Belle II Software development
ECLBhabhaTCollectorModule Class Reference

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events. More...

#include <ECLBhabhaTCollectorModule.h>

Inheritance diagram for ECLBhabhaTCollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLBhabhaTCollectorModule ()
 Module constructor.
 
virtual ~ECLBhabhaTCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 StoreArray for tracks.
 
std::unique_ptr< Belle2::ECL::ECLChannelMapperm_crystalMapper
 ECL object for keeping track of mapping between crystals and crates etc.
 
StoreObjPtr< SoftwareTriggerResultm_TrgResult
 Store array for Trigger selection.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0.
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
DBObjPtr< ECLCrystalCalibm_ElectronicsDB
 electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps
 
std::vector< float > m_Electronics
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsTimeDB
 Time offset from electronics calibration from database.
 
std::vector< float > m_ElectronicsTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_FlightTimeDB
 Time offset from flight time b/w IP and crystal from database.
 
std::vector< float > m_FlightTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_PreviousCrystalTimeDB
 Time offset from previous crystal time calibration (this calibration) from database.
 
std::vector< float > m_PreviousCrystalTime
 vector obtained from DB object
 
std::vector< float > m_PreviousCrystalTimeUnc
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 Time offset from crate time calibration (also this calibration) from database.
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
DBObjPtr< ECLReferenceCrystalPerCrateCalibm_RefCrystalsCalibDB
 Crystal IDs of the one reference crystal per crate from database.
 
std::vector< short > m_RefCrystalsCalib
 vector obtained from DB object
 
DBObjPtr< Belle2::ECLChannelMapm_channelMapDB
 Mapper of ecl channels to various other objects, like crates.
 
TTree * m_dbgTree_electrons = nullptr
 Output tree with detailed event data.
 
TTree * m_dbgTree_tracks = nullptr
 Debug TTree output per track.
 
TTree * m_dbgTree_crystals = nullptr
 Debug TTree output per crystal.
 
TTree * m_dbgTree_event = nullptr
 Debug TTree output per event.
 
TTree * m_dbgTree_allCuts = nullptr
 Debug TTree output after all cuts.
 
TTree * m_dbgTree_evt_allCuts = nullptr
 Debug TTree output per event after all cuts.
 
TTree * m_dbgTree_crys_allCuts = nullptr
 Debug TTree output per crystal after all cuts.
 
int m_tree_evtNum = intNaN
 Event number for debug TTree output.
 
int m_tree_cid = intNaN
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
int m_tree_amp = intNaN
 Fitting amplitude from ECL for debug TTree output.
 
double m_tree_en = realNaN
 Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
 
double m_tree_E1Etot = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy, unitless for debug TTree output.
 
double m_tree_E1E2 = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in the cluster, unitless for debug TTree output.
 
double m_tree_E1p = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by the track momentum, unitless for debug TTree output.
 
int m_tree_quality = intNaN
 ECL fit quality for debug TTree output.
 
double m_tree_timeF = realNaN
 ECL fitting time for debug TTree output.
 
double m_tree_time = realNaN
 Time for Ts distribution for debug TTree output.
 
double m_tree_timetsPreviousTimeCalibs = realNaN
 Time for Ts distribution after application of previous time calibrations for debug TTree output.
 
double m_tree_t0 = realNaN
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = realNaN
 EventT0 uncertainty for debug TTree output.
 
double m_tree_t0_ECLclosestCDC = realNaN
 EventT0 (from ECL) closest to CDC for debug TTree output.
 
double m_tree_t0_ECL_minChi2 = realNaN
 EventT0 (from ECL) min chi2 for debug TTree output.
 
double m_tree_d0 = realNaN
 Track d0 for debug TTree output.
 
double m_tree_z0 = realNaN
 Track z0 for debug TTree output.
 
double m_tree_p = realNaN
 Track momentum for debug TTree output.
 
double m_tree_nCDChits = realNaN
 Number of CDC hits along the track for debug TTree output.
 
double m_tree_clustCrysE_DIV_maxEcrys = realNaN
 ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_clustCrysE = realNaN
 crystal energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_enPlus = realNaN
 Energy of cluster associated to positively charged track, GeV for debug TTree output.
 
double m_tree_enNeg = realNaN
 Energy of cluster associated to negatively charged track, GeV for debug TTree output.
 
double m_tree_tClustPos = realNaN
 Cluster time of cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_tClustNeg = realNaN
 Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystPosClust = realNaN
 Time of the highest energy crystal in the cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystNegClust = realNaN
 Time of the highest energy crystal in the cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_tClust = realNaN
 Cluster time of a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitTime = realNaN
 Time of an ECLCalDigit within a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitE = realNaN
 Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
 
double m_tree_ECLDigitAmplitude = realNaN
 Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
 
int m_charge = intNaN
 particle charge, for debug TTree output
 
double m_E_DIV_p = realNaN
 Energy divided by momentum, for debug TTree output.
 
double m_massInvTracks = realNaN
 invariant mass of the two tracks, for debug TTree output
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
std::vector< float > m_EperCrys
 ECL cal digit energy for each crystal.
 
std::vector< int > m_eclCalDigitID
 ECL cal digit id sorter.
 
std::vector< int > m_eclDigitID
 ECL digit id sorter.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
int m_minCrystal = intNaN
 First CellId to handle.
 
int m_maxCrystal = intNaN
 Last CellId to handle.
 
double m_looseTrkZ0 = realNaN
 Loose track z0 minimum cut.
 
double m_tightTrkZ0 = realNaN
 Tight track z0 minimum cut.
 
double m_looseTrkD0 = realNaN
 Loose track d0 minimum cut.
 
double m_tightTrkD0 = realNaN
 Tight track d0 minimum cut.
 
int m_crystalCrate = intNaN
 Crate id for the crystal.
 
int m_runNum = intNaN
 run number
 
bool m_storeCalib = true
 Boolean for whether or not to store the previous calibration calibration constants.
 
std::unique_ptr< Belle2::ECL::ECLTimingUtilitiesm_ECLTimeUtil
 ECL timing tools.
 
double m_hadronEventT0_TO_bhabhaEventT0_correction
 correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared to CDC event t0 in hadronic events in ns
 
bool skipTrgSel
 flag to skip the trigger skim selection in the module
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events.

Definition at line 47 of file ECLBhabhaTCollectorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLBhabhaTCollectorModule()

Module constructor.

Definition at line 45 of file ECLBhabhaTCollectorModule.cc.

46 m_ElectronicsDB("ECLCrystalElectronics"),
47 m_ElectronicsTimeDB("ECLCrystalElectronicsTime"),
48 m_FlightTimeDB("ECLCrystalFlightTime"),
49 m_PreviousCrystalTimeDB("ECLCrystalTimeOffset"),
50 m_CrateTimeDB("ECLCrateTimeOffset"),
51 m_RefCrystalsCalibDB("ECLReferenceCrystalPerCrateCalib"),
52 m_channelMapDB("ECLChannelMap")//,
53{
54 setDescription("This module generates sum of all event times per crystal");
55
56 addParam("timeAbsMax", m_timeAbsMax, // (Time in ns)
57 "Events with fabs(getTimeFit) > m_timeAbsMax "
58 "are excluded", (short)80);
59
60 addParam("minCrystal", m_minCrystal,
61 "First CellId to handle.", 1);
62 addParam("maxCrystal", m_maxCrystal,
63 "Last CellId to handle.", ECLElementNumbers::c_NCrystals);
64
65 addParam("saveTree", m_saveTree,
66 "If true, TTree 'tree' with more detailed event info is saved in "
67 "the output file specified by HistoManager",
68 false);
69
70 addParam("looseTrkZ0", m_looseTrkZ0, "max Z0 for loose tracks (cm)", 10.);
71 addParam("tightTrkZ0", m_tightTrkZ0, "max Z0 for tight tracks (cm)", 2.);
72 addParam("looseTrkD0", m_looseTrkD0, "max D0 for loose tracks (cm)", 2.);
73 addParam("tightTrkD0", m_tightTrkD0, "max D0 for tight tracks (cm)", 0.5); // beam pipe radius = 1cm in 2019
74 addParam("skipTrgSel", skipTrgSel, "boolean to skip the trigger skim selection", false);
75
76 addParam("hadronEventT0_TO_bhabhaEventT0_correction", m_hadronEventT0_TO_bhabhaEventT0_correction,
77 "CDC bhabha t0 bias correction (ns)", 0.);
78
79 // specify this flag if you need parallel processing
81}
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
DBObjPtr< ECLCrystalCalib > m_CrateTimeDB
Time offset from crate time calibration (also this calibration) from database.
double m_looseTrkD0
Loose track d0 minimum cut.
bool m_saveTree
If true, save TTree with more detailed event info.
DBObjPtr< ECLCrystalCalib > m_ElectronicsTimeDB
Time offset from electronics calibration from database.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
DBObjPtr< ECLReferenceCrystalPerCrateCalib > m_RefCrystalsCalibDB
Crystal IDs of the one reference crystal per crate from database.
double m_tightTrkZ0
Tight track z0 minimum cut.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
bool skipTrgSel
flag to skip the trigger skim selection in the module
DBObjPtr< ECLCrystalCalib > m_PreviousCrystalTimeDB
Time offset from previous crystal time calibration (this calibration) from database.
double m_tightTrkD0
Tight track d0 minimum cut.
DBObjPtr< ECLCrystalCalib > m_FlightTimeDB
Time offset from flight time b/w IP and crystal from database.
DBObjPtr< ECLCrystalCalib > m_ElectronicsDB
electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps
double m_hadronEventT0_TO_bhabhaEventT0_correction
correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared...
double m_looseTrkZ0
Loose track z0 minimum cut.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
const int c_NCrystals
Number of crystals.

