Belle II Software development
ECLBhabhaTCollectorModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9/* Own header. */
10#include <ecl/modules/eclBhabhaTCollector/ECLBhabhaTCollectorModule.h>
11
12/* ECL headers. */
13#include <ecl/dataobjects/ECLCalDigit.h>
14#include <ecl/dataobjects/ECLDigit.h>
15#include <ecl/dataobjects/ECLElementNumbers.h>
16#include <ecl/dbobjects/ECLCrystalCalib.h>
17#include <ecl/dbobjects/ECLReferenceCrystalPerCrateCalib.h>
18#include <ecl/digitization/EclConfiguration.h>
19
20/* Basf2 headers. */
21#include <analysis/utility/PCmsLabTransform.h>
22#include <framework/dataobjects/EventMetaData.h>
23#include <framework/gearbox/Const.h>
24#include <mdst/dataobjects/ECLCluster.h>
25#include <mdst/dataobjects/HitPatternCDC.h>
26#include <mdst/dataobjects/Track.h>
27
28/* ROOT headers. */
29#include <TH2F.h>
30#include <TTree.h>
31
32using namespace Belle2;
33using namespace ECL;
34using namespace std;
35
36//-----------------------------------------------------------------
37// Register the Module
38//-----------------------------------------------------------------
39REG_MODULE(ECLBhabhaTCollector);
40
41//-----------------------------------------------------------------
42// Implementation
43//-----------------------------------------------------------------
44
46 m_ElectronicsDB("ECLCrystalElectronics"),
47 m_ElectronicsTimeDB("ECLCrystalElectronicsTime"),
48 m_FlightTimeDB("ECLCrystalFlightTime"),
49 m_PreviousCrystalTimeDB("ECLCrystalTimeOffset"),
50 m_CrateTimeDB("ECLCrateTimeOffset"),
51 m_RefCrystalsCalibDB("ECLReferenceCrystalPerCrateCalib"),
52 m_channelMapDB("ECLChannelMap")//,
53{
54 setDescription("This module generates sum of all event times per crystal");
55
56 addParam("timeAbsMax", m_timeAbsMax, // (Time in ns)
57 "Events with fabs(getTimeFit) > m_timeAbsMax "
58 "are excluded", (short)80);
59
60 addParam("minCrystal", m_minCrystal,
61 "First CellId to handle.", 1);
62 addParam("maxCrystal", m_maxCrystal,
63 "Last CellId to handle.", ECLElementNumbers::c_NCrystals);
64
65 addParam("saveTree", m_saveTree,
66 "If true, TTree 'tree' with more detailed event info is saved in "
67 "the output file specified by HistoManager",
68 false);
69
70 addParam("looseTrkZ0", m_looseTrkZ0, "max Z0 for loose tracks (cm)", 10.);
71 addParam("tightTrkZ0", m_tightTrkZ0, "max Z0 for tight tracks (cm)", 2.);
72 addParam("looseTrkD0", m_looseTrkD0, "max D0 for loose tracks (cm)", 2.);
73 addParam("tightTrkD0", m_tightTrkD0, "max D0 for tight tracks (cm)", 0.5); // beam pipe radius = 1cm in 2019
74 addParam("skipTrgSel", skipTrgSel, "boolean to skip the trigger skim selection", false);
75
76 addParam("hadronEventT0_TO_bhabhaEventT0_correction", m_hadronEventT0_TO_bhabhaEventT0_correction,
77 "CDC bhabha t0 bias correction (ns)", 0.);
78
79 // specify this flag if you need parallel processing
81}
82
84{
85}
86
88{
89 //=== Prepare TTree for debug output
90 if (m_saveTree) { // /* >>>>>>>>>>>>>>>>>>>>>>>>>>>> if boolean true for saving debug trees >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
91 // Per electron
92 m_dbgTree_electrons = new TTree("tree_electrons", "Debug data for bhabha time calibration - one entry per electron");
93 m_dbgTree_electrons->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
94 m_dbgTree_electrons->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
95 m_dbgTree_electrons->Branch("ADCamplitude", &m_tree_amp)->SetTitle("Amplitude, ADC units");
96 m_dbgTree_electrons->Branch("maxEcrystalEnergy", &m_tree_en)->SetTitle("Max Energy Crystal Energy, GeV");
97 m_dbgTree_electrons->Branch("maxEcrystalEnergyDIVclusterE",
98 &m_tree_E1Etot)->SetTitle("Max Energy Crystal Fraction Energy of Cluster");
99 m_dbgTree_electrons->Branch("E1divE2crystal",
100 &m_tree_E1E2)->SetTitle("Max Energy Crystal DIV second max energy crystal in cluster");
101 m_dbgTree_electrons->Branch("E1crystal_DIV_p", &m_tree_E1p)->SetTitle("Max Energy Crystal in cluster DIV track p");
102 m_dbgTree_electrons->Branch("timetsPreviousTimeCalibs",
103 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
104 m_dbgTree_electrons->Branch("E_DIV_p", &m_E_DIV_p)->SetTitle("E DIV p");
105 m_dbgTree_electrons->Branch("timeF", &m_tree_timeF)->SetTitle("Time F, ns");
106 m_dbgTree_electrons->Branch("time_t_psi", &m_tree_time)->SetTitle("Time t_psi for Ts, ns");
107 m_dbgTree_electrons->Branch("quality", &m_tree_quality)->SetTitle("ECL FPGA fit quality, see XWiki article");
108 m_dbgTree_electrons->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
109 m_dbgTree_electrons->Branch("t0_unc", &m_tree_t0_unc)->SetTitle("T0 uncertainty, ns");
110 m_dbgTree_electrons->Branch("CrateID", &m_crystalCrate)->SetTitle("Crate id for crystal");
111 m_dbgTree_electrons->Branch("runNum", &m_runNum)->SetTitle("Run number");
112
113 m_dbgTree_electrons->SetAutoSave(10);
114
115
116 // Per track
117 m_dbgTree_tracks = new TTree("tree_tracks", "Debug data for bhabha time calibration - one entry per track");
118 m_dbgTree_tracks->Branch("d0", &m_tree_d0)->SetTitle("d0, cm");
119 m_dbgTree_tracks->Branch("z0", &m_tree_z0)->SetTitle("z0, cm");
120 m_dbgTree_tracks->Branch("p", &m_tree_p)->SetTitle("track momentum, GeV");
121 m_dbgTree_tracks->Branch("charge", &m_charge)->SetTitle("track electric charge");
122 m_dbgTree_tracks->Branch("Num_CDC_hits", &m_tree_nCDChits)->SetTitle("Num CDC hits");
123
124 m_dbgTree_tracks->SetAutoSave(10);
125
126 // Per crystal
127 m_dbgTree_crystals = new TTree("tree_crystals",
128 "Debug data for bhabha time calibration - one entry per electron - one entry per crystal");
129 m_dbgTree_crystals->Branch("clustCrysE_DIV_maxEcrys",
130 &m_tree_clustCrysE_DIV_maxEcrys)->SetTitle("E of crystal i from cluster / E of max E crystal");
131 m_dbgTree_crystals->Branch("Crystal_E", &m_tree_clustCrysE) ->SetTitle("E of crystal i from cluster");
132 m_dbgTree_crystals->Branch("time_t_psi", &m_tree_time)->SetTitle("Time for Ts, ns");
133 m_dbgTree_crystals->Branch("Crystal_cell_ID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
134 m_dbgTree_crystals->Branch("quality", &m_tree_quality)->SetTitle("ECL FPGA fit quality, see XWiki article");
