSimhit currently digitized.
std::string m_relMCParticleSimHitName
Name of the relation between MCParticles and SVDSimHits.
double m_betaPrimeDecayTimeV
Decay time of betaprime waveform V-side.
std::string m_rootFilename
Name of the ROOT filename to output statistics.
std::string m_storeSimHitsName
Name of the collection for the SVDSimhits.
float m_currentEventTime
Current event time.
The SVD waveform class.
Definition: SVDWaveform.h:38
std::map< RelationElement::index_type, RelationElement::weight_type > relations_map
Type to store contributions to strip signal by different particles on output of SVDWaveform.
Definition: SVDWaveform.h:80
Specific implementation of SensorInfo for SVD Sensors which provides additional sensor specific infor...
Definition: SensorInfo.h:25
CarrierType
Enum to flag charge carriers.
Definition: SensorInfo.h:38
double getBiasVoltage() const
Return the bias voltage on the sensor.
Definition: SensorInfo.h:163
double getDepletionVoltage() const
Return the depletion voltage of the sensor.
Definition: SensorInfo.h:161
virtual unsigned short getBackgroundTag() const
Get background tag.
Definition: SimHitBase.h:46
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
T * appendNew()
Construct a new T object at the end of the array.
Definition: StoreArray.h:246
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
bool registerRelationTo(const StoreArray< TO > &toArray, DataStore::EDurability durability=DataStore::c_Event, DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut, const std::string &namedRelation="") const
Register a relation to the given StoreArray.
Definition: StoreArray.h:140
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
static const double mm
[millimeters]
Definition: Unit.h:70
static const double e
Standard of [electric charge].
Definition: Unit.h:53
static const double um
[micrometers]
Definition: Unit.h:71
static const double ns
Standard of [time].
Definition: Unit.h:48
float getGlobalTime() const override
Return the time of the electron deposition.
Definition: VXDSimHit.h:78
int getPDGcode() const
Return the PDG code of the particle causing the electron deposition.
Definition: VXDSimHit.h:68
ROOT::Math::XYZVector getPosOut() const
Return the end point of the electron deposition in local coordinates.
Definition: VXDSimHit.h:72
std::vector< std::pair< float, float > > getElectronsConstantDistance(double length) const
Get the electron deposition along constant stepsize.
Definition: VXDSimhit.cc:32
float getElectrons() const
Return the number of created electrons.
Definition: VXDSimhit.cc:15
ROOT::Math::XYZVector getPosIn() const
Return the start point of the electron deposition in local coordinates.
Definition: VXDSimHit.h:70
VxdID getSensorID() const
Return the sensorID of the sensor the electron was deposited in.
Definition: VXDSimHit.h:66
Class to faciliate easy access to sensor information of the VXD like coordinate transformations or pi...
Definition: GeoCache.h:39
const std::set< Belle2::VxdID > getLayers(SensorInfoBase::SensorType sensortype=SensorInfoBase::VXD)
Return a set of all known Layers.
Definition: GeoCache.cc:176
const std::set< Belle2::VxdID > & getSensors(Belle2::VxdID ladder) const
Return a set of all sensor IDs belonging to a given ladder.
Definition: GeoCache.cc:204
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:214
const std::set< Belle2::VxdID > & getLadders(Belle2::VxdID layer) const
Return a set of all ladder IDs belonging to a given layer.
Definition: GeoCache.cc:193
static const SensorInfoBase & get(Belle2::VxdID id)
Return a reference to the SensorInfo of a given SensorID.
Definition: GeoCache.h:139
double getUPitch(double v=0) const
Return the pitch of the sensor.
double getWidth(double v=0) const
Return the width of the sensor.
VxdID getID() const
Return the ID of the Sensor.
double getVPitch(double v=0) const
Return the pitch of the sensor.
double getThickness() const
Return the thickness of the sensor.
double getLength() const
Return the length of the sensor.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
Namespace to encapsulate code needed for simulation and reconstrucion of the SVD.
Definition: GeoSVDCreator.h:23
double w_adjacentU(double t)
Adjacent-channel waveform U-side.
double w_betaprime(double t)
Beta-prime waveform shape, x^alpha/(1+x)^beta.
std::pair< StripWaveforms, StripWaveforms > SensorWaveforms
Waveforms of u- and v- channels in one sensor.
std::function< double(double)> WaveformShape
WaveformShape type.
double w_adjacentV(double t)
Adjacent-channel waveform V-side.
std::map< short int, SVDWaveform > StripWaveforms
Map of all channels' waveforms in one sensor side.
Abstract base class for different kinds of events.
STL namespace.
RelationElement::index_type indexFrom
index of the element from which the relation points.
RelationElement::weight_type weight
weight of the relation.