◆ ~ECLBhabhaTCollectorModule()

Module destructor.

Definition at line 83 of file ECLBhabhaTCollectorModule.cc.

84{
85}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data spliting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

Store the crystal cell id of those being used as the reference crystals for ts. One crystal per crate is defined as having ts=0. This histogram only keeps track of the crystal id, not the crate id. The talg can figure out to which crate to associate the crystal.

Record the input database constants

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 319 of file ECLBhabhaTCollectorModule.cc.

320{
321 int cutIndexPassed = 0;
322 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
323 B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
324 B2DEBUG(22, "Event number = " << m_EventMetaData->getEvent());
325
326
327 // --- Check the trigger skim is the type that has two tracks
328
329 /* If we skip the trigger skim selection then still fill the cutflow histogram
330 just so that the positions don't change. */
331 if (!skipTrgSel) {
332 if (!m_TrgResult.isValid()) {
333 B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
334 return;
335 }
336
337 /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
338 to look at the 2 track bhabha events. */
339 const std::map<std::string, int>& fresults = m_TrgResult->getResults();
340 if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
341 B2WARNING("Can't find required bhabha trigger identifier");
342 return;
343 }
344
345 const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
347 B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
348
349 if (!eBhabha) {
350 return;
351 }
352 }
353
354 /* Fill the histgram showing that the trigger skim cut passed OR that we
355 are skipping this selection. */
356 cutIndexPassed++;
357 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
358 B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
359
360
361
362 /* Use ECLChannelMapper to get other detector indices for the crystals
363 For conversion from CellID to crate, shaper, and channel ids.
364 The initialization function automatically checks to see if the
365 object has been initialized and ifthe payload has changed and
366 thus needs updating. */
367 bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
368 if (ECLchannelMapHasChanged) {
369 B2INFO("ECLBhabhaTCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged", ECLchannelMapHasChanged));
370 if (!m_crystalMapper->initFromDB()) {
371 B2FATAL("ECLBhabhaTCollectorModule::collect() : Can't initialize eclChannelMapper!");
372 }
373 }
374
375
376 //== Get expected energies and calibration constants from DB. Need to call
377 // hasChanged() for later comparison
378 if (m_ElectronicsDB.hasChanged()) {
379 m_Electronics = m_ElectronicsDB->getCalibVector();
380 }
381 if (m_ElectronicsTimeDB.hasChanged()) {
382 m_ElectronicsTime = m_ElectronicsTimeDB->getCalibVector();
383 }
384 if (m_FlightTimeDB.hasChanged()) {
385 m_FlightTime = m_FlightTimeDB->getCalibVector();
386 }
387
388 // Get the previous crystal time offset (the same thing that this calibration is meant to calculate).
389 // This can be used for testing purposes, and for the crate time offset.
390 if (m_PreviousCrystalTimeDB.hasChanged()) {
393 }
394
395 B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
396 if (m_CrateTimeDB.hasChanged()) {
397 m_CrateTime = m_CrateTimeDB->getCalibVector();
398 m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
399 }
400 B2DEBUG(29, "Finished checking if previous crate time payload has changed");
401 B2DEBUG(29, "m_CrateTime size = " << m_CrateTime.size());
402 B2DEBUG(25, "Crate time +- uncertainty [0]= " << m_CrateTime[0] << " +- " << m_CrateTimeUnc[0]);
403 B2DEBUG(25, "Crate time +- uncertainty [8735]= " << m_CrateTime[8735] << " +- " << m_CrateTimeUnc[8735]);
404
405 B2DEBUG(29, "Finished checking if previous crate time payload has changed");
406 if (m_RefCrystalsCalibDB.hasChanged()) {
407 m_RefCrystalsCalib = m_RefCrystalsCalibDB->getReferenceCrystals();
408 }
409 B2DEBUG(29, "Finished checking if reference crystal cell ids payload has changed");
410
411
412 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalTimeOffset from the database"
413 << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
414 << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
415 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrateTimeOffset from the database"
416 << LogVar("IoV", m_CrateTimeDB.getIoV())
417 << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
418 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronics from the database"
419 << LogVar("IoV", m_ElectronicsDB.getIoV())
420 << LogVar("Checksum", m_ElectronicsDB.getChecksum()));
421 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronicsTime from the database"
422 << LogVar("IoV", m_ElectronicsTimeDB.getIoV())
423 << LogVar("Checksum", m_ElectronicsTimeDB.getChecksum()));
424 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalFlightTime from the database"
425 << LogVar("IoV", m_FlightTimeDB.getIoV())
426 << LogVar("Checksum", m_FlightTimeDB.getChecksum()));
427 B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLReferenceCrystalPerCrateCalib from the database"
428 << LogVar("IoV", m_RefCrystalsCalibDB.getIoV())
429 << LogVar("Checksum", m_RefCrystalsCalibDB.getChecksum()));
430
431
432
433 // Conversion coefficient from ADC ticks to nanoseconds
434 // TICKS_TO_NS ~ 0.4913 ns/clock tick
435 // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
436 const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
437
438
439 vector<float> Crate_time_ns(52, 0.0);
441 // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
442 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
443 int crateID_temp = m_crystalMapper->getCrateID(crysID);
444 Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
445 }
446
447
448
454 for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
455 getObjectPtr<TH1F>("refCrysIDzeroingCrate")->Fill(m_RefCrystalsCalib[crateID_temp - 1] + 0.001);
456 }
457
458
460 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
461 getObjectPtr<TH1F>("TsDatabase")->SetBinContent(crysID + 0.001, m_PreviousCrystalTime[crysID - 1]);
462 getObjectPtr<TH1F>("TsDatabaseUnc")->SetBinContent(crysID + 0.001, m_PreviousCrystalTimeUnc[crysID - 1]);
463 getObjectPtr<TH1F>("TcrateDatabase")->SetBinContent(crysID + 0.001, m_CrateTime[crysID - 1]);
464 getObjectPtr<TH1F>("TcrateUncDatabase")->SetBinContent(crysID + 0.001, m_CrateTimeUnc[crysID - 1]);
465 }
466 if (m_storeCalib) {
467 B2INFO("ECLBhabhaTCollector:: ECLCrystalTimeOffset from the database information:"
468 << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
469 << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
470 B2INFO("First event so print out previous ts values");
471 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
472 B2INFO("cid = " << crysID << ", Ts previous = " << m_PreviousCrystalTime[crysID - 1]);
473 }
474 m_storeCalib = false;
475 }
476
477
478
479
480 for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
481 getObjectPtr<TH1F>("tcrateDatabase_ns")->SetBinContent(crateID_temp + 0.001, Crate_time_ns[crateID_temp - 1]);
482 }
483
484 // Use a histogram with only one bin as a counter to know the number of times the database histograms were filled.
485 // This is mostly useful for the talg when running over multiple runs and trying to read ts values.
486 getObjectPtr<TH1I>("databaseCounter")->SetBinContent(1, 1);
487
488
489
490 // Save what CDC event t0 correction was applied
491 getObjectPtr<TH1F>("CDCEventT0Correction")->SetBinContent(1, m_hadronEventT0_TO_bhabhaEventT0_correction);
492
493
494
495
496 /* Getting the event t0 using the full event t0 rather than from the CDC specifically */
497 double evt_t0 = -1;
498 double evt_t0_unc = -1;
499 double evt_t0_ECL_closestCDC = -1;
500 double evt_t0_ECL_minChi2 = -1;
501
502 // Determine if there is an event t0 to use and then extract the information about it
503 if (!m_eventT0.isValid()) {
504 //cout << "event t0 not valid\n";
505 return;
506 } else if (!m_eventT0->hasTemporaryEventT0(Const::EDetector::CDC)) {
507 //cout << "no event t0\n";
508 return;
509 } else {
510 // Event has a t0 from CDC
511 cutIndexPassed++;
512 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
513 B2DEBUG(22, "Cutflow: Event t0 exists: index = " << cutIndexPassed);
514
515
516 // Get event t0 from CDC. We don't want event t0 from ECL as we are calibrating the ECL wrt the more accurately measured time measurements of the time. Start with the CDC since it has an event t0 but in the future we may switch to the TOP detector.
517 // Based on the information from Thomas Hauth <Thomas.Hauth@kit.edu> (leaving physics) we should take the last event t0 in the list of event t0's from the CDC as the later event t0 measurements are calculated in slower but more accurate ways.