135
136 m_dbgTree_crystals->SetAutoSave(10);
137
138
139 // Per event
140 m_dbgTree_event = new TTree("tree_event", "Debug data for bhabha time calibration - one entry per event");
141 m_dbgTree_event->Branch("massInvTracks", &m_massInvTracks)->SetTitle("Invariant mass of the two tracks");
142
143 m_dbgTree_event->SetAutoSave(10);
144
145
146 m_dbgTree_evt_allCuts = new TTree("tree_evt_allCuts",
147 "Debug data for bhabha time calibration - one entry per event after all the cuts");
148 m_dbgTree_evt_allCuts->Branch("EclustPlus", &m_tree_enPlus)->SetTitle("Energy of cluster with +ve charge, GeV");
149 m_dbgTree_evt_allCuts->Branch("EclustNeg", &m_tree_enNeg)->SetTitle("Energy of cluster with -ve charge, GeV");
150 m_dbgTree_evt_allCuts->Branch("clustTimePos", &m_tree_tClustPos)->SetTitle("Cluster time of cluster with +ve charge, GeV");
151 m_dbgTree_evt_allCuts->Branch("clustTimeNeg", &m_tree_tClustNeg)->SetTitle("Cluster time of cluster with -ve charge, GeV");
152 m_dbgTree_evt_allCuts->Branch("maxEcrysTimePosClust",
153 &m_tree_maxEcrystPosClust)->SetTitle("Time of maximum energy crystal in cluster with +ve charge, GeV");
154 m_dbgTree_evt_allCuts->Branch("maxEcrysTimeNegClust",
155 &m_tree_maxEcrystNegClust)->SetTitle("Time of maximum energy crystal in cluster with -ve charge, GeV");
156 m_dbgTree_evt_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
157 m_dbgTree_evt_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
158 m_dbgTree_evt_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
159
160 m_dbgTree_evt_allCuts->SetAutoSave(10);
161
162
163 // Per crystal within each cluster, entry after all the cuts
164 m_dbgTree_crys_allCuts = new TTree("m_dbgTree_crys_allCuts",
165 "Debug data for bhabha time calibration - one entry per crystal per cluster entry after all cuts");
166
167 m_dbgTree_crys_allCuts->Branch("runNum", &m_runNum)->SetTitle("Run number");
168 m_dbgTree_crys_allCuts->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
169 m_dbgTree_crys_allCuts->Branch("m_tree_ECLCalDigitTime",
171 ->SetTitle("Time of a crystal within the cluster after application of previous calibrations except t0, ns");
172 m_dbgTree_crys_allCuts->Branch("m_tree_ECLCalDigitE", &m_tree_ECLCalDigitE)->SetTitle("Energy of crystal, GeV");
173 m_dbgTree_crys_allCuts->Branch("m_tree_ECLDigitAmplitude",
174 &m_tree_ECLDigitAmplitude)->SetTitle("Amplitude of crystal signal pulse");
175 m_dbgTree_crys_allCuts->Branch("timetsPreviousTimeCalibs",
176 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
177 m_dbgTree_crys_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
178 m_dbgTree_crys_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
179 m_dbgTree_crys_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
180 m_dbgTree_crys_allCuts->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
181
182 m_dbgTree_crys_allCuts->SetAutoSave(10);
183
184
185 } // <<<<<<<<<<<<<<<<<<<<< if boolean true for saving debug trees <<<<<<<<<<<<<<<<<<<<<<<<<< */
186
187
188 // Per max E crystal entry after all the cuts
189 // this tree is always saved
190 m_dbgTree_allCuts = new TTree("tree_allCuts",
191 "Debug data for bhabha time calibration - one entry per max E crystal entry after cuts");
192
193 m_dbgTree_allCuts->Branch("time_t_psi", &m_tree_time)->SetTitle("Time t_psi for Ts, ns");
194 m_dbgTree_allCuts->Branch("crateID", &m_crystalCrate)->SetTitle("Crate id for crystal");
195 m_dbgTree_allCuts->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
196 m_dbgTree_allCuts->Branch("runNum", &m_runNum)->SetTitle("Run number");
197 m_dbgTree_allCuts->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
198 m_dbgTree_allCuts->Branch("maxEcrystalEnergy", &m_tree_en)->SetTitle("Max Energy Crystal Energy, GeV");
199 m_dbgTree_allCuts->Branch("maxEcrystalEnergyDIVclusterE",
200 &m_tree_E1Etot)->SetTitle("Max Energy Crystal Fraction Energy of Cluster");
201 m_dbgTree_allCuts->Branch("E1divE2crystal",
202 &m_tree_E1E2)->SetTitle("Max Energy Crystal DIV second max energy crystal in cluster");
203 m_dbgTree_allCuts->Branch("E1crystalDIVp", &m_tree_E1p)->SetTitle("Max Energy Crystal in cluster DIV track p");
204 m_dbgTree_allCuts->Branch("timetsPreviousTimeCalibs",
205 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
206 m_dbgTree_allCuts->Branch("massInvTracks", &m_massInvTracks)->SetTitle("Invariant mass of the two tracks");
207 m_dbgTree_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
208 m_dbgTree_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
209 m_dbgTree_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
210
211 m_dbgTree_allCuts->Branch("clusterTime", &m_tree_tClust)->SetTitle("Cluster time of cluster with +ve charge, GeV");
212
213 m_dbgTree_allCuts->SetAutoSave(10);
214
215}
216
218{
219 //=== MetaData
220 B2INFO("ECLBhabhaTCollector: Experiment = " << m_EventMetaData->getExperiment() <<
221 " run = " << m_EventMetaData->getRun());
222
223
224 //=== Create histograms and register them in the data store
225 int nbins = m_timeAbsMax * 8;
226 int max_t = m_timeAbsMax;
227 int min_t = -m_timeAbsMax;
228
229
230 auto TimevsCrysPrevCrateCalibPrevCrystCalib = new TH2F("TimevsCrysPrevCrateCalibPrevCrystCalib",
231 "Time t psi - ts - tcrate (previous calibs) vs crystal cell ID;crystal cell ID;Time t_psi with previous calib (ns)",
233 registerObject<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib", TimevsCrysPrevCrateCalibPrevCrystCalib);
234
235 auto TimevsCratePrevCrateCalibPrevCrystCalib = new TH2F("TimevsCratePrevCrateCalibPrevCrystCalib",
236 "Time t psi - ts - tcrate (previous calibs) vs crate ID;crate ID;Time t_psi previous calib (ns)",
237 52, 1, 52 + 1, nbins, min_t, max_t);
238 registerObject<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib", TimevsCratePrevCrateCalibPrevCrystCalib);
239
240 auto TimevsCrysNoCalibrations = new TH2F("TimevsCrysNoCalibrations",
241 "Time tpsi vs crystal cell ID;crystal cell ID;Time t_psi (ns)", ECLElementNumbers::c_NCrystals, 1,
242 ECLElementNumbers::c_NCrystals + 1, nbins, min_t, max_t);