518 const auto bestCDCEventT0Candidate = m_eventT0->getBestCDCTemporaryEventT0();
519 evt_t0 = bestCDCEventT0Candidate->eventT0; // time value
520 evt_t0_unc = bestCDCEventT0Candidate->eventT0Uncertainty; // uncertainty on event t0
521
522
523 // Correct the CDC event t0 value for the bhabha bias
524 evt_t0 = evt_t0 + m_hadronEventT0_TO_bhabhaEventT0_correction; // Bias not yet fixed in CDC t0 reco.
525
526
527 // Get the ECL event t0 for comparison - validations
528 if (m_eventT0->hasTemporaryEventT0(Const::EDetector::ECL)) {
529 vector<EventT0::EventT0Component> evt_t0_list_ECL = m_eventT0->getTemporaryEventT0s(Const::EDetector::ECL);
530
531
532 double smallest_CDC_ECL_t0_diff = fabs(evt_t0_list_ECL[0].eventT0 - evt_t0);
533 int smallest_CDC_ECL_t0_diff_idx = 0;
534 for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
535 double tempt_ECL_t0 = evt_t0_list_ECL[ECLi].eventT0;
536 if (fabs(tempt_ECL_t0 - evt_t0) < smallest_CDC_ECL_t0_diff) {
537 smallest_CDC_ECL_t0_diff = fabs(tempt_ECL_t0 - evt_t0);
538 smallest_CDC_ECL_t0_diff_idx = ECLi;
539 }
540 }
541
542 evt_t0_ECL_closestCDC = evt_t0_list_ECL[smallest_CDC_ECL_t0_diff_idx].eventT0; // time value
543 B2DEBUG(26, "evt_t0_ECL_closestCDC = " << evt_t0_ECL_closestCDC);
544
545
546
547 double smallest_ECL_t0_minChi2 = evt_t0_list_ECL[0].quality;
548 int smallest_ECL_t0_minChi2_idx = 0;
549
550 B2DEBUG(26, "evt_t0_list_ECL[0].quality = " << evt_t0_list_ECL[0].quality
551 << ", with ECL event t0 = " << evt_t0_list_ECL[0].eventT0);
552
553 for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
554 B2DEBUG(26, "evt_t0_list_ECL[" << ECLi << "].quality = " << evt_t0_list_ECL[ECLi].quality
555 << ", with ECL event t0 = " <<
556 evt_t0_list_ECL[ECLi].eventT0);
557 if (evt_t0_list_ECL[ECLi].quality < smallest_ECL_t0_minChi2) {
558 smallest_ECL_t0_minChi2 = evt_t0_list_ECL[ECLi].quality;
559 smallest_ECL_t0_minChi2_idx = ECLi;
560 }
561 }
562
563 evt_t0_ECL_minChi2 = evt_t0_list_ECL[smallest_ECL_t0_minChi2_idx].eventT0; // time value
564
565 B2DEBUG(26, "evt_t0_ECL_minChi2 = " << evt_t0_ECL_minChi2);
566 B2DEBUG(26, "smallest_ECL_t0_minChi2_idx = " << smallest_ECL_t0_minChi2_idx);
567 }
568 }
569
570
571
572 /* Determine the energies for each of the crystals since this isn't naturally connected to the cluster.
573 Also determine the indexing of the ecl cal digits and the ecl digits
574 Taken from Chris's ec/modules/eclGammaGammaECollector */
575
576 // Resize vectors
580
581
582 int idx = 0;
583 for (auto& eclCalDigit : m_eclCalDigitArray) {
584 int tempCrysID = eclCalDigit.getCellId() - 1;
585 m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
586 m_eclCalDigitID[tempCrysID] = idx;
587 idx++;
588 }
589
590 idx = 0;
591 for (auto& eclDigit : m_eclDigitArray) {
592 int tempCrysID = eclDigit.getCellId() - 1;
593 m_eclDigitID[tempCrysID] = idx;
594 idx++;
595 }
596
597
598
599
600 //---------------------------------------------------------------------
601 //..Some utilities
602 PCmsLabTransform boostrotate;
603
604 //---------------------------------------------------------------------
605 //..Track properties, including 2 maxp tracks. Use pion (211) mass hypothesis,
606 // which is the only particle hypothesis currently available???
607 double maxp[2] = {0., 0.};
608 int maxiTrk[2] = { -1, -1};
609 int nTrkAll = tracks.getEntries();
610
611 int nTrkLoose = 0;
612 int nTrkTight = 0;
614 /* Loop over all the tracks to define the tight and loose selection tracks.
615 We will select events with only 2 tight tracks and no additional loose tracks.
616 Tight tracks are a subset of looses tracks. */
617 for (int iTrk = 0; iTrk < nTrkAll; iTrk++) {
618 // Get track biasing towards the particle being a pion based on what particle types
619 // are used for reconstruction at this stage.
620 const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
621 if (not tempTrackFit) {continue;}
622
623 // Collect track info to be used for categorizing
624 short charge = tempTrackFit->getChargeSign();
625 double z0 = tempTrackFit->getZ0();
626 double d0 = tempTrackFit->getD0();
627 int nCDChits = tempTrackFit->getHitPatternCDC().getNHits();
628 double p = tempTrackFit->getMomentum().R();
629
630 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
631 //== Save debug TTree with detailed information if necessary.
632 m_tree_d0 = d0;
633 m_tree_z0 = z0;
634 m_tree_p = p;
636 m_tree_nCDChits = nCDChits;
637
638 if (m_saveTree) {
639 m_dbgTree_tracks->Fill();
640 }
641 //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
642
643
644 /* Test if loose track */
645
646 // d0 and z0 cuts
647 if (fabs(d0) > m_looseTrkD0) {
648 continue;
649 }
650 if (fabs(z0) > m_looseTrkZ0) {
651 continue;
652 }
653 // Number of hits in the CDC
654 if (nCDChits < 1) {
655 continue;
656 }
657 nTrkLoose++;
658
659
660
661 /* Test if the loose track is also a tight track */
662
663 // Number of hits in the CDC
664 if (nCDChits < 20) {
665 continue;
666 }
667
668
669 // d0 and z0 cuts
670 if (fabs(d0) > m_tightTrkD0) {
671 continue;
672 }
673 if (fabs(z0) > m_tightTrkZ0) {
674 continue;
675 }
676 nTrkTight++;
677
678 // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
679 //..Find the maximum p negative [0] and positive [1] tracks
680 int icharge = 0;
681 if (charge > 0) {icharge = 1;}
682 if (p > maxp[icharge]) {
683 maxp[icharge] = p;
684 maxiTrk[icharge] = iTrk;
685 }
686
687 }
688 /* After that last section the numbers of loose and tight tracks are known as well as the
689 index of the loose tracks that have the highest p negatively charged and highest p positively
690 charged tracks as measured in the centre of mass frame */
691
692
693 if (nTrkTight != 2) {
694 return;
695 }
696 // There are exactly two tight tracks
697 cutIndexPassed++;
698 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
699 B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
700
701
702 if (nTrkLoose != 2) {
703 return;
704 }
705 // There are exactly two loose tracks as well, i.e. no additional loose tracks
706 cutIndexPassed++;
707 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
708 B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed);
709
710 /* Determine if the two tracks have the opposite electric charge.
711 We know this because the track indices stores the max pt track in [0] for negatively charged track
712 and [1] fo the positively charged track. If both are filled then both a negatively charged
713 and positively charged track were found. */
714 bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
715 if (!oppositelyChargedTracksPassed) {
716 return;
717 }
718 // The two tracks have the opposite electric charges.
719 cutIndexPassed++;
720 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
721 B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
722
723
724
725
726 //---------------------------------------------------------------------
727 /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
728 multiple clusters to each track and find the crystal with the maximum energy within all
729 the sets of clusters associated to the tracks*/
730 double trkEClustLab[2] = {0., 0.};
731 double trkEClustCOM[2] = {0., 0.};
732 double trkpLab[2];
733 double trkpCOM[2];
734 ROOT::Math::PxPyPzEVector trkp4Lab[2];
735 ROOT::Math::PxPyPzEVector trkp4COM[2];
736
737 // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
738 int crysIDMax[2] = { -1, -1 };
739 double crysEMax[2] = { -1, -1 };
740 double crysE2Max[2] = { -1, -1 };
741 int numClustersPerTrack[2] = { 0, 0 };
742
743 double clusterTime[2] = {0, 0};
744
745 double E_DIV_p[2];
746
747 vector<double> time_ECLCaldigits_bothClusters;
748 vector<int> cid_ECLCaldigits_bothClusters;
749 vector<double> E_ECLCaldigits_bothClusters;
750 vector<double> amp_ECLDigits_bothClusters;
751 vector<int> chargeID_ECLCaldigits_bothClusters;
752
753 for (int icharge = 0; icharge < 2; icharge++) {
754 if (maxiTrk[icharge] > -1) {
755 B2DEBUG(22, "looping over the 2 max pt tracks");
756
757 const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
758 if (not tempTrackFit) {continue;}
759 trkp4Lab[icharge] = tempTrackFit->get4Momentum();
760 trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
761 trkpLab[icharge] = trkp4Lab[icharge].P();
762 trkpCOM[icharge] = trkp4COM[icharge].P();
763
764
765 /* For each cluster associated to the current track, sum up the energies to get the total
766 energy of all clusters associated to the track and find which crystal has the highest
767 energy from all those clusters*/
768 auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
769 for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
770
771 B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
772 auto cluster = eclClusterRelationsFromTracks[clusterIdx];
773 bool goodClusterType = false;
774
775 if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
776 trkEClustLab[icharge] += cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
777 goodClusterType = true;
778 numClustersPerTrack[icharge]++;
779 }
780
781 if (goodClusterType) {
782
783 clusterTime[icharge] = cluster->getTime();
784
785 auto eclClusterRelations = cluster->getRelationsTo<ECLCalDigit>("ECLCalDigits");
786
787 // Find the crystal that has the largest energy
788 for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
789 const auto calDigit = eclClusterRelations.object(ir);
790 int tempCrysID = calDigit->getCellId() - 1;
791 double tempE = m_EperCrys[tempCrysID];
792
793 int eclDigitIndex = m_eclDigitID[tempCrysID];
794 ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
795
796 // for the max E crystal
797 if (tempE > crysEMax[icharge]) {
798 // Set 2nd highest E crystal to the info from the highest E crystal
799 crysE2Max[icharge] = crysEMax[icharge];
800 // Set the highest E crystal to the current crystal
801 crysEMax[icharge] = tempE;
802 crysIDMax[icharge] = tempCrysID;
803 }
804 // for the 2nd highest E crystal
805 if (tempE > crysE2Max[icharge] && tempCrysID != crysIDMax[icharge]) {
806 crysE2Max[icharge] = tempE;
807 }
808
809 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
810 // If we drop the information about the second highest energy crystal we could use
811 // m_eclClusterArray[ic]->getMaxECellId()
812
813 B2DEBUG(26, "calDigit(ir" << ir << ") time = " << calDigit->getTime() << "ns , with E = " << tempE << " GeV");
814 time_ECLCaldigits_bothClusters.push_back(calDigit->getTime());
815 cid_ECLCaldigits_bothClusters.push_back(tempCrysID);
816 E_ECLCaldigits_bothClusters.push_back(tempE);
817 amp_ECLDigits_bothClusters.push_back(ecl_dig->getAmp());
818 chargeID_ECLCaldigits_bothClusters.push_back(icharge);
819
820 }
821 }
822 }
823 trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
824
825 // Check both electrons to see if their cluster energy / track momentum is good.
826 // The Belle II physics book shows that this is the main way of separating electrons from other particles
827 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
828 E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
829
830 }
831 }
832 /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
833 for the two saved track indices for both the lab and COM frames.
834 The crystal with the maximum energy, one associated to each track, is recorded*/
835
836
837
838 //=== Check each crystal in the processed event and fill histogram.
839
840 int numCrystalsPassingCuts = 0;
841
842 int crystalIDs[2] = { -1, -1};
843 int crateIDs[2] = { -1, -1};
844 double ts_prevCalib[2] = { -1, -1};
845 double tcrate_prevCalib[2] = { -1, -1};
846 double times_noPreviousCalibrations[2] = { -1, -1};
847 bool crystalCutsPassed[2] = {false, false};
848 double crystalEnergies[2] = { -1, -1};
849 double crystalEnergies2[2] = { -1, -1};
850
851 for (int iCharge = 0; iCharge < 2; iCharge++) {
852 int crystal_idx = crysIDMax[iCharge];
853 int eclCalDigitIndex = m_eclCalDigitID[crystal_idx];
854 int eclDigitIndex = m_eclDigitID[crystal_idx];
855
856 ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
857 ECLCalDigit* ecl_cal = m_eclCalDigitArray[eclCalDigitIndex];
858
859 //== Check whether specific ECLDigits should be excluded.
860
861 auto en = ecl_cal->getEnergy();
862 auto amplitude = ecl_dig->getAmp();
863 crystalEnergies[iCharge] = en;
864
865 int cid = ecl_dig->getCellId();
866 double time = ecl_dig->getTimeFit() * TICKS_TO_NS - evt_t0;
867
868 // Offset time by electronics calibration and flight time calibration.
869 time -= m_ElectronicsTime[cid - 1] * TICKS_TO_NS;
870 time -= m_FlightTime[cid - 1];
871
872
873 // Apply the time walk correction: time shift as a function of the amplitude corrected by the electronics calibration.
874 // The electronics calibration also accounts for crystals that have a dead pre-amp and thus half the normal amplitude.
875 double energyTimeShift = m_ECLTimeUtil->energyDependentTimeOffsetElectronic(amplitude * m_Electronics[cid - 1]) * TICKS_TO_NS;
876
877 B2DEBUG(29, "cellid = " << cid << ", amplitude = " << amplitude << ", time before t(E) shift = " << time <<
878 ", t(E) shift = " << energyTimeShift << " ns");
879 time -= energyTimeShift;
880
881
882 // Cell ID should be within specified range.
883 if (cid < m_minCrystal || cid > m_maxCrystal) continue;
884
885 // Absolute time should be in specified range condition.
886 if (fabs(time) > m_timeAbsMax) continue;
887
888 // Fit quality flag -- choose only events with best fit quality
889 if (ecl_dig->getQuality() != 0) continue;
890
891 //== Save time and crystal information. Fill plot after both electrons are tested
892 crystalIDs[iCharge] = cid;
893 crateIDs[iCharge] = m_crystalMapper->getCrateID(ecl_cal->getCellId());
894
895
896 ts_prevCalib[iCharge] = m_PreviousCrystalTime[cid - 1] * TICKS_TO_NS;
897 tcrate_prevCalib[iCharge] = m_CrateTime[cid - 1] * TICKS_TO_NS;
898 times_noPreviousCalibrations[iCharge] = time;
899
900
901 B2DEBUG(26, "iCharge = " << iCharge);
902 B2DEBUG(26, "crateIDs[iCharge] = " << crateIDs[iCharge]);
903 B2DEBUG(26, "times_noPreviousCalibrations[iCharge] = " << times_noPreviousCalibrations[iCharge]);
904 B2DEBUG(26, "tcrate_prevCalib[iCharge] = " << tcrate_prevCalib[iCharge]);
905 B2DEBUG(26, "ts_prevCalib[iCharge] = " << ts_prevCalib[iCharge]);
906
907
908 crystalCutsPassed[iCharge] = true;
909
910
911 // For second most energetic energy crystal
912 crystalEnergies2[iCharge] = crysE2Max[iCharge];
913
914
915// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
916 //== Save debug TTree with detailed information if necessary.
917 m_tree_cid = ecl_dig->getCellId();
918 m_tree_amp = ecl_dig->getAmp();
919 m_tree_en = en;
920 m_tree_E1Etot = en / trkEClustLab[iCharge];
921 m_tree_E1E2 = en / crystalEnergies2[iCharge];
922 m_tree_E1p = en / trkpLab[iCharge];
923 m_tree_timetsPreviousTimeCalibs = time - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
924 m_tree_timeF = ecl_dig->getTimeFit() * TICKS_TO_NS;
925 m_tree_time = time;
926 m_tree_quality = ecl_dig->getQuality();
927 m_tree_t0 = evt_t0;
928 m_tree_t0_unc = evt_t0_unc;
929 m_E_DIV_p = E_DIV_p[iCharge];
930 m_tree_evtNum = m_EventMetaData->getEvent();
931 m_crystalCrate = m_crystalMapper->getCrateID(ecl_cal->getCellId());
932 m_runNum = m_EventMetaData->getRun();
933
934 if (m_saveTree) {
935 m_dbgTree_electrons->Fill();
936 }
937// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
938
939 // Fill histogram with information about maximum energy crystal energy fraction
940 getObjectPtr<TH1F>("maxEcrsytalEnergyFraction")->Fill(en / trkEClustLab[iCharge]);
941
942
943 }
944
945
946
947 // Check both electrons to see if their cluster energy / track momentum is good.
948 // The Belle II physics book shows that this is the main way of separating electrons from other particles
949 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
950 bool E_DIV_p_instance_passed[2] = {false, false};
951 double E_DIV_p_CUT = 0.7;
952 for (int icharge = 0; icharge < 2; icharge++) {
953 E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
954 }
955 if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
956 return;
957 }
958 // E/p sufficiently large
959 cutIndexPassed++;
960 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
961 B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
962
963
964
965 // Start of cuts on both the combined system of tracks and energy clusters
966
967 double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
968 double invMass_CUT = 0.9;
969 m_massInvTracks = invMassTrk; // invariant mass of the two tracks
970
971// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
972 if (m_saveTree) {
973 m_dbgTree_event->Fill();
974 }
975// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
976
977 bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
978 if (!invMassCutsPassed) {
979 return;
980 }
981 // Invariable mass of the two tracks are above the minimum
982 cutIndexPassed++;
983 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
984 B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
985 " : index = " << cutIndexPassed);
986
987
988
989 //== Fill output histogram.
990 for (int iCharge = 0; iCharge < 2; iCharge++) {
991 if (crystalCutsPassed[iCharge]) {
992 getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
993 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
994 getObjectPtr<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
995 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
996 getObjectPtr<TH2F>("TimevsCrysNoCalibrations")->Fill((crystalIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
997 getObjectPtr<TH2F>("TimevsCrateNoCalibrations")->Fill((crateIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
998 getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
999 times_noPreviousCalibrations[iCharge] - tcrate_prevCalib[iCharge], 1);
1000 getObjectPtr<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
1001 times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge], 1);
1002