243 registerObject<TH2F>("TimevsCrysNoCalibrations", TimevsCrysNoCalibrations);
244
245 auto TimevsCrateNoCalibrations = new TH2F("TimevsCrateNoCalibrations",
246 "Time tpsi vs crate ID;crate ID;Time t_psi (ns)", 52, 1, 52 + 1, nbins, min_t, max_t);
247 registerObject<TH2F>("TimevsCrateNoCalibrations", TimevsCrateNoCalibrations);
248
249 auto TimevsCrysPrevCrateCalibNoCrystCalib = new TH2F("TimevsCrysPrevCrateCalibNoCrystCalib",
250 "Time tpsi - tcrate (previous calib) vs crystal cell ID;crystal cell ID;Time t_psi including previous crate calib (ns)",
252 registerObject<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib", TimevsCrysPrevCrateCalibNoCrystCalib);
253
254 auto TimevsCrateNoCrateCalibPrevCrystCalib = new TH2F("TimevsCrateNoCrateCalibPrevCrystCalib",
255 "Time tpsi - ts (previous calib) vs crate ID;crate ID;Time t_psi including previous crystal calib (ns)",
256 52, 1, 52 + 1, nbins, min_t, max_t);
257 registerObject<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib", TimevsCrateNoCrateCalibPrevCrystCalib);
258
259
260 auto TsDatabase = new TH1F("TsDatabase", ";cell id;Ts from database", ECLElementNumbers::c_NCrystals, 1,
262 registerObject<TH1F>("TsDatabase", TsDatabase);
263
264 auto TsDatabaseUnc = new TH1F("TsDatabaseUnc", ";cell id;Ts uncertainty from database", ECLElementNumbers::c_NCrystals, 1,
266 registerObject<TH1F>("TsDatabaseUnc", TsDatabaseUnc);
267
268 auto TcrateDatabase = new TH1F("TcrateDatabase", ";cell id;Tcrate from database", ECLElementNumbers::c_NCrystals, 1,
270 registerObject<TH1F>("TcrateDatabase", TcrateDatabase);
271
272 auto TcrateUncDatabase = new TH1F("TcrateUncDatabase", ";cell id;Tcrate uncertainty from database", ECLElementNumbers::c_NCrystals,
274 registerObject<TH1F>("TcrateUncDatabase", TcrateUncDatabase);
275
276
277 auto tcrateDatabase_ns = new TH1F("tcrateDatabase_ns", ";crate id;tcrate derived from database", 52, 1, 52 + 1);
278 registerObject<TH1F>("tcrateDatabase_ns", tcrateDatabase_ns);
279
280
281 auto databaseCounter = new TH1I("databaseCounter",
282 ";A database was read in;Number of times database was saved to histogram", 1, 1, 2);
283 registerObject<TH1I>("databaseCounter", databaseCounter);
284
285
286 auto numCrystalEntriesPerEvent = new TH1F("numCrystalEntriesPerEvent",
287 ";Number crystal entries;Number of events", 15, 0, 15);
288 registerObject<TH1F>("numCrystalEntriesPerEvent", numCrystalEntriesPerEvent);
289
290 auto cutflow = new TH1F("cutflow", ";Cut label number;Number of events passing cut", 20, 0, 20);
291 registerObject<TH1F>("cutflow", cutflow);
292
293 auto maxEcrsytalEnergyFraction = new TH1F("maxEcrsytalEnergyFraction",
294 ";Maximum energy crystal energy / (sum) cluster energy;Number", 22, 0, 1.1);
295 registerObject<TH1F>("maxEcrsytalEnergyFraction", maxEcrsytalEnergyFraction);
296
297 auto refCrysIDzeroingCrate = new TH1F("refCrysIDzeroingCrate", ";cell id;Boolean - is reference crystal",
299 registerObject<TH1F>("refCrysIDzeroingCrate", refCrysIDzeroingCrate);
300
301 auto CDCEventT0Correction = new TH1F("CDCEventT0Correction", ";;CDC event t0 offset correction [ns]", 1, 1, 2);
302 registerObject<TH1F>("CDCEventT0Correction", CDCEventT0Correction);
303
304
305 //=== Required data objects
306 m_eventT0.isRequired();
307 tracks.isRequired();
308 m_eclClusterArray.isRequired();
309 m_eclCalDigitArray.isRequired();
310 m_eclDigitArray.isRequired();
311
312 B2INFO("hadronEventT0_TO_bhabhaEventT0_correction = " << m_hadronEventT0_TO_bhabhaEventT0_correction <<
313 " ns correction to CDC event t0 will be applied");
314
315 B2INFO("skipTrgSel = " << skipTrgSel);
316
317}
318
320{
321 int cutIndexPassed = 0;
322 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
323 B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
324 B2DEBUG(22, "Event number = " << m_EventMetaData->getEvent());
325
326
327 // --- Check the trigger skim is the type that has two tracks
328
329 /* If we skip the trigger skim selection then still fill the cutflow histogram
330 just so that the positions don't change. */
331 if (!skipTrgSel) {
332 if (!m_TrgResult.isValid()) {
333 B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
334 return;
335 }
336
337 /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
338 to look at the 2 track bhabha events. */
339 const std::map<std::string, int>& fresults = m_TrgResult->getResults();
340 if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
341 B2WARNING("Can't find required bhabha trigger identifier");
342 return;
343 }
344
345 const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
347 B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
348
349 if (!eBhabha) {
350 return;
351 }
352 }
353
354 /* Fill the histogram showing that the trigger skim cut passed OR that we
355 are skipping this selection. */
356 cutIndexPassed++;
357 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
358 B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
359
360
361
362 /* Use ECLChannelMapper to get other detector indices for the crystals
363 For conversion from CellID to crate, shaper, and channel ids.
364 The initialization function automatically checks to see if the
365 object has been initialized and ifthe payload has changed and
366 thus needs updating. */
367 bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
368 if (ECLchannelMapHasChanged) {
369 B2INFO("ECLBhabhaTCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged", ECLchannelMapHasChanged));
370 if (!m_crystalMapper->initFromDB()) {
371 B2FATAL("ECLBhabhaTCollectorModule::collect() : Can't initialize eclChannelMapper!");
372 }
373 }
374
375
376 //== Get expected energies and calibration constants from DB. Need to call
377 // hasChanged() for later comparison
378 if (m_ElectronicsDB.hasChanged()) {
379 m_Electronics = m_ElectronicsDB->getCalibVector();
380 }
381 if (m_ElectronicsTimeDB.hasChanged()) {
382 m_ElectronicsTime = m_ElectronicsTimeDB->getCalibVector();
383 }
384 if (m_FlightTimeDB.hasChanged()) {
385 m_FlightTime = m_FlightTimeDB->getCalibVector();
386 }
387
388 // Get the previous crystal time offset (the same thing that this calibration is meant to calculate).