1003 // Record number of crystals used from the event. Should be exactly two.
1004 numCrystalsPassingCuts++;
1005
1006 }
1007 }
1008
1009
1010 // Change cutflow method for this bit ... don't call return because we used to call the hadron cluster stuff afterwards
1011 //
1012 if (crystalCutsPassed[0] || crystalCutsPassed[1]) {
1013 // At least one ECL crystal time and quality cuts passed
1014 cutIndexPassed++;
1015 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
1016 B2DEBUG(22, "Cutflow: At least one crystal time and quality cuts passed: index = " << cutIndexPassed);
1017
1018 getObjectPtr<TH1F>("numCrystalEntriesPerEvent")->Fill(numCrystalsPassingCuts);
1019 }
1020
1021
1022 // Save final information to the tree after all cuts are applied
1023 for (int iCharge = 0; iCharge < 2; iCharge++) {
1024 if (crystalCutsPassed[iCharge]) {
1025 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1026 m_tree_evtNum = m_EventMetaData->getEvent();
1027 m_tree_cid = crystalIDs[iCharge];
1028 //m_tree_time = times[iCharge];
1029 m_tree_time = times_noPreviousCalibrations[iCharge];
1030 m_crystalCrate = crateIDs[iCharge];
1031 m_runNum = m_EventMetaData->getRun();
1032 m_tree_en = crystalEnergies[iCharge]; // for studies of ts as a function of energy
1033 m_tree_E1Etot = crystalEnergies[iCharge] / trkEClustLab[iCharge];
1034 m_tree_E1E2 = crystalEnergies[iCharge] / crystalEnergies2[iCharge];
1035 m_tree_E1p = crystalEnergies[iCharge] / trkpLab[iCharge];
1036 m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
1037 m_tree_t0 = evt_t0;
1038 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1039 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1040 m_tree_tClust = clusterTime[iCharge];
1041
1042 m_massInvTracks = invMassTrk; // This is probably already set but I'll set it again anyways just so that it is clear
1043
1044 if (m_saveTree) {
1045 m_dbgTree_allCuts->Fill();
1046 }
1047 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1048 }
1049 }
1050
1051
1052
1053
1054 if (crystalCutsPassed[0] && crystalCutsPassed[1] &&
1055 numClustersPerTrack[0] == 1 && numClustersPerTrack[1] == 1) {
1056 m_tree_enNeg = trkEClustLab[0];
1057 m_tree_enPlus = trkEClustLab[1];
1058 m_tree_tClustNeg = clusterTime[0];
1059 m_tree_tClustPos = clusterTime[1];
1060 m_tree_maxEcrystPosClust = times_noPreviousCalibrations[0] - ts_prevCalib[0] - tcrate_prevCalib[0];
1061 m_tree_maxEcrystNegClust = times_noPreviousCalibrations[1] - ts_prevCalib[1] - tcrate_prevCalib[1];
1062 m_tree_t0 = evt_t0;
1063 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1064 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1065
1066 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1067 if (m_saveTree) {
1068 m_dbgTree_evt_allCuts->Fill();
1069 }
1070 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1071 }
1072
1073
1074 B2DEBUG(26, "m_tree_maxEcrystPosClust + evt_t0 = " << m_tree_maxEcrystPosClust + evt_t0);
1075 B2DEBUG(26, "m_tree_maxEcrystNegClust + evt_t0 = " << m_tree_maxEcrystNegClust + evt_t0);
1076 B2DEBUG(26, "CDC evt_t0 = " << evt_t0);
1077 B2DEBUG(26, "ECL min chi2 even t0, m_tree_t0_ECL_minChi2 = " << m_tree_t0_ECL_minChi2);
1078
1079
1080
1081 for (long unsigned int digit_i = 0; digit_i < time_ECLCaldigits_bothClusters.size(); digit_i++) {
1082 m_runNum = m_EventMetaData->getRun();
1083 m_tree_evtNum = m_EventMetaData->getEvent();
1084 m_tree_ECLCalDigitTime = time_ECLCaldigits_bothClusters[digit_i];
1085 m_tree_ECLCalDigitE = E_ECLCaldigits_bothClusters[digit_i];
1086 m_tree_ECLDigitAmplitude = amp_ECLDigits_bothClusters[digit_i];
1087 m_tree_t0 = evt_t0;
1088 m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1089 m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1090 m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1091 ts_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1092 tcrate_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]];
1093 m_tree_cid = cid_ECLCaldigits_bothClusters[digit_i];
1094
1095 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1096 if (m_saveTree) {
1097 m_dbgTree_crys_allCuts->Fill();
1098 }
1099 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1100
1101 }
1102
1103
1104 B2DEBUG(26, "This was for event number = " << m_tree_evtNum);
1105
1106}
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
double m_tree_d0
Track d0 for debug TTree output.
double m_tree_maxEcrystNegClust
Time of the highest energy crystal in the cluster associated to negatively charged track,...
std::vector< float > m_CrateTime
vector obtained from DB object
std::vector< int > m_eclDigitID
ECL digit id sorter.
double m_tree_timeF
ECL fitting time for debug TTree output.
double m_tree_E1Etot
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy,...
double m_tree_tClustNeg
Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
std::vector< float > m_FlightTime
vector obtained from DB object
double m_tree_timetsPreviousTimeCalibs
Time for Ts distribution after application of previous time calibrations for debug TTree output.
double m_tree_E1E2
Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in ...
double m_tree_ECLDigitAmplitude
Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
double m_tree_tClustPos
Cluster time of cluster associated to positively charged track, ns for debug TTree output.
int m_tree_quality
ECL fit quality for debug TTree output.
double m_tree_enNeg
Energy of cluster associated to negatively charged track, GeV for debug TTree output.
double m_tree_tClust
Cluster time of a cluster, ns for debug TTree output.
double m_E_DIV_p
Energy divided by momentum, for debug TTree output.
double m_tree_en
Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
std::vector< int > m_eclCalDigitID
ECL cal digit id sorter.
bool m_storeCalib
Boolean for whether or not to store the previous calibration calibration constants.
int m_crystalCrate
Crate id for the crystal.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
double m_tree_time
Time for Ts distribution for debug TTree output.
double m_massInvTracks
invariant mass of the two tracks, for debug TTree output
double m_tree_nCDChits
Number of CDC hits along the track for debug TTree output.
double m_tree_enPlus
Energy of cluster associated to positively charged track, GeV for debug TTree output.
int m_tree_evtNum
Event number for debug TTree output.
std::vector< short > m_RefCrystalsCalib
vector obtained from DB object
double m_tree_t0_ECL_minChi2
EventT0 (from ECL) min chi2 for debug TTree output.
double m_tree_maxEcrystPosClust
Time of the highest energy crystal in the cluster associated to positively charged track,...
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
TTree * m_dbgTree_allCuts
Debug TTree output after all cuts.
double m_tree_ECLCalDigitTime
Time of an ECLCalDigit within a cluster, ns for debug TTree output.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
TTree * m_dbgTree_event
Debug TTree output per event.
double m_tree_z0
Track z0 for debug TTree output.
std::vector< float > m_EperCrys
ECL cal digit energy for each crystal.
double m_tree_p
Track momentum for debug TTree output.
std::vector< float > m_PreviousCrystalTime
vector obtained from DB object
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
int m_tree_amp
Fitting amplitude from ECL for debug TTree output.
double m_tree_E1p
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by t...
TTree * m_dbgTree_evt_allCuts
Debug TTree output per event after all cuts.
std::vector< float > m_Electronics
vector obtained from DB object
int m_charge
particle charge, for debug TTree output
TTree * m_dbgTree_electrons
Output tree with detailed event data.
std::vector< float > m_PreviousCrystalTimeUnc
vector obtained from DB object
std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
ECL timing tools.
StoreArray< Track > tracks
StoreArray for tracks.
double m_tree_t0_ECLclosestCDC
EventT0 (from ECL) closest to CDC for debug TTree output.
TTree * m_dbgTree_crys_allCuts
Debug TTree output per crystal after all cuts.
double m_tree_ECLCalDigitE
Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
std::vector< float > m_ElectronicsTime
vector obtained from DB object
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
TTree * m_dbgTree_tracks
Debug TTree output per track.
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:118
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:123
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
int getAmp() const
Get Fitting Amplitude.
Definition: ECLDigit.h:70
int getQuality() const
Get Fitting Quality.
Definition: ECLDigit.h:80
int getCellId() const
Get Cell ID.
Definition: ECLDigit.h:64
int getTimeFit() const
Get Fitting Time.
Definition: ECLDigit.h:75
static double getRF()
See m_rf.
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
Class to store variables with their name which were sent to the logging service.
@ c_accept
Accept this event.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

void inDefineHisto ( )
overridevirtual

Replacement for defineHisto() in CalibrationCollector modules.

Reimplemented from CalibrationCollectorModule.

Definition at line 87 of file ECLBhabhaTCollectorModule.cc.

88{
89 //=== Prepare TTree for debug output
90 if (m_saveTree) { // /* >>>>>>>>>>>>>>>>>>>>>>>>>>>> if boolean true for saving debug trees >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
91 // Per electron
92 m_dbgTree_electrons = new TTree("tree_electrons", "Debug data for bhabha time calibration - one entry per electron");
93 m_dbgTree_electrons->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
94 m_dbgTree_electrons->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
95 m_dbgTree_electrons->Branch("ADCamplitude", &m_tree_amp)->SetTitle("Amplitude, ADC units");
96 m_dbgTree_electrons->Branch("maxEcrystalEnergy", &m_tree_en)->SetTitle("Max Energy Crystal Energy, GeV");
97 m_dbgTree_electrons->Branch("maxEcrystalEnergyDIVclusterE",
98 &m_tree_E1Etot)->SetTitle("Max Energy Crystal Fraction Energy of Cluster");
99 m_dbgTree_electrons->Branch("E1divE2crystal",
100 &m_tree_E1E2)->SetTitle("Max Energy Crystal DIV second max energy crystal in cluster");
101 m_dbgTree_electrons->Branch("E1crystal_DIV_p", &m_tree_E1p)->SetTitle("Max Energy Crystal in cluster DIV track p");
102 m_dbgTree_electrons->Branch("timetsPreviousTimeCalibs",
103 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
104 m_dbgTree_electrons->Branch("E_DIV_p", &m_E_DIV_p)->SetTitle("E DIV p");
105 m_dbgTree_electrons->Branch("timeF", &m_tree_timeF)->SetTitle("Time F, ns");
106 m_dbgTree_electrons->Branch("time_t_psi", &m_tree_time)->SetTitle("Time t_psi for Ts, ns");
107 m_dbgTree_electrons->Branch("quality", &m_tree_quality)->SetTitle("ECL FPGA fit quality, see Confluence article");
108 m_dbgTree_electrons->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
109 m_dbgTree_electrons->Branch("t0_unc", &m_tree_t0_unc)->SetTitle("T0 uncertainty, ns");
110 m_dbgTree_electrons->Branch("CrateID", &m_crystalCrate)->SetTitle("Crate id for crystal");
111 m_dbgTree_electrons->Branch("runNum", &m_runNum)->SetTitle("Run number");
112
113 m_dbgTree_electrons->SetAutoSave(10);
114
115
116 // Per track
117 m_dbgTree_tracks = new TTree("tree_tracks", "Debug data for bhabha time calibration - one entry per track");
118 m_dbgTree_tracks->Branch("d0", &m_tree_d0)->SetTitle("d0, cm");
119 m_dbgTree_tracks->Branch("z0", &m_tree_z0)->SetTitle("z0, cm");
120 m_dbgTree_tracks->Branch("p", &m_tree_p)->SetTitle("track momentum, GeV");
121 m_dbgTree_tracks->Branch("charge", &m_charge)->SetTitle("track electric charge");
122 m_dbgTree_tracks->Branch("Num_CDC_hits", &m_tree_nCDChits)->SetTitle("Num CDC hits");
123
124 m_dbgTree_tracks->SetAutoSave(10);
125
126 // Per crystal
127 m_dbgTree_crystals = new TTree("tree_crystals",
128 "Debug data for bhabha time calibration - one entry per electron - one entry per crystal");
129 m_dbgTree_crystals->Branch("clustCrysE_DIV_maxEcrys",
130 &m_tree_clustCrysE_DIV_maxEcrys)->SetTitle("E of crystal i from cluster / E of max E crystal");
131 m_dbgTree_crystals->Branch("Crystal_E", &m_tree_clustCrysE) ->SetTitle("E of crystal i from cluster");
132 m_dbgTree_crystals->Branch("time_t_psi", &m_tree_time)->SetTitle("Time for Ts, ns");
133 m_dbgTree_crystals->Branch("Crystal_cell_ID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
134 m_dbgTree_crystals->Branch("quality", &m_tree_quality)->SetTitle("ECL FPGA fit quality, see Confluence article");
135
136 m_dbgTree_crystals->SetAutoSave(10);
137
138
139 // Per event
140 m_dbgTree_event = new TTree("tree_event", "Debug data for bhabha time calibration - one entry per event");
141 m_dbgTree_event->Branch("massInvTracks", &m_massInvTracks)->SetTitle("Invariant mass of the two tracks");
142
143 m_dbgTree_event->SetAutoSave(10);
144
145
146 m_dbgTree_evt_allCuts = new TTree("tree_evt_allCuts",
147 "Debug data for bhabha time calibration - one entry per event after all the cuts");
148 m_dbgTree_evt_allCuts->Branch("EclustPlus", &m_tree_enPlus)->SetTitle("Energy of cluster with +ve charge, GeV");
149 m_dbgTree_evt_allCuts->Branch("EclustNeg", &m_tree_enNeg)->SetTitle("Energy of cluster with -ve charge, GeV");
150 m_dbgTree_evt_allCuts->Branch("clustTimePos", &m_tree_tClustPos)->SetTitle("Cluster time of cluster with +ve charge, GeV");
151 m_dbgTree_evt_allCuts->Branch("clustTimeNeg", &m_tree_tClustNeg)->SetTitle("Cluster time of cluster with -ve charge, GeV");
152 m_dbgTree_evt_allCuts->Branch("maxEcrysTimePosClust",
153 &m_tree_maxEcrystPosClust)->SetTitle("Time of maximum energy crystal in cluster with +ve charge, GeV");
154 m_dbgTree_evt_allCuts->Branch("maxEcrysTimeNegClust",
155 &m_tree_maxEcrystNegClust)->SetTitle("Time of maximum energy crystal in cluster with -ve charge, GeV");
156 m_dbgTree_evt_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
157 m_dbgTree_evt_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
158 m_dbgTree_evt_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
159
160 m_dbgTree_evt_allCuts->SetAutoSave(10);
161
162
163 // Per crystal within each cluster, entry after all the cuts
164 m_dbgTree_crys_allCuts = new TTree("m_dbgTree_crys_allCuts",
165 "Debug data for bhabha time calibration - one entry per crystal per cluster entry after all cuts");
166
167 m_dbgTree_crys_allCuts->Branch("runNum", &m_runNum)->SetTitle("Run number");
168 m_dbgTree_crys_allCuts->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
169 m_dbgTree_crys_allCuts->Branch("m_tree_ECLCalDigitTime",
171 ->SetTitle("Time of a crystal within the cluster after application of previous calibrations except t0, ns");
172 m_dbgTree_crys_allCuts->Branch("m_tree_ECLCalDigitE", &m_tree_ECLCalDigitE)->SetTitle("Energy of crystal, GeV");
173 m_dbgTree_crys_allCuts->Branch("m_tree_ECLDigitAmplitude",
174 &m_tree_ECLDigitAmplitude)->SetTitle("Amplitude of crystal signal pulse");
175 m_dbgTree_crys_allCuts->Branch("timetsPreviousTimeCalibs",
176 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
177 m_dbgTree_crys_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
178 m_dbgTree_crys_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
179 m_dbgTree_crys_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
180 m_dbgTree_crys_allCuts->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
181
182 m_dbgTree_crys_allCuts->SetAutoSave(10);
183
184
185 } // <<<<<<<<<<<<<<<<<<<<< if boolean true for saving debug trees <<<<<<<<<<<<<<<<<<<<<<<<<< */
186
187
188 // Per max E crystal entry after all the cuts
189 // this tree is always saved
190 m_dbgTree_allCuts = new TTree("tree_allCuts",
191 "Debug data for bhabha time calibration - one entry per max E crystal entry after cuts");
192
193 m_dbgTree_allCuts->Branch("time_t_psi", &m_tree_time)->SetTitle("Time t_psi for Ts, ns");
194 m_dbgTree_allCuts->Branch("crateID", &m_crystalCrate)->SetTitle("Crate id for crystal");
195 m_dbgTree_allCuts->Branch("EventNum", &m_tree_evtNum)->SetTitle("Event number");
196 m_dbgTree_allCuts->Branch("runNum", &m_runNum)->SetTitle("Run number");
197 m_dbgTree_allCuts->Branch("CrystalCellID", &m_tree_cid)->SetTitle("Cell ID, 1..8736");
198 m_dbgTree_allCuts->Branch("maxEcrystalEnergy", &m_tree_en)->SetTitle("Max Energy Crystal Energy, GeV");
199 m_dbgTree_allCuts->Branch("maxEcrystalEnergyDIVclusterE",
200 &m_tree_E1Etot)->SetTitle("Max Energy Crystal Fraction Energy of Cluster");
201 m_dbgTree_allCuts->Branch("E1divE2crystal",
202 &m_tree_E1E2)->SetTitle("Max Energy Crystal DIV second max energy crystal in cluster");
203 m_dbgTree_allCuts->Branch("E1crystalDIVp", &m_tree_E1p)->SetTitle("Max Energy Crystal in cluster DIV track p");
204 m_dbgTree_allCuts->Branch("timetsPreviousTimeCalibs",
205 &m_tree_timetsPreviousTimeCalibs)->SetTitle("Time t_psi after application of previous Ts, ns");
206 m_dbgTree_allCuts->Branch("massInvTracks", &m_massInvTracks)->SetTitle("Invariant mass of the two tracks");
207 m_dbgTree_allCuts->Branch("t0", &m_tree_t0)->SetTitle("T0, ns");
208 m_dbgTree_allCuts->Branch("t0_ECL_closestCDC", &m_tree_t0_ECLclosestCDC)->SetTitle("T0 ECL closest to CDC t0, ns");
209 m_dbgTree_allCuts->Branch("t0_ECL_minChi2", &m_tree_t0_ECL_minChi2)->SetTitle("T0 ECL with smallest chi squared, ns");
210
211 m_dbgTree_allCuts->Branch("clusterTime", &m_tree_tClust)->SetTitle("Cluster time of cluster with +ve charge, GeV");
212
213 m_dbgTree_allCuts->SetAutoSave(10);
214
215}
TTree * m_dbgTree_crystals
Debug TTree output per crystal.
double m_tree_clustCrysE
crystal energy, only for the crystals that meet all the selection criteria for debug TTree output
double m_tree_clustCrysE_DIV_maxEcrys
ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals t...

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.

Reimplemented from CalibrationCollectorModule.

Definition at line 217 of file ECLBhabhaTCollectorModule.cc.