389 // This can be used for testing purposes, and for the crate time offset.
390 if (m_PreviousCrystalTimeDB.hasChanged()) {
393 }
394
395 B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
396 if (m_CrateTimeDB.hasChanged()) {
397 m_CrateTime = m_CrateTimeDB->getCalibVector();
398 m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
399 }
400 B2DEBUG(29, "Finished checking if previous crate time payload has changed");
401 B2DEBUG(29, "m_CrateTime size = " << m_CrateTime.size());
402 B2DEBUG(25, "Crate time +- uncertainty [0]= " << m_CrateTime[0] << " +- " << m_CrateTimeUnc[0]);
403 B2DEBUG(25, "Crate time +- uncertainty [8735]= " << m_CrateTime[8735] << " +- " << m_CrateTimeUnc[8735]);
404
405 B2DEBUG(29, "Finished checking if previous crate time payload has changed");
406 if (m_RefCrystalsCalibDB.hasChanged()) {
407 m_RefCrystalsCalib = m_RefCrystalsCalibDB->getReferenceCrystals();
408 }
409 B2DEBUG(29, "Finished checking if reference crystal cell ids payload has changed");
410
411
412 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalTimeOffset from the database"
413 << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
414 << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
415 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrateTimeOffset from the database"
416 << LogVar("IoV", m_CrateTimeDB.getIoV())
417 << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
418 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronics from the database"
419 << LogVar("IoV", m_ElectronicsDB.getIoV())
420 << LogVar("Checksum", m_ElectronicsDB.getChecksum()));
421 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronicsTime from the database"
422 << LogVar("IoV", m_ElectronicsTimeDB.getIoV())
423 << LogVar("Checksum", m_ElectronicsTimeDB.getChecksum()));
424 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalFlightTime from the database"
425 << LogVar("IoV", m_FlightTimeDB.getIoV())
426 << LogVar("Checksum", m_FlightTimeDB.getChecksum()));
427 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLReferenceCrystalPerCrateCalib from the database"
428 << LogVar("IoV", m_RefCrystalsCalibDB.getIoV())
429 << LogVar("Checksum", m_RefCrystalsCalibDB.getChecksum()));
430
431
432
433 // Conversion coefficient from ADC ticks to nanoseconds
434 // TICKS_TO_NS ~ 0.4913 ns/clock tick
435 // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
436 const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
437
438
439 vector<float> Crate_time_ns(52, 0.0);
441 // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
442 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
443 int crateID_temp = m_crystalMapper->getCrateID(crysID);
444 Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
445 }
446
447
448
454 for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
455 getObjectPtr<TH1F>("refCrysIDzeroingCrate")->Fill(m_RefCrystalsCalib[crateID_temp - 1] + 0.001);
456 }
457
458
460 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
461 getObjectPtr<TH1F>("TsDatabase")->SetBinContent(crysID + 0.001, m_PreviousCrystalTime[crysID - 1]);
462 getObjectPtr<TH1F>("TsDatabaseUnc")->SetBinContent(crysID + 0.001, m_PreviousCrystalTimeUnc[crysID - 1]);
463 getObjectPtr<TH1F>("TcrateDatabase")->SetBinContent(crysID + 0.001, m_CrateTime[crysID - 1]);
464 getObjectPtr<TH1F>("TcrateUncDatabase")->SetBinContent(crysID + 0.001, m_CrateTimeUnc[crysID - 1]);
465 }
466 if (m_storeCalib) {
467 B2INFO("ECLBhabhaTCollector:: ECLCrystalTimeOffset from the database information:"
468 << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
469 << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
470 B2INFO("First event so print out previous ts values");
471 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
472 B2INFO("cid = " << crysID << ", Ts previous = " << m_PreviousCrystalTime[crysID - 1]);
473 }
474 m_storeCalib = false;
475 }
476
477
478
479
480 for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
481 getObjectPtr<TH1F>("tcrateDatabase_ns")->SetBinContent(crateID_temp + 0.001, Crate_time_ns[crateID_temp - 1]);
482 }
483
484 // Use a histogram with only one bin as a counter to know the number of times the database histograms were filled.
485 // This is mostly useful for the talg when running over multiple runs and trying to read ts values.
486 getObjectPtr<TH1I>("databaseCounter")->SetBinContent(1, 1);
487
488
489
490 // Save what CDC event t0 correction was applied
491 getObjectPtr<TH1F>("CDCEventT0Correction")->SetBinContent(1, m_hadronEventT0_TO_bhabhaEventT0_correction);
492
493
494
495
496 /* Getting the event t0 using the full event t0 rather than from the CDC specifically */
497 double evt_t0 = -1;
498 double evt_t0_unc = -1;
499 double evt_t0_ECL_closestCDC = -1;
500 double evt_t0_ECL_minChi2 = -1;
501
502 // Determine if there is an event t0 to use and then extract the information about it
503 if (!m_eventT0.isValid()) {
504 //cout << "event t0 not valid\n";
505 return;
506 } else if (!m_eventT0->hasTemporaryEventT0(Const::EDetector::CDC)) {
507 //cout << "no event t0\n";
508 return;
509 } else {
510 // Event has a t0 from CDC
511 cutIndexPassed++;
512 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
513 B2DEBUG(22, "Cutflow: Event t0 exists: index = " << cutIndexPassed);
514
515
516 // Get event t0 from CDC. We don't want event t0 from ECL as we are calibrating the ECL wrt the more accurately measured time measurements of the time. Start with the CDC since it has an event t0 but in the future we may switch to the TOP detector.
517 // Based on the information from Thomas Hauth <Thomas.Hauth@kit.edu> (leaving physics) we should take the last event t0 in the list of event t0's from the CDC as the later event t0 measurements are calculated in slower but more accurate ways.
518 const auto bestCDCEventT0Candidate = m_eventT0->getBestCDCTemporaryEventT0();
519 evt_t0 = bestCDCEventT0Candidate->eventT0; // time value
520 evt_t0_unc = bestCDCEventT0Candidate->eventT0Uncertainty; // uncertainty on event t0
521
522
523 // Correct the CDC event t0 value for the bhabha bias
524 evt_t0 = evt_t0 + m_hadronEventT0_TO_bhabhaEventT0_correction; // Bias not yet fixed in CDC t0 reco.
525
526
527 // Get the ECL event t0 for comparison - validations
528 if (m_eventT0->hasTemporaryEventT0(Const::EDetector::ECL)) {
529 vector<EventT0::EventT0Component> evt_t0_list_ECL = m_eventT0->getTemporaryEventT0s(Const::EDetector::ECL);
530
531
532 double smallest_CDC_ECL_t0_diff = fabs(evt_t0_list_ECL[0].eventT0 - evt_t0);
533 int smallest_CDC_ECL_t0_diff_idx = 0;
534 for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
535 double tempt_ECL_t0 = evt_t0_list_ECL[ECLi].eventT0;
536 if (fabs(tempt_ECL_t0 - evt_t0) < smallest_CDC_ECL_t0_diff) {
537 smallest_CDC_ECL_t0_diff = fabs(tempt_ECL_t0 - evt_t0);
538 smallest_CDC_ECL_t0_diff_idx = ECLi;
539 }
540 }
541
542 evt_t0_ECL_closestCDC = evt_t0_list_ECL[smallest_CDC_ECL_t0_diff_idx].eventT0; // time value
543 B2DEBUG(26, "evt_t0_ECL_closestCDC = " << evt_t0_ECL_closestCDC);
544
545
546
547 double smallest_ECL_t0_minChi2 = evt_t0_list_ECL[0].quality;
548 int smallest_ECL_t0_minChi2_idx = 0;
549
550 B2DEBUG(26, "evt_t0_list_ECL[0].quality = " << evt_t0_list_ECL[0].quality
551 << ", with ECL event t0 = " << evt_t0_list_ECL[0].eventT0);
552
553 for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
554 B2DEBUG(26, "evt_t0_list_ECL[" << ECLi << "].quality = " << evt_t0_list_ECL[ECLi].quality
555 << ", with ECL event t0 = " <<
556 evt_t0_list_ECL[ECLi].eventT0);
557 if (evt_t0_list_ECL[ECLi].quality < smallest_ECL_t0_minChi2) {
558 smallest_ECL_t0_minChi2 = evt_t0_list_ECL[ECLi].quality;
559 smallest_ECL_t0_minChi2_idx = ECLi;
560 }
561 }
562
563 evt_t0_ECL_minChi2 = evt_t0_list_ECL[smallest_ECL_t0_minChi2_idx].eventT0; // time value
564
565 B2DEBUG(26, "evt_t0_ECL_minChi2 = " << evt_t0_ECL_minChi2);
566 B2DEBUG(26, "smallest_ECL_t0_minChi2_idx = " << smallest_ECL_t0_minChi2_idx);
567 }
568 }
569
570
571
572 /* Determine the energies for each of the crystals since this isn't naturally connected to the cluster.
573 Also determine the indexing of the ecl cal digits and the ecl digits
574 Taken from Chris's ec/modules/eclGammaGammaECollector */
575
576 // Resize vectors
580
581
582 int idx = 0;
583 for (auto& eclCalDigit : m_eclCalDigitArray) {
584 int tempCrysID = eclCalDigit.getCellId() - 1;
585 m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
586 m_eclCalDigitID[tempCrysID] = idx;
587 idx++;
588 }
589
590 idx = 0;
591 for (auto& eclDigit : m_eclDigitArray) {
592 int tempCrysID = eclDigit.getCellId() - 1;
593 m_eclDigitID[tempCrysID] = idx;
594 idx++;
595 }
596
597
598
599
600 //---------------------------------------------------------------------
601 //..Some utilities
602 PCmsLabTransform boostrotate;
603
604 //---------------------------------------------------------------------
605 //..Track properties, including 2 maxp tracks. Use pion (211) mass hypothesis,
606 // which is the only particle hypothesis currently available???
607 double maxp[2] = {0., 0.};
608 int maxiTrk[2] = { -1, -1};
609 int nTrkAll = tracks.getEntries();
610
611 int nTrkLoose = 0;
612 int nTrkTight = 0;
614 /* Loop over all the tracks to define the tight and loose selection tracks.
615 We will select events with only 2 tight tracks and no additional loose tracks.
616 Tight tracks are a subset of looses tracks. */
617 for (int iTrk = 0; iTrk < nTrkAll; iTrk++) {
618 // Get track biasing towards the particle being a pion based on what particle types
619 // are used for reconstruction at this stage.
620 const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
621 if (not tempTrackFit) {continue;}
622
623 // Collect track info to be used for categorizing
624 short charge = tempTrackFit->getChargeSign();
625 double z0 = tempTrackFit->getZ0();
626 double d0 = tempTrackFit->getD0();
627 int nCDChits = tempTrackFit->getHitPatternCDC().getNHits();
628 double p = tempTrackFit->getMomentum().R();
629
630 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
631 //== Save debug TTree with detailed information if necessary.
632 m_tree_d0 = d0;
633 m_tree_z0 = z0;
634 m_tree_p = p;
635 m_charge = charge;
636 m_tree_nCDChits = nCDChits;
637
638 if (m_saveTree) {
639 m_dbgTree_tracks->Fill();
640 }
641 //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
642
643
644 /* Test if loose track */
645
646 // d0 and z0 cuts
647 if (fabs(d0) > m_looseTrkD0) {
648 continue;
649 }
650 if (fabs(z0) > m_looseTrkZ0) {
651 continue;
652 }
653 // Number of hits in the CDC
654 if (nCDChits < 1) {
655 continue;
656 }
657 nTrkLoose++;
658
659
660
661 /* Test if the loose track is also a tight track */
662
663 // Number of hits in the CDC
664 if (nCDChits < 20) {
665 continue;
666 }
667
668
669 // d0 and z0 cuts
670 if (fabs(d0) > m_tightTrkD0) {
671 continue;
672 }
673 if (fabs(z0) > m_tightTrkZ0) {
674 continue;
675 }
676 nTrkTight++;
677
678 // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
679 //..Find the maximum p negative [0] and positive [1] tracks
680 int icharge = 0;
681 if (charge > 0) {icharge = 1;}
682 if (p > maxp[icharge]) {
683 maxp[icharge] = p;
684 maxiTrk[icharge] = iTrk;
685 }
686
687 }
688 /* After that last section the numbers of loose and tight tracks are known as well as the
689 index of the loose tracks that have the highest p negatively charged and highest p positively
690 charged tracks as measured in the centre of mass frame */
691
692
693 if (nTrkTight != 2) {
694 return;
695 }
696 // There are exactly two tight tracks
697 cutIndexPassed++;
698 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
699 B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
700
701
702 if (nTrkLoose != 2) {
703 return;
704 }
705 // There are exactly two loose tracks as well, i.e. no additional loose tracks
706 cutIndexPassed++;
707 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
708 B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed);
709
710 /* Determine if the two tracks have the opposite electric charge.
711 We know this because the track indices stores the max pt track in [0] for negatively charged track
712 and [1] for the positively charged track. If both are filled then both a negatively charged
713 and positively charged track were found. */
714 bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
715 if (!oppositelyChargedTracksPassed) {
716 return;
717 }
718 // The two tracks have the opposite electric charges.
719 cutIndexPassed++;
720 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
721 B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
722
723
724
725
726 //---------------------------------------------------------------------
727 /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
728 multiple clusters to each track and find the crystal with the maximum energy within all
729 the sets of clusters associated to the tracks*/
730 double trkEClustLab[2] = {0., 0.};
731 double trkEClustCOM[2] = {0., 0.};
732 double trkpLab[2];
733 double trkpCOM[2];
734 ROOT::Math::PxPyPzEVector trkp4Lab[2];
735 ROOT::Math::PxPyPzEVector trkp4COM[2];
736
737 // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
738 int crysIDMax[2] = { -1, -1 };
739 double crysEMax[2] = { -1, -1 };
740 double crysE2Max[2] = { -1, -1 };
741 int numClustersPerTrack[2] = { 0, 0 };
742
743 double clusterTime[2] = {0, 0};
744
745 double E_DIV_p[2];
746
747 vector<double> time_ECLCaldigits_bothClusters;
748 vector<int> cid_ECLCaldigits_bothClusters;
749 vector<double> E_ECLCaldigits_bothClusters;
750 vector<double> amp_ECLDigits_bothClusters;
751 vector<int> chargeID_ECLCaldigits_bothClusters;
752
753 for (int icharge = 0; icharge < 2; icharge++) {
754 if (maxiTrk[icharge] > -1) {
755 B2DEBUG(22, "looping over the 2 max pt tracks");
756
757 const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
758 if (not tempTrackFit) {continue;}
759 trkp4Lab[icharge] = tempTrackFit->get4Momentum();
760 trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
761 trkpLab[icharge] = trkp4Lab[icharge].P();
762 trkpCOM[icharge] = trkp4COM[icharge].P();
763
764
765 /* For each cluster associated to the current track, sum up the energies to get the total
766 energy of all clusters associated to the track and find which crystal has the highest
767 energy from all those clusters*/
768 auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
769 for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
770
771 B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
772 auto cluster = eclClusterRelationsFromTracks[clusterIdx];
773 bool goodClusterType = false;
774
775 if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
776 trkEClustLab[icharge] += cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
777 goodClusterType = true;
778 numClustersPerTrack[icharge]++;
779 }
780
781 if (goodClusterType) {
782
783 clusterTime[icharge] = cluster->getTime();
784
785 auto eclClusterRelations = cluster->getRelationsTo<ECLCalDigit>("ECLCalDigits");
786
787 // Find the crystal that has the largest energy
788 for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
789 const auto calDigit = eclClusterRelations.object(ir);
790 int tempCrysID = calDigit->getCellId() - 1;
791 double tempE = m_EperCrys[tempCrysID];
792
793 int eclDigitIndex = m_eclDigitID[tempCrysID];
794 ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
795
796 // for the max E crystal
797 if (tempE > crysEMax[icharge]) {
798 // Set 2nd highest E crystal to the info from the highest E crystal
799 crysE2Max[icharge] = crysEMax[icharge];
800 // Set the highest E crystal to the current crystal
801 crysEMax[icharge] = tempE;
802 crysIDMax[icharge] = tempCrysID;
803 }
804 // for the 2nd highest E crystal
805 if (tempE > crysE2Max[icharge] && tempCrysID != crysIDMax[icharge]) {
806 crysE2Max[icharge] = tempE;
807 }
808
809 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
810 // If we drop the information about the second highest energy crystal we could use
811 // m_eclClusterArray[ic]->getMaxECellId()
812
813 B2DEBUG(26, "calDigit(ir" << ir << ") time = " << calDigit->getTime() << "ns , with E = " << tempE << " GeV");
814 time_ECLCaldigits_bothClusters.push_back(calDigit->getTime());
815 cid_ECLCaldigits_bothClusters.push_back(tempCrysID);
816 E_ECLCaldigits_bothClusters.push_back(tempE);
817 amp_ECLDigits_bothClusters.push_back(ecl_dig->getAmp());
818 chargeID_ECLCaldigits_bothClusters.push_back(icharge);
819
820 }
821 }
822 }
823 trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
824
825 // Check both electrons to see if their cluster energy / track momentum is good.
826 // The Belle II physics book shows that this is the main way of separating electrons from other particles
827 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
828 E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
829
830 }
831 }
832 /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
833 for the two saved track indices for both the lab and COM frames.
834 The crystal with the maximum energy, one associated to each track, is recorded*/
835
836
837
838 //=== Check each crystal in the processed event and fill histogram.
839
840 int numCrystalsPassingCuts = 0;
841
842 int crystalIDs[2] = { -1, -1};
843 int crateIDs[2] = { -1, -1};
844 double ts_prevCalib[2] = { -1, -1};
845 double tcrate_prevCalib[2] = { -1, -1};
846 double times_noPreviousCalibrations[2] = { -1, -1};
847 bool crystalCutsPassed[2] = {false, false};
848 double crystalEnergies[2] = { -1, -1};
849 double crystalEnergies2[2] = { -1, -1};
850
851 for (int iCharge = 0; iCharge < 2; iCharge++) {
852 int crystal_idx = crysIDMax[iCharge];
853 int eclCalDigitIndex = m_eclCalDigitID[crystal_idx];
854 int eclDigitIndex = m_eclDigitID[crystal_idx];
855
856 ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
857 ECLCalDigit* ecl_cal = m_eclCalDigitArray[eclCalDigitIndex];
858
859 //== Check whether specific ECLDigits should be excluded.
860
861 auto en = ecl_cal->getEnergy();
862 auto amplitude = ecl_dig->getAmp();
863 crystalEnergies[iCharge] = en;
864
865 int cid = ecl_dig->getCellId();
866 double time = ecl_dig->getTimeFit() * TICKS_TO_NS - evt_t0;
867
868 // Offset time by electronics calibration and flight time calibration.
869 time -= m_ElectronicsTime[cid - 1] * TICKS_TO_NS;
870 time -= m_FlightTime[cid - 1];
871
872
873 // Apply the time walk correction: time shift as a function of the amplitude corrected by the electronics calibration.
874 // The electronics calibration also accounts for crystals that have a dead pre-amp and thus half the normal amplitude.
875 double energyTimeShift = m_ECLTimeUtil->energyDependentTimeOffsetElectronic(amplitude * m_Electronics[cid - 1]) * TICKS_TO_NS;
876
877 B2DEBUG(29, "cellid = " << cid << ", amplitude = " << amplitude << ", time before t(E) shift = " << time <<
878 ", t(E) shift = " << energyTimeShift << " ns");
879 time -= energyTimeShift;
880
881
882 // Cell ID should be within specified range.
883 if (cid < m_minCrystal || cid > m_maxCrystal) continue;
884
885 // Absolute time should be in specified range condition.
886 if (fabs(time) > m_timeAbsMax) continue;
887
888 // Fit quality flag -- choose only events with best fit quality
889 if (ecl_dig->getQuality() != 0) continue;
890
891 //== Save time and crystal information. Fill plot after both electrons are tested
892 crystalIDs[iCharge] = cid;
893 crateIDs[iCharge] = m_crystalMapper->getCrateID(ecl_cal->getCellId());
894
895
896 ts_prevCalib[iCharge] = m_PreviousCrystalTime[cid - 1] * TICKS_TO_NS;
897 tcrate_prevCalib[iCharge] = m_CrateTime[cid - 1] * TICKS_TO_NS;
898 times_noPreviousCalibrations[iCharge] = time;
899
900
901 B2DEBUG(26, "iCharge = " << iCharge);
902 B2DEBUG(26, "crateIDs[iCharge] = " << crateIDs[iCharge]);
903 B2DEBUG(26, "times_noPreviousCalibrations[iCharge] = " << times_noPreviousCalibrations[iCharge]);
904 B2DEBUG(26, "tcrate_prevCalib[iCharge] = " << tcrate_prevCalib[iCharge]);
905 B2DEBUG(26, "ts_prevCalib[iCharge] = " << ts_prevCalib[iCharge]);
906
907
908 crystalCutsPassed[iCharge] = true;
909
910
911 // For second most energetic energy crystal
912 crystalEnergies2[iCharge] = crysE2Max[iCharge];
913
914
915// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
916 //== Save debug TTree with detailed information if necessary.
917 m_tree_cid = ecl_dig->getCellId();
918 m_tree_amp = ecl_dig->getAmp();
919 m_tree_en = en;
920 m_tree_E1Etot = en / trkEClustLab[iCharge];
921 m_tree_E1E2 = en / crystalEnergies2[iCharge];
922 m_tree_E1p = en / trkpLab[iCharge];
923 m_tree_timetsPreviousTimeCalibs = time - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
924 m_tree_timeF = ecl_dig->getTimeFit() * TICKS_TO_NS;
925 m_tree_time = time;
926 m_tree_quality = ecl_dig->getQuality();
927 m_tree_t0 = evt_t0;
928 m_tree_t0_unc = evt_t0_unc;
929 m_E_DIV_p = E_DIV_p[iCharge];
930 m_tree_evtNum = m_EventMetaData->getEvent();
931 m_crystalCrate = m_crystalMapper->getCrateID(ecl_cal->getCellId());
932 m_runNum = m_EventMetaData->getRun();
933
934 if (m_saveTree) {
935 m_dbgTree_electrons->Fill();
936 }
937// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
938
939 // Fill histogram with information about maximum energy crystal energy fraction
940 getObjectPtr<TH1F>("maxEcrsytalEnergyFraction")->Fill(en / trkEClustLab[iCharge]);
941
942
943 }
944
945
946
947 // Check both electrons to see if their cluster energy / track momentum is good.
948 // The Belle II physics book shows that this is the main way of separating electrons from other particles
949 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
950 bool E_DIV_p_instance_passed[2] = {false, false};
951 double E_DIV_p_CUT = 0.7;
952 for (int icharge = 0; icharge < 2; icharge++) {
953 E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
954 }
955 if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
956 return;
957 }
958 // E/p sufficiently large
959 cutIndexPassed++;
960 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
961 B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
962
963
964
965 // Start of cuts on both the combined system of tracks and energy clusters
966
967 double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
968 double invMass_CUT = 0.9;
969 m_massInvTracks = invMassTrk; // invariant mass of the two tracks
970
971// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
972 if (m_saveTree) {
973 m_dbgTree_event->Fill();
974 }
975// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
976
977 bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
978 if (!invMassCutsPassed) {
979 return;
980 }
981 // Invariable mass of the two tracks are above the minimum
982 cutIndexPassed++;
983 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
984 B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
985 " : index = " << cutIndexPassed);
986
987
988
989 //== Fill output histogram.
990 for (int iCharge = 0; iCharge < 2; iCharge++) {
991 if (crystalCutsPassed[iCharge]) {
992 getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
993 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
994 getObjectPtr<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
995 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
996 getObjectPtr<TH2F>("TimevsCrysNoCalibrations")->Fill((crystalIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
997 getObjectPtr<TH2F>("TimevsCrateNoCalibrations")->Fill((crateIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
998 getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
999 times_noPreviousCalibrations[iCharge] - tcrate_prevCalib[iCharge], 1);
1000 getObjectPtr<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
1001 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge], 1);
1002
1003 // Record number of crystals used from the event. Should be exactly two.
1004 numCrystalsPassingCuts++;
1005
1006 }
1007 }
1008
1009
1010 // Change cutflow method for this bit ... don't call return because we used to call the hadron cluster stuff afterwards
1011 //
1012 if (crystalCutsPassed[0] || crystalCutsPassed[1]) {
1013 // At least one ECL crystal time and quality cuts passed
1014 cutIndexPassed++;
1015 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
1016 B2DEBUG(22, "Cutflow: At least one crystal time and quality cuts passed: index = " << cutIndexPassed);
1017
1018 getObjectPtr<TH1F>("numCrystalEntriesPerEvent")->Fill(numCrystalsPassingCuts);
1019 }
1020
1021
1022 // Save final information to the tree after all cuts are applied
1023 for (int iCharge = 0; iCharge < 2; iCharge++) {
1024 if (crystalCutsPassed[iCharge]) {
1025 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1026 m_tree_evtNum = m_EventMetaData->getEvent();
1027 m_tree_cid = crystalIDs[iCharge];
1028 //m_tree_time = times[iCharge];
1029 m_tree_time = times_noPreviousCalibrations[iCharge];
1030 m_crystalCrate = crateIDs[iCharge];
1031 m_runNum = m_EventMetaData->getRun();
1032 m_tree_en = crystalEnergies[iCharge]; // for studies of ts as a function of energy
1033 m_tree_E1Etot = crystalEnergies[iCharge] / trkEClustLab[iCharge];
1034 m_tree_E1E2 = crystalEnergies[iCharge] / crystalEnergies2[iCharge];
1035 m_tree_E1p = crystalEnergies[iCharge] / trkpLab[iCharge];
1036 m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
1037 m_tree_t0 = evt_t0;
1038 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1039 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1040 m_tree_tClust = clusterTime[iCharge];
1041
1042 m_massInvTracks = invMassTrk; // This is probably already set but I'll set it again anyways just so that it is clear
1043
1044 if (m_saveTree) {
1045 m_dbgTree_allCuts->Fill();
1046 }
1047 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1048 }
1049 }
1050
1051
1052
1053
1054 if (crystalCutsPassed[0] && crystalCutsPassed[1] &&
1055 numClustersPerTrack[0] == 1 && numClustersPerTrack[1] == 1) {
1056 m_tree_enNeg = trkEClustLab[0];
1057 m_tree_enPlus = trkEClustLab[1];
1058 m_tree_tClustNeg = clusterTime[0];
1059 m_tree_tClustPos = clusterTime[1];
1060 m_tree_maxEcrystPosClust = times_noPreviousCalibrations[0] - ts_prevCalib[0] - tcrate_prevCalib[0];
1061 m_tree_maxEcrystNegClust = times_noPreviousCalibrations[1] - ts_prevCalib[1] - tcrate_prevCalib[1];
1062 m_tree_t0 = evt_t0;
1063 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1064 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1065
1066 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1067 if (m_saveTree) {
1068 m_dbgTree_evt_allCuts->Fill();
1069 }
1070 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1071 }
1072
1073
1074 B2DEBUG(26, "m_tree_maxEcrystPosClust + evt_t0 = " << m_tree_maxEcrystPosClust + evt_t0);
1075 B2DEBUG(26, "m_tree_maxEcrystNegClust + evt_t0 = " << m_tree_maxEcrystNegClust + evt_t0);
1076 B2DEBUG(26, "CDC evt_t0 = " << evt_t0);
1077 B2DEBUG(26, "ECL min chi2 even t0, m_tree_t0_ECL_minChi2 = " << m_tree_t0_ECL_minChi2);
1078
1079
1080
1081 for (long unsigned int digit_i = 0; digit_i < time_ECLCaldigits_bothClusters.size(); digit_i++) {
1082 m_runNum = m_EventMetaData->getRun();
1083 m_tree_evtNum = m_EventMetaData->getEvent();
1084 m_tree_ECLCalDigitTime = time_ECLCaldigits_bothClusters[digit_i];
1085 m_tree_ECLCalDigitE = E_ECLCaldigits_bothClusters[digit_i];
1086 m_tree_ECLDigitAmplitude = amp_ECLDigits_bothClusters[digit_i];
1087 m_tree_t0 = evt_t0;
1088 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1089 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1090 m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1091 ts_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1092 tcrate_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]];
1093 m_tree_cid = cid_ECLCaldigits_bothClusters[digit_i];
1094
1095 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1096 if (m_saveTree) {
1097 m_dbgTree_crys_allCuts->Fill();
1098 }
1099 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1100
1101 }
1102
1103
1104 B2DEBUG(26, "This was for event number = " << m_tree_evtNum);
1105
1106}
1107
1108
Calibration collector module base class.
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
double m_tree_d0
Track d0 for debug TTree output.
double m_tree_maxEcrystNegClust
Time of the highest energy crystal in the cluster associated to negatively charged track,...
std::vector< float > m_CrateTime
vector obtained from DB object
std::vector< int > m_eclDigitID
ECL digit id sorter.
double m_tree_timeF
ECL fitting time for debug TTree output.
double m_tree_E1Etot
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy,...
double m_tree_tClustNeg
Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_CrateTimeDB
Time offset from crate time calibration (also this calibration) from database.
TTree * m_dbgTree_crystals
Debug TTree output per crystal.
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
double m_tree_clustCrysE
crystal energy, only for the crystals that meet all the selection criteria for debug TTree output
std::vector< float > m_FlightTime
vector obtained from DB object
double m_tree_timetsPreviousTimeCalibs
Time for Ts distribution after application of previous time calibrations for debug TTree output.
double m_looseTrkD0
Loose track d0 minimum cut.
double m_tree_E1E2
Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in ...
double m_tree_ECLDigitAmplitude
Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
double m_tree_tClustPos
Cluster time of cluster associated to positively charged track, ns for debug TTree output.
int m_tree_quality
ECL fit quality for debug TTree output.
bool m_saveTree
If true, save TTree with more detailed event info.
double m_tree_enNeg
Energy of cluster associated to negatively charged track, GeV for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_ElectronicsTimeDB
Time offset from electronics calibration from database.
double m_tree_tClust
Cluster time of a cluster, ns for debug TTree output.
double m_E_DIV_p
Energy divided by momentum, for debug TTree output.
double m_tree_en
Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
std::vector< int > m_eclCalDigitID
ECL cal digit id sorter.
bool m_storeCalib
Boolean for whether or not to store the previous calibration calibration constants.
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
DBObjPtr< ECLReferenceCrystalPerCrateCalib > m_RefCrystalsCalibDB
Crystal IDs of the one reference crystal per crate from database.
int m_crystalCrate
Crate id for the crystal.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
double m_tree_time
Time for Ts distribution for debug TTree output.
double m_massInvTracks
invariant mass of the two tracks, for debug TTree output
double m_tree_nCDChits
Number of CDC hits along the track for debug TTree output.
double m_tree_enPlus
Energy of cluster associated to positively charged track, GeV for debug TTree output.
int m_tree_evtNum
Event number for debug TTree output.
double m_tightTrkZ0
Tight track z0 minimum cut.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
std::vector< short > m_RefCrystalsCalib
vector obtained from DB object
double m_tree_t0_ECL_minChi2
EventT0 (from ECL) min chi2 for debug TTree output.
double m_tree_maxEcrystPosClust
Time of the highest energy crystal in the cluster associated to positively charged track,...
void collect() override
Select events and crystals and accumulate histograms.
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
TTree * m_dbgTree_allCuts
Debug TTree output after all cuts.
double m_tree_ECLCalDigitTime
Time of an ECLCalDigit within a cluster, ns for debug TTree output.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
TTree * m_dbgTree_event
Debug TTree output per event.
double m_tree_z0
Track z0 for debug TTree output.
std::vector< float > m_EperCrys
ECL cal digit energy for each crystal.
bool skipTrgSel
flag to skip the trigger skim selection in the module
double m_tree_p
Track momentum for debug TTree output.
void prepare() override
Define histograms and read payloads from DB.
std::vector< float > m_PreviousCrystalTime
vector obtained from DB object
DBObjPtr< ECLCrystalCalib > m_PreviousCrystalTimeDB
Time offset from previous crystal time calibration (this calibration) from database.
double m_tightTrkD0
Tight track d0 minimum cut.
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
int m_tree_amp
Fitting amplitude from ECL for debug TTree output.
double m_tree_E1p
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by t...
TTree * m_dbgTree_evt_allCuts
Debug TTree output per event after all cuts.
std::vector< float > m_Electronics
vector obtained from DB object
void inDefineHisto() override
Replacement for defineHisto() in CalibrationCollector modules.
int m_charge
particle charge, for debug TTree output
TTree * m_dbgTree_electrons
Output tree with detailed event data.
std::vector< float > m_PreviousCrystalTimeUnc
vector obtained from DB object
std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
ECL timing tools.
StoreArray< Track > tracks
StoreArray for tracks.
double m_tree_t0_ECLclosestCDC
EventT0 (from ECL) closest to CDC for debug TTree output.
TTree * m_dbgTree_crys_allCuts
Debug TTree output per crystal after all cuts.
double m_tree_clustCrysE_DIV_maxEcrys
ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals t...
DBObjPtr< ECLCrystalCalib > m_FlightTimeDB
Time offset from flight time b/w IP and crystal from database.
DBObjPtr< ECLCrystalCalib > m_ElectronicsDB
electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps
double m_tree_ECLCalDigitE
Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
virtual ~ECLBhabhaTCollectorModule()
Module destructor.
double m_hadronEventT0_TO_bhabhaEventT0_correction
correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared...
std::vector< float > m_ElectronicsTime
vector obtained from DB object
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
TTree * m_dbgTree_tracks
Debug TTree output per track.
double m_looseTrkZ0
Loose track z0 minimum cut.
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:118
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:123
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
int getAmp() const
Get Fitting Amplitude.
Definition: ECLDigit.h:70
int getQuality() const
Get Fitting Quality.
Definition: ECLDigit.h:80
int getCellId() const
Get Cell ID.
Definition: ECLDigit.h:64
int getTimeFit() const
Get Fitting Time.
Definition: ECLDigit.h:75
static double getRF()
See m_rf.
unsigned short getNHits() const
Get the total Number of CDC hits in the fit.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
short getChargeSign() const
Return track charge (1 or -1).
ROOT::Math::PxPyPzEVector get4Momentum() const
Getter for the 4Momentum at the closest approach of the track in the r/phi projection.
double getD0() const
Getter for d0.
double getZ0() const
Getter for z0.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
HitPatternCDC getHitPatternCDC() const
Getter for the hit pattern in the CDC;.
Class to store variables with their name which were sent to the logging service.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
@ c_accept
Accept this event.
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.
STL namespace.