218{
219 //=== MetaData
220 B2INFO("ECLBhabhaTCollector: Experiment = " << m_EventMetaData->getExperiment() <<
221 " run = " << m_EventMetaData->getRun());
222
223
224 //=== Create histograms and register them in the data store
225 int nbins = m_timeAbsMax * 8;
226 int max_t = m_timeAbsMax;
227 int min_t = -m_timeAbsMax;
228
229
230 auto TimevsCrysPrevCrateCalibPrevCrystCalib = new TH2F("TimevsCrysPrevCrateCalibPrevCrystCalib",
231 "Time t psi - ts - tcrate (previous calibs) vs crystal cell ID;crystal cell ID;Time t_psi with previous calib (ns)",
233 registerObject<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib", TimevsCrysPrevCrateCalibPrevCrystCalib);
234
235 auto TimevsCratePrevCrateCalibPrevCrystCalib = new TH2F("TimevsCratePrevCrateCalibPrevCrystCalib",
236 "Time t psi - ts - tcrate (previous calibs) vs crate ID;crate ID;Time t_psi previous calib (ns)",
237 52, 1, 52 + 1, nbins, min_t, max_t);
238 registerObject<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib", TimevsCratePrevCrateCalibPrevCrystCalib);
239
240 auto TimevsCrysNoCalibrations = new TH2F("TimevsCrysNoCalibrations",
241 "Time tpsi vs crystal cell ID;crystal cell ID;Time t_psi (ns)", ECLElementNumbers::c_NCrystals, 1,
242 ECLElementNumbers::c_NCrystals + 1, nbins, min_t, max_t);
243 registerObject<TH2F>("TimevsCrysNoCalibrations", TimevsCrysNoCalibrations);
244
245 auto TimevsCrateNoCalibrations = new TH2F("TimevsCrateNoCalibrations",
246 "Time tpsi vs crate ID;crate ID;Time t_psi (ns)", 52, 1, 52 + 1, nbins, min_t, max_t);
247 registerObject<TH2F>("TimevsCrateNoCalibrations", TimevsCrateNoCalibrations);
248
249 auto TimevsCrysPrevCrateCalibNoCrystCalib = new TH2F("TimevsCrysPrevCrateCalibNoCrystCalib",
250 "Time tpsi - tcrate (previous calib) vs crystal cell ID;crystal cell ID;Time t_psi including previous crate calib (ns)",
252 registerObject<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib", TimevsCrysPrevCrateCalibNoCrystCalib);
253
254 auto TimevsCrateNoCrateCalibPrevCrystCalib = new TH2F("TimevsCrateNoCrateCalibPrevCrystCalib",
255 "Time tpsi - ts (previous calib) vs crate ID;crate ID;Time t_psi including previous crystal calib (ns)",
256 52, 1, 52 + 1, nbins, min_t, max_t);
257 registerObject<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib", TimevsCrateNoCrateCalibPrevCrystCalib);
258
259
260 auto TsDatabase = new TH1F("TsDatabase", ";cell id;Ts from database", ECLElementNumbers::c_NCrystals, 1,
262 registerObject<TH1F>("TsDatabase", TsDatabase);
263
264 auto TsDatabaseUnc = new TH1F("TsDatabaseUnc", ";cell id;Ts uncertainty from database", ECLElementNumbers::c_NCrystals, 1,
266 registerObject<TH1F>("TsDatabaseUnc", TsDatabaseUnc);
267
268 auto TcrateDatabase = new TH1F("TcrateDatabase", ";cell id;Tcrate from database", ECLElementNumbers::c_NCrystals, 1,
270 registerObject<TH1F>("TcrateDatabase", TcrateDatabase);
271
272 auto TcrateUncDatabase = new TH1F("TcrateUncDatabase", ";cell id;Tcrate uncertainty from database", ECLElementNumbers::c_NCrystals,
274 registerObject<TH1F>("TcrateUncDatabase", TcrateUncDatabase);
275
276
277 auto tcrateDatabase_ns = new TH1F("tcrateDatabase_ns", ";crate id;tcrate derived from database", 52, 1, 52 + 1);
278 registerObject<TH1F>("tcrateDatabase_ns", tcrateDatabase_ns);
279
280
281 auto databaseCounter = new TH1I("databaseCounter",
282 ";A database was read in;Number of times database was saved to histogram", 1, 1, 2);
283 registerObject<TH1I>("databaseCounter", databaseCounter);
284
285
286 auto numCrystalEntriesPerEvent = new TH1F("numCrystalEntriesPerEvent",
287 ";Number crystal entries;Number of events", 15, 0, 15);
288 registerObject<TH1F>("numCrystalEntriesPerEvent", numCrystalEntriesPerEvent);
289
290 auto cutflow = new TH1F("cutflow", ";Cut label number;Number of events passing cut", 20, 0, 20);
291 registerObject<TH1F>("cutflow", cutflow);
292
293 auto maxEcrsytalEnergyFraction = new TH1F("maxEcrsytalEnergyFraction",
294 ";Maximum energy crystal energy / (sum) cluster energy;Number", 22, 0, 1.1);
295 registerObject<TH1F>("maxEcrsytalEnergyFraction", maxEcrsytalEnergyFraction);
296
297 auto refCrysIDzeroingCrate = new TH1F("refCrysIDzeroingCrate", ";cell id;Boolean - is reference crystal",
299 registerObject<TH1F>("refCrysIDzeroingCrate", refCrysIDzeroingCrate);
300
301 auto CDCEventT0Correction = new TH1F("CDCEventT0Correction", ";;CDC event t0 offset correction [ns]", 1, 1, 2);
302 registerObject<TH1F>("CDCEventT0Correction", CDCEventT0Correction);
303
304
305 //=== Required data objects
306 m_eventT0.isRequired();
307 tracks.isRequired();
308 m_eclClusterArray.isRequired();
309 m_eclCalDigitArray.isRequired();
310 m_eclDigitArray.isRequired();
311
312 B2INFO("hadronEventT0_TO_bhabhaEventT0_correction = " << m_hadronEventT0_TO_bhabhaEventT0_correction <<
313 " ns correction to CDC event t0 will be applied");
314
315 B2INFO("skipTrgSel = " << skipTrgSel);
316
317}
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

Member Data Documentation

◆ m_channelMapDB

DBObjPtr<Belle2::ECLChannelMap> m_channelMapDB
private

Mapper of ecl channels to various other objects, like crates.

database object

Definition at line 123 of file ECLBhabhaTCollectorModule.h.

◆ m_charge

int m_charge = intNaN
private

particle charge, for debug TTree output

Definition at line 194 of file ECLBhabhaTCollectorModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_CrateTime

std::vector<float> m_CrateTime
private

vector obtained from DB object

Definition at line 115 of file ECLBhabhaTCollectorModule.h.

◆ m_CrateTimeDB

DBObjPtr<ECLCrystalCalib> m_CrateTimeDB
private

Time offset from crate time calibration (also this calibration) from database.

database object

Definition at line 114 of file ECLBhabhaTCollectorModule.h.

◆ m_CrateTimeUnc

std::vector<float> m_CrateTimeUnc
private

uncertainty vector obtained from DB object

Definition at line 116 of file ECLBhabhaTCollectorModule.h.

◆ m_crystalCrate

int m_crystalCrate = intNaN
private

Crate id for the crystal.

Definition at line 225 of file ECLBhabhaTCollectorModule.h.

◆ m_crystalMapper

std::unique_ptr< Belle2::ECL::ECLChannelMapper> m_crystalMapper
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLChannelMapper>()

ECL object for keeping track of mapping between crystals and crates etc.

Definition at line 80 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_allCuts

TTree* m_dbgTree_allCuts = nullptr
private

Debug TTree output after all cuts.

Definition at line 133 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_crys_allCuts

TTree* m_dbgTree_crys_allCuts = nullptr
private

Debug TTree output per crystal after all cuts.

Definition at line 135 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_crystals

TTree* m_dbgTree_crystals = nullptr
private

Debug TTree output per crystal.

Definition at line 131 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_electrons

TTree* m_dbgTree_electrons = nullptr
private

Output tree with detailed event data.

Debug TTree output per electron

Definition at line 129 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_event

TTree* m_dbgTree_event = nullptr
private

Debug TTree output per event.

Definition at line 132 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_evt_allCuts

TTree* m_dbgTree_evt_allCuts = nullptr
private

Debug TTree output per event after all cuts.

Definition at line 134 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_tracks

TTree* m_dbgTree_tracks = nullptr
private

Debug TTree output per track.

Definition at line 130 of file ECLBhabhaTCollectorModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_E_DIV_p

double m_E_DIV_p = realNaN
private

Energy divided by momentum, for debug TTree output.

Definition at line 195 of file ECLBhabhaTCollectorModule.h.

◆ m_eclCalDigitArray

StoreArray<ECLCalDigit> m_eclCalDigitArray
private

Required input array of ECLCalDigits.

Definition at line 203 of file ECLBhabhaTCollectorModule.h.

◆ m_eclCalDigitID

std::vector<int> m_eclCalDigitID
private

ECL cal digit id sorter.

Definition at line 207 of file ECLBhabhaTCollectorModule.h.

◆ m_eclClusterArray

StoreArray<ECLCluster> m_eclClusterArray
private

Required input array of ECLClusters.

Definition at line 204 of file ECLBhabhaTCollectorModule.h.

◆ m_eclDigitArray

StoreArray<ECLDigit> m_eclDigitArray
private

Required input array of ECLDigits.

Definition at line 202 of file ECLBhabhaTCollectorModule.h.

◆ m_eclDigitID

std::vector<int> m_eclDigitID
private

ECL digit id sorter.

Definition at line 208 of file ECLBhabhaTCollectorModule.h.

◆ m_ECLTimeUtil

std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLTimingUtilities>()

ECL timing tools.

Definition at line 234 of file ECLBhabhaTCollectorModule.h.

◆ m_Electronics

std::vector<float> m_Electronics
private

vector obtained from DB object

Definition at line 98 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsDB
private

electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps

database object

Definition at line 97 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsTime

std::vector<float> m_ElectronicsTime
private

vector obtained from DB object

Definition at line 102 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsTimeDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsTimeDB
private

Time offset from electronics calibration from database.

database object

Definition at line 101 of file ECLBhabhaTCollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_EperCrys

std::vector<float> m_EperCrys
private

ECL cal digit energy for each crystal.

Definition at line 206 of file ECLBhabhaTCollectorModule.h.

◆ m_EventMetaData

StoreObjPtr<EventMetaData> m_EventMetaData
private

Event metadata.

Definition at line 93 of file ECLBhabhaTCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0

Definition at line 90 of file ECLBhabhaTCollectorModule.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
privateinherited

Required input for EventMetaData.

Definition at line 108 of file CalibrationCollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_FlightTime

std::vector<float> m_FlightTime
private

vector obtained from DB object

Definition at line 106 of file ECLBhabhaTCollectorModule.h.

◆ m_FlightTimeDB

DBObjPtr<ECLCrystalCalib> m_FlightTimeDB
private

Time offset from flight time b/w IP and crystal from database.

database object

Definition at line 105 of file ECLBhabhaTCollectorModule.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hadronEventT0_TO_bhabhaEventT0_correction

double m_hadronEventT0_TO_bhabhaEventT0_correction
private

correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared to CDC event t0 in hadronic events in ns

Definition at line 239 of file ECLBhabhaTCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_looseTrkD0

double m_looseTrkD0 = realNaN
private

Loose track d0 minimum cut.

Definition at line 222 of file ECLBhabhaTCollectorModule.h.

◆ m_looseTrkZ0

double m_looseTrkZ0 = realNaN
private

Loose track z0 minimum cut.

Definition at line 220 of file ECLBhabhaTCollectorModule.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_massInvTracks

double m_massInvTracks = realNaN
private

invariant mass of the two tracks, for debug TTree output

Definition at line 196 of file ECLBhabhaTCollectorModule.h.

◆ m_maxCrystal

int m_maxCrystal = intNaN
private

Last CellId to handle.

Definition at line 217 of file ECLBhabhaTCollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_minCrystal

int m_minCrystal = intNaN
private

First CellId to handle.

Definition at line 216 of file ECLBhabhaTCollectorModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_PreviousCrystalTime

std::vector<float> m_PreviousCrystalTime
private

vector obtained from DB object

Definition at line 110 of file ECLBhabhaTCollectorModule.h.

◆ m_PreviousCrystalTimeDB

DBObjPtr<ECLCrystalCalib> m_PreviousCrystalTimeDB
private

Time offset from previous crystal time calibration (this calibration) from database.

database object

Definition at line 109 of file ECLBhabhaTCollectorModule.h.

◆ m_PreviousCrystalTimeUnc

std::vector<float> m_PreviousCrystalTimeUnc
private

vector obtained from DB object

Definition at line 111 of file ECLBhabhaTCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_RefCrystalsCalib

std::vector<short> m_RefCrystalsCalib
private

vector obtained from DB object

Definition at line 120 of file ECLBhabhaTCollectorModule.h.

◆ m_RefCrystalsCalibDB

DBObjPtr<ECLReferenceCrystalPerCrateCalib> m_RefCrystalsCalibDB
private

Crystal IDs of the one reference crystal per crate from database.

database object

Definition at line 119 of file ECLBhabhaTCollectorModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runNum

int m_runNum = intNaN
private

run number

Definition at line 226 of file ECLBhabhaTCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_saveTree

bool m_saveTree
private

If true, save TTree with more detailed event info.

Definition at line 71 of file ECLBhabhaTCollectorModule.h.

◆ m_storeCalib

bool m_storeCalib = true
private

Boolean for whether or not to store the previous calibration calibration constants.

Definition at line 228 of file ECLBhabhaTCollectorModule.h.

◆ m_tightTrkD0

double m_tightTrkD0 = realNaN
private

Tight track d0 minimum cut.

Definition at line 223 of file ECLBhabhaTCollectorModule.h.

◆ m_tightTrkZ0

double m_tightTrkZ0 = realNaN
private

Tight track z0 minimum cut.

Definition at line 221 of file ECLBhabhaTCollectorModule.h.

◆ m_timeAbsMax

short m_timeAbsMax
private

Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.

Definition at line 214 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_amp

int m_tree_amp = intNaN
private

Fitting amplitude from ECL for debug TTree output.

Definition at line 141 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_cid

int m_tree_cid = intNaN
private

ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.

Definition at line 140 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_clustCrysE

double m_tree_clustCrysE = realNaN
private

crystal energy, only for the crystals that meet all the selection criteria for debug TTree output

Definition at line 169 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_clustCrysE_DIV_maxEcrys

double m_tree_clustCrysE_DIV_maxEcrys = realNaN
private

ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals that meet all the selection criteria for debug TTree output

Definition at line 166 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_d0

double m_tree_d0 = realNaN
private

Track d0 for debug TTree output.

Definition at line 162 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_E1E2

double m_tree_E1E2 = realNaN
private

Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in the cluster, unitless for debug TTree output.

Definition at line 146 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_E1Etot

double m_tree_E1Etot = realNaN
private

Energy of crystal with maximum energy within ECL cluster divided by total cluster energy, unitless for debug TTree output.

Definition at line 143 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_E1p

double m_tree_E1p = realNaN
private

Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by the track momentum, unitless for debug TTree output.

Definition at line 149 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_ECLCalDigitE

double m_tree_ECLCalDigitE = realNaN
private

Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.

Definition at line 189 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_ECLCalDigitTime

double m_tree_ECLCalDigitTime = realNaN
private

Time of an ECLCalDigit within a cluster, ns for debug TTree output.

Definition at line 188 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_ECLDigitAmplitude

double m_tree_ECLDigitAmplitude = realNaN
private

Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.

Definition at line 190 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_en

double m_tree_en = realNaN
private

Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.

Definition at line 142 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_enNeg

double m_tree_enNeg = realNaN
private

Energy of cluster associated to negatively charged track, GeV for debug TTree output.

Definition at line 174 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_enPlus

double m_tree_enPlus = realNaN
private

Energy of cluster associated to positively charged track, GeV for debug TTree output.

Definition at line 173 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_evtNum

int m_tree_evtNum = intNaN
private

Event number for debug TTree output.

Definition at line 139 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_maxEcrystNegClust

double m_tree_maxEcrystNegClust = realNaN
private

Time of the highest energy crystal in the cluster associated to negatively charged track, ns for debug TTree output.

Definition at line 183 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_maxEcrystPosClust

double m_tree_maxEcrystPosClust = realNaN
private

Time of the highest energy crystal in the cluster associated to positively charged track, ns for debug TTree output.

Definition at line 181 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_nCDChits

double m_tree_nCDChits = realNaN
private

Number of CDC hits along the track for debug TTree output.

Definition at line 165 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_p

double m_tree_p = realNaN
private

Track momentum for debug TTree output.

Definition at line 164 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_quality

int m_tree_quality = intNaN
private

ECL fit quality for debug TTree output.

Definition at line 152 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_t0

double m_tree_t0 = realNaN
private

EventT0 (not from ECL) for debug TTree output.

Definition at line 158 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_t0_ECL_minChi2

double m_tree_t0_ECL_minChi2 = realNaN
private

EventT0 (from ECL) min chi2 for debug TTree output.

Definition at line 161 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_t0_ECLclosestCDC

double m_tree_t0_ECLclosestCDC = realNaN
private

EventT0 (from ECL) closest to CDC for debug TTree output.

Definition at line 160 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_t0_unc

double m_tree_t0_unc = realNaN
private

EventT0 uncertainty for debug TTree output.

Definition at line 159 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_tClust

double m_tree_tClust = realNaN
private

Cluster time of a cluster, ns for debug TTree output.

Definition at line 186 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_tClustNeg

double m_tree_tClustNeg = realNaN
private

Cluster time of cluster associated to negatively charged track, ns for debug TTree output.

Definition at line 179 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_tClustPos

double m_tree_tClustPos = realNaN
private

Cluster time of cluster associated to positively charged track, ns for debug TTree output.

Definition at line 177 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_time

double m_tree_time = realNaN
private

Time for Ts distribution for debug TTree output.

Definition at line 154 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_timeF

double m_tree_timeF = realNaN
private

ECL fitting time for debug TTree output.

Definition at line 153 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_timetsPreviousTimeCalibs

double m_tree_timetsPreviousTimeCalibs = realNaN
private

Time for Ts distribution after application of previous time calibrations for debug TTree output.

Definition at line 155 of file ECLBhabhaTCollectorModule.h.

◆ m_tree_z0

double m_tree_z0 = realNaN
private

Track z0 for debug TTree output.

Definition at line 163 of file ECLBhabhaTCollectorModule.h.

◆ m_TrgResult

StoreObjPtr<SoftwareTriggerResult> m_TrgResult
private

Store array for Trigger selection.

Definition at line 84 of file ECLBhabhaTCollectorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ skipTrgSel

bool skipTrgSel
private

flag to skip the trigger skim selection in the module

Definition at line 241 of file ECLBhabhaTCollectorModule.h.

◆ tracks

StoreArray<Track> tracks
private

StoreArray for tracks.

Definition at line 74 of file ECLBhabhaTCollectorModule.h.


The documentation for this class was generated from the following files: