Belle II Software development
EventDataPlotter.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8#include <tracking/trackFindingCDC/display/EventDataPlotter.h>
9
10#include <tracking/trackFindingCDC/display/SVGPrimitivePlotter.h>
11#include <tracking/trackFindingCDC/display/BoundingBox.h>
12
13#include <tracking/trackFindingCDC/eventdata/tracks/CDCSegmentPair.h>
14#include <tracking/trackFindingCDC/eventdata/tracks/CDCAxialSegmentPair.h>
15#include <tracking/trackFindingCDC/eventdata/tracks/CDCSegmentTriple.h>
16#include <tracking/trackFindingCDC/eventdata/tracks/CDCTrack.h>
17
18#include <tracking/trackFindingCDC/eventdata/segments/CDCWireHitCluster.h>
19#include <tracking/trackFindingCDC/eventdata/segments/CDCSegment2D.h>
20#include <tracking/trackFindingCDC/eventdata/segments/CDCSegment3D.h>
21
22#include <tracking/trackFindingCDC/eventdata/hits/CDCTangent.h>
23#include <tracking/trackFindingCDC/eventdata/hits/CDCRecoHit3D.h>
24#include <tracking/trackFindingCDC/eventdata/hits/CDCRecoHit2D.h>
25#include <tracking/trackFindingCDC/eventdata/hits/CDCWireHit.h>
26
27#include <tracking/trackFindingCDC/topology/CDCWireTopology.h>
28
29#include <tracking/trackFindingCDC/geometry/Circle2D.h>
30
31#include <cdc/dataobjects/CDCSimHit.h>
32#include <cdc/dataobjects/CDCHit.h>
33
34#include <framework/logging/Logger.h>
35
36#include <tracking/dataobjects/RecoTrack.h>
37#include <mdst/dataobjects/MCParticle.h>
38
39#include <TMatrixDSym.h>
40
41#include <cmath>
42
43using namespace Belle2;
44using namespace TrackFindingCDC;
45
46EventDataPlotter::EventDataPlotter(bool animate, bool forwardFade)
47 : m_ptrPrimitivePlotter(new SVGPrimitivePlotter(
48 AttributeMap{{"stroke", "orange"}, {"stroke-width", "0.55"}, {"fill", "none"}}))
49, m_animate(animate)
50, m_forwardFade(forwardFade)
51{
52}
53
54EventDataPlotter::EventDataPlotter(std::unique_ptr<PrimitivePlotter> ptrPrimitivePlotter,
55 bool animate,
56 bool forwardFade)
57 : m_ptrPrimitivePlotter(std::move(ptrPrimitivePlotter))
58 , m_animate(animate)
59 , m_forwardFade(forwardFade)
60{
61 B2ASSERT("EventDataPlotter initialized with nullptr. Using default backend SVGPrimitivePlotter.",
63}
64
66 : m_ptrPrimitivePlotter(eventDataPlotter.m_ptrPrimitivePlotter->clone())
67 , m_animate(eventDataPlotter.m_animate)
68 , m_forwardFade(eventDataPlotter.m_forwardFade)
69{
70}
71
72const std::string EventDataPlotter::save(const std::string& fileName)
73{
75 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
76 return primitivePlotter.save(fileName);
77 } else {
78 return "";
79 }
80}
81
83{
85 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
86 return primitivePlotter.clear();
87 }
88}
89
91{
93 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
94 return primitivePlotter.getBoundingBox();
95 } else {
96 return BoundingBox(0, 0, 0, 0);
97 }
98}
99
101{
103 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
104 return primitivePlotter.setBoundingBox(boundingBox);
105 }
106}
107
109{
111 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
112 return primitivePlotter.getCanvasWidth();
113 } else {
114 return NAN;
115 }
116}
117
119{
121 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
122 return primitivePlotter.getCanvasHeight();
123 } else {
124 return NAN;
125 }
126}
127
129{
131 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
132 primitivePlotter.setCanvasWidth(width);
133 }
134}
135
137{
139 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
140 primitivePlotter.setCanvasHeight(height);
141 }
142}
143
145{
147 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
148 primitivePlotter.startGroup(attributeMap);
149 }
150}
151
153{
155 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
156 primitivePlotter.endGroup();
157 }
158}
159
161{
162 // In case the event should be animated
163 // uncover the group of elements at the time of flight of the CDCSimHit.
164 if (not m_ptrPrimitivePlotter) return;
165 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
166
167 if (m_animate) {
168 float tof = simHit.getFlightTime();
169 AttributeMap groupAttributeMap{{"_showAt", getAnimationTimeFromNanoSeconds(tof)}};
170 primitivePlotter.startGroup(groupAttributeMap);
171
172 } else {
173 primitivePlotter.startGroup();
174 }
175}
176
178{
179 if (not m_ptrPrimitivePlotter) return;
180 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
181
182 if (m_animate) {
183 if (ptrHit) {
184 const CDCHit& hit = *ptrHit;
185 const CDCSimHit* ptrSimHit = hit.getRelated<CDCSimHit>();
186 if (ptrSimHit) {
187 const CDCSimHit& simHit = *ptrSimHit;
188 startAnimationGroup(simHit);
189 return;
190 }
191 }
192 }
193 primitivePlotter.startGroup();
194}
195
197{
198 Vector2D center(0.0, 0.0);
199 float radius = 1.0;
200
201 const Circle2D interactionPoint(center, radius);
202
203 AttributeMap attributeMap{{"fill", "black"}, {"stroke-width", "0"}};
204
205 draw(interactionPoint, attributeMap);
206}
207
209{
210 if (not m_ptrPrimitivePlotter) return;
211 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
212
213 const CDCWireTopology& wireTopology = CDCWireTopology::getInstance();
214
215 const CDCWireSuperLayer& wireSuperLayer = wireTopology.getWireSuperLayers().front();
216
217 float centerX = 0.0;
218 float centerY = 0.0;
219 float innerR = wireSuperLayer.getInnerCylindricalR();
220
221 primitivePlotter.drawCircle(centerX, centerY, innerR, attributeMap);
222}
223
225{
226 if (not m_ptrPrimitivePlotter) return;
227 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
228
229 const CDCWireTopology& wireTopology = CDCWireTopology::getInstance();
230
231 const CDCWireSuperLayer& wireSuperLayer = wireTopology.getWireSuperLayers().back();
232
233 float centerX = 0.0;
234 float centerY = 0.0;
235 float outerR = wireSuperLayer.getOuterCylindricalR();
236
237 primitivePlotter.drawCircle(centerX, centerY, outerR, attributeMap);
238}
239
241{
242 if (not m_ptrPrimitivePlotter) return;
243 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
244
245 const CDCWireTopology& wireTopology = CDCWireTopology::getInstance();
246
247 for (const CDCWireSuperLayer& wireSuperLayer : wireTopology.getWireSuperLayers()) {
248 float centerX = 0.0;
249 float centerY = 0.0;
250 float outerR = wireSuperLayer.getInnerCylindricalR();
251 primitivePlotter.drawCircle(centerX, centerY, outerR, attributeMap);
252 }
253 drawOuterCDCWall(attributeMap);
254}
255
257 float startY,
258 float endX,
259 float endY,
260 const AttributeMap& attributeMap)
261{
262 if (not m_ptrPrimitivePlotter) return;
263 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
264
265 primitivePlotter.drawLine(startX, startY, endX, endY, attributeMap);
266}
267
269void EventDataPlotter::draw(const Circle2D& circle, AttributeMap attributeMap)
270{
271 if (not m_ptrPrimitivePlotter) return;
272 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
273
274 float radius = circle.radius();
275
276 if (not attributeMap.count("fill") or attributeMap["fill"] != "") {
277 if (attributeMap.count("stroke")) {
278 attributeMap["fill"] = attributeMap["stroke"];
279 attributeMap.erase("stroke");
280 }
281 }
282
283 const Vector2D& pos = circle.center();
284
285 float x = pos.x();
286 float y = pos.y();
287
288 primitivePlotter.drawCircle(x, y, radius, attributeMap);
289}
290
292void EventDataPlotter::draw(const CDCWire& wire, const AttributeMap& attributeMap)
293{
294 const float wireRadius = 0.25;
295 const Vector2D& refPos = wire.getRefPos2D();
296
297 draw(Circle2D(refPos, wireRadius), attributeMap);
298}
299
301void EventDataPlotter::draw(const CDCWireSuperLayer& wireSuperLayer,
302 const AttributeMap& attributeMap)
303{
304 if (not m_ptrPrimitivePlotter) return;
305 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
306
307 primitivePlotter.startGroup(attributeMap);
308 for (const CDCWireLayer& wireLayer : wireSuperLayer) {
309 for (const CDCWire& wire : wireLayer) {
310 draw(wire);
311 }
312 }
313 primitivePlotter.endGroup();
314}
315
317void EventDataPlotter::draw(const CDCWireTopology& wireTopology, AttributeMap attributeMap)
318{
319 for (const CDCWireSuperLayer& wireSuperLayer : wireTopology.getWireSuperLayers()) {
320 AttributeMap defaultSuperLayerAttributeMap{{"fill",
321 wireSuperLayer.isAxial() ? "black" : "gray"
322 },
323 {"stroke", "none"}};
324
325 AttributeMap superLayerAttributeMap(attributeMap);
326
327 // Insert the values as defaults. Does not overwrite attributes with the same name.
328 superLayerAttributeMap.insert(defaultSuperLayerAttributeMap.begin(),
329 defaultSuperLayerAttributeMap.end());
330 draw(wireSuperLayer, superLayerAttributeMap);
331 }
332}
333
335void EventDataPlotter::draw(const CDCSimHit& simHit, const AttributeMap& attributeMap)
336{
337 if (not m_ptrPrimitivePlotter) return;
338 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
339
340 startAnimationGroup(simHit);
341
342 // Draw hit position as a small circle
343 ROOT::Math::XYZVector position = simHit.getPosTrack();
344 float x = position.X();
345 float y = position.Y();
346 float radius = 0.2;
347
348 primitivePlotter.drawCircle(x, y, radius, attributeMap);
349
350 // Draw momentum as an arrow proportional to the transverse component of the momentum
351 const float momentumToArrowLength = 1.5;
352
353 ROOT::Math::XYZVector momentum = simHit.getMomentum();
354 float endX = x + momentum.X() * momentumToArrowLength;
355 float endY = y + momentum.Y() * momentumToArrowLength;
356
357 primitivePlotter.drawArrow(x, y, endX, endY, attributeMap);
358
359 primitivePlotter.endGroup();
360}
361
363void EventDataPlotter::draw(const CDCHit& hit, const AttributeMap& attributeMap)
364{
365 CDCWireHit wireHit(&hit);
366 draw(wireHit, attributeMap);
367}
368
370void EventDataPlotter::draw(const CDCWireHit& wireHit, const AttributeMap& attributeMap)
371{
372 if (not m_ptrPrimitivePlotter) return;
373 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
374
375 startAnimationGroup(wireHit.getHit());
376
377 const Vector2D& refPos = wireHit.getRefPos2D();
378
379 float x = refPos.x();
380 float y = refPos.y();
381 float radius = wireHit.getRefDriftLength();
382
383 if (fabs(radius) < 100) {
384 primitivePlotter.drawCircle(x, y, radius, attributeMap);
385 }
386
387 primitivePlotter.endGroup();
388}
389
391void EventDataPlotter::draw(const CDCRecoHit2D& recoHit2D, const AttributeMap& attributeMap)
392{
393 if (not m_ptrPrimitivePlotter) return;
394 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
395
396 const CDCWireHit& wireHit = recoHit2D.getWireHit();
397
398 startAnimationGroup(wireHit.getHit());
399
400 const Vector2D& refPos2D = wireHit.getRefPos2D();
401 const Vector2D& recoPos2D = recoHit2D.getRecoPos2D();
402
403 float x = refPos2D.x();
404 float y = refPos2D.y();
405 float radius = wireHit.getRefDriftLength();
406 primitivePlotter.drawCircle(x, y, radius, attributeMap);
407
408 if (not recoPos2D.hasNAN()) {
409 float supportPointRadius = 0.2;
410 Circle2D supportPoint(recoPos2D, supportPointRadius);
411 draw(supportPoint, attributeMap);
412 }
413
414 primitivePlotter.endGroup();
415}
416
418void EventDataPlotter::draw(const CDCTangent& tangent, const AttributeMap& attributeMap)
419{
420 if (not m_ptrPrimitivePlotter) return;
421 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
422
423 const Vector2D fromPos = tangent.getFromRecoPos2D();
424 const float fromX = fromPos.x();
425 const float fromY = fromPos.y();
426
427 const Vector2D toPos = tangent.getToRecoPos2D();
428 const float toX = toPos.x();
429 const float toY = toPos.y();
430
431 primitivePlotter.drawLine(fromX, fromY, toX, toY, attributeMap);
432
433 float touchPointRadius = 0.015;
434 const Circle2D fromTouchPoint(fromPos, touchPointRadius);
435 draw(fromTouchPoint, attributeMap);
436
437 const Circle2D toTouchPoint(toPos, touchPointRadius);
438 draw(toTouchPoint, attributeMap);
439}
440
442 const AttributeMap& attributeMap)
443{
444 draw(recoHit3D.getRecoHit2D(), attributeMap);
445}
446
448void EventDataPlotter::draw(const CDCTrajectory2D& trajectory2D, AttributeMap attributeMap)
449{
450 if (not m_ptrPrimitivePlotter) return;
451 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
452
453 AttributeMap defaultAttributeMap{};
454
455 // Make the default color charge dependent
456 int charge = trajectory2D.getChargeSign();
457 if (charge > 0) {
458 defaultAttributeMap["stroke"] = "red";
459 } else if (charge < 0) {
460 defaultAttributeMap["stroke"] = "blue";
461 } else {
462 defaultAttributeMap["stroke"] = "green";
463 }
464
465 // Add attributes if not present
466 attributeMap.insert(defaultAttributeMap.begin(), defaultAttributeMap.end());
467
468 Vector2D trajectoryExit = trajectory2D.getOuterExit();
469 if (trajectoryExit.hasNAN()) {
470 // Curlers do not leave the CDC
471 // Stop the trajectory at the inner wall to be able to
472 // see the start point
473 trajectoryExit = trajectory2D.getInnerExit();
474 }
475
476 if (trajectory2D.getLocalCircle()->isCircle()) {
477 if (trajectoryExit.hasNAN()) {
478 // No exit point out of the cdc could be detected.
479 // Draw full circle
480 const float radius = trajectory2D.getLocalCircle()->absRadius();
481 const Vector2D center = trajectory2D.getGlobalCircle().center();
482 float centerX = center.x();
483 float centerY = center.y();
484
485 primitivePlotter.drawCircle(centerX, centerY, radius);
486
487 } else {
488 const float radius = trajectory2D.getLocalCircle()->absRadius();
489 const Vector2D start = trajectory2D.getSupport();
490 float startX = start.x();
491 float startY = start.y();
492
493 float endX = trajectoryExit.x();
494 float endY = trajectoryExit.y();
495
496 const int curvature = -charge;
497 const bool sweepFlag = curvature > 0;
498
499 // check if exit point is on the close or
500 // on the far side of the circle
501 const bool longArc = (trajectory2D.calcArcLength2D(trajectoryExit) > 0) ? false : true;
502 primitivePlotter.drawCircleArc(startX,
503 startY,
504 endX,
505 endY,
506 radius,
507 longArc,
508 sweepFlag,
509 attributeMap);
510 }
511 } else {
512 // trajectory is a straight line
513 if (trajectoryExit.hasNAN()) {
514 B2WARNING("Could not compute point off exit in a straight line case.");
515 } else {
516 const Vector2D start = trajectory2D.getSupport();
517 float startX = start.x();
518 float startY = start.y();
519
520 float endX = trajectoryExit.x();
521 float endY = trajectoryExit.y();
522 primitivePlotter.drawLine(startX, startY, endX, endY, attributeMap);
523 }
524 }
525}
526
527void EventDataPlotter::draw(const CDCWireHitCluster& wireHitCluster, const AttributeMap& attributeMap)
528{
529 drawRange(wireHitCluster, attributeMap);
530}
531
532void EventDataPlotter::draw(const CDCSegment2D& segment2D, const AttributeMap& attributeMap)
533{
534 if (m_forwardFade) {
535 drawRangeWithFade(segment2D, attributeMap);
536 } else {
537 drawRange(segment2D, attributeMap);
538 }
539}
540
541void EventDataPlotter::draw(const CDCSegment3D& segment3D, const AttributeMap& attributeMap)
542{
543 if (m_forwardFade) {
544 drawRange(segment3D, attributeMap);
545 } else {
546 drawRange(segment3D, attributeMap);
547 }
548}
549
550void EventDataPlotter::draw(const CDCAxialSegmentPair& axialSegmentPair,
551 const AttributeMap& attributeMap)
552{
553 if (not m_ptrPrimitivePlotter) return;
554 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
555
556 const CDCSegment2D* ptrFromSegment = axialSegmentPair.getStartSegment();
557 const CDCSegment2D* ptrToSegment = axialSegmentPair.getEndSegment();
558
559 if (not ptrFromSegment or not ptrToSegment) return;
560
561 const CDCSegment2D& fromSegment = *ptrFromSegment;
562 const CDCSegment2D& toSegment = *ptrToSegment;
563
564 const Vector2D& fromPos = fromSegment.back().getWire().getRefPos2D();
565 const Vector2D& toPos = toSegment.front().getWire().getRefPos2D();
566
567 if (fromPos.hasNAN()) {
568 B2WARNING("Center of mass of first segment in a pair contains NAN values.");
569 return;
570 }
571
572 if (toPos.hasNAN()) {
573 B2WARNING("Center of mass of second segment in a pair contains NAN values.");
574 return;
575 }
576
577 const float fromX = fromPos.x();
578 const float fromY = fromPos.y();
579
580 const float toX = toPos.x();
581 const float toY = toPos.y();
582
583 primitivePlotter.drawArrow(fromX, fromY, toX, toY, attributeMap);
584}
585
586void EventDataPlotter::draw(const CDCSegmentPair& segmentPair, const AttributeMap& attributeMap)
587{
588 if (not m_ptrPrimitivePlotter) return;
589 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
590
591 const CDCSegment2D* ptrFromSegment = segmentPair.getFromSegment();
592 const CDCSegment2D* ptrToSegment = segmentPair.getToSegment();
593
594 if (not ptrFromSegment or not ptrToSegment) return;
595
596 const CDCSegment2D& fromSegment = *ptrFromSegment;
597 const CDCSegment2D& toSegment = *ptrToSegment;
598
599 const Vector2D& fromPos = fromSegment.back().getWire().getRefPos2D();
600 const Vector2D& toPos = toSegment.front().getWire().getRefPos2D();
601
602 if (fromPos.hasNAN()) {
603 B2WARNING("Center of mass of first segment in a pair contains NAN values.");
604 return;
605 }
606
607 if (toPos.hasNAN()) {
608 B2WARNING("Center of mass of second segment in a pair contains NAN values.");
609 return;
610 }
611
612 const float fromX = fromPos.x();
613 const float fromY = fromPos.y();
614
615 const float toX = toPos.x();
616 const float toY = toPos.y();
617
618 primitivePlotter.drawArrow(fromX, fromY, toX, toY, attributeMap);
619}
620
621void EventDataPlotter::draw(const CDCSegmentTriple& segmentTriple, const AttributeMap& attributeMap)
622{
623 if (not m_ptrPrimitivePlotter) return;
624 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
625
626 const CDCSegment2D* ptrStartSegment = segmentTriple.getStartSegment();
627 const CDCSegment2D* ptrMiddleSegment = segmentTriple.getMiddleSegment();
628 const CDCSegment2D* ptrEndSegment = segmentTriple.getEndSegment();
629
630 if (not ptrStartSegment or not ptrMiddleSegment or not ptrEndSegment) return;
631
632 const CDCSegment2D& startSegment = *ptrStartSegment;
633 const CDCSegment2D& middleSegment = *ptrMiddleSegment;
634 const CDCSegment2D& endSegment = *ptrEndSegment;
635
636 const Vector2D& startBackPos2D = startSegment.back().getRefPos2D();
637 const Vector2D& middleFrontPos2D = middleSegment.front().getRefPos2D();
638 const Vector2D& middleBackPos2D = middleSegment.back().getRefPos2D();
639 const Vector2D& endFrontPos2D = endSegment.front().getRefPos2D();
640
641 if (startBackPos2D.hasNAN()) {
642 B2WARNING("Back position of start segment in a triple contains NAN values.");
643 return;
644 }
645
646 if (middleFrontPos2D.hasNAN()) {
647 B2WARNING("Front position of middle segment in a triple contains NAN values.");
648 return;
649 }
650
651 if (middleBackPos2D.hasNAN()) {
652 B2WARNING("Back position of middle segment in a triple contains NAN values.");
653 return;
654 }
655
656 if (endFrontPos2D.hasNAN()) {
657 B2WARNING("Front position of end segment in a triple contains NAN values.");
658 return;
659 }
660
661 const float startBackX = startBackPos2D.x();
662 const float startBackY = startBackPos2D.y();
663
664 const float middleFrontX = middleFrontPos2D.x();
665 const float middleFrontY = middleFrontPos2D.y();
666
667 primitivePlotter.drawArrow(startBackX, startBackY, middleFrontX, middleFrontY, attributeMap);
668
669 const float middleBackX = middleBackPos2D.x();
670 const float middleBackY = middleBackPos2D.y();
671
672 const float endFrontX = endFrontPos2D.x();
673 const float endFrontY = endFrontPos2D.y();
674
675 primitivePlotter.drawArrow(middleBackX, middleBackY, endFrontX, endFrontY, attributeMap);
676}
677
678void EventDataPlotter::draw(const CDCTrack& track, const AttributeMap& attributeMap)
679{
680 if (m_forwardFade) {
681 drawRangeWithFade(track, attributeMap);
682 } else {
683 drawRange(track, attributeMap);
684 }
685}
686
687void EventDataPlotter::draw(const RecoTrack& recoTrack, const AttributeMap& attributeMap)
688{
689 if (not m_ptrPrimitivePlotter) return;
690 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
691
692 primitivePlotter.startGroup(attributeMap);
693 for (const CDCHit* ptrHit : recoTrack.getCDCHitList()) {
694 if (ptrHit) {
695 const CDCHit& hit = *ptrHit;
696 draw(hit);
697 }
698 }
699 primitivePlotter.endGroup();
700}
701
702void EventDataPlotter::drawTrajectory(const MCParticle& mcParticle, const AttributeMap& attributeMap)
703{
704 if (not mcParticle.isPrimaryParticle()) return;
705 Vector3D pos(mcParticle.getVertex());
706 Vector3D mom(mcParticle.getMomentum());
707 double charge = mcParticle.getCharge();
708 double time = mcParticle.getProductionTime();
709 CDCTrajectory2D trajectory2D(pos.xy(), time, mom.xy(), charge);
710 draw(trajectory2D, attributeMap);
711}
712
714 const AttributeMap& attributeMap)
715{
716 draw(segment.getTrajectory2D(), attributeMap);
717}
718
720 const AttributeMap& attributeMap)
721{
722 draw(segmentTriple.getTrajectory3D().getTrajectory2D(), attributeMap);
723}
724
725void EventDataPlotter::drawTrajectory(const CDCTrack& track, const AttributeMap& attributeMap)
726{
727 draw(track.getStartTrajectory3D().getTrajectory2D(), attributeMap);
728}
729
730void EventDataPlotter::drawTrajectory(const RecoTrack& recoTrack, const AttributeMap& attributeMap)
731{
732 if (not m_ptrPrimitivePlotter) return;
733 PrimitivePlotter& primitivePlotter = *m_ptrPrimitivePlotter;
734
735 primitivePlotter.startGroup(attributeMap);
736
737 bool fitSuccessful = not recoTrack.getRepresentations().empty() and recoTrack.wasFitSuccessful();
738 if (fitSuccessful) {
739 std::vector<std::array<float, 2>> points;
740 std::vector<std::array<float, 2>> tangents;
741
742 for (auto recoHit : recoTrack.getRecoHitInformations()) {
743 // skip for reco hits which have not been used in the fit (and therefore have no fitted information on the plane
744 if (!recoHit->useInFit())
745 continue;
746
747 TVector3 pos;
748 TVector3 mom;
749 TMatrixDSym cov;
750
751 try {
752 const auto* trackPoint = recoTrack.getCreatedTrackPoint(recoHit);
753 const auto* fittedResult = trackPoint->getFitterInfo();
754 if (not fittedResult) {
755 B2WARNING("Skipping unfitted track point");
756 continue;
757 }
758 const genfit::MeasuredStateOnPlane& state = fittedResult->getFittedState();
759 state.getPosMomCov(pos, mom, cov);
760 } catch (const genfit::Exception&) {
761 B2WARNING("Skipping state with strange pos, mom or cov");
762 continue;
763 }
764
765 float x = pos.X();
766 float y = pos.Y();
767 float px = mom.X();
768 float py = mom.Y();
769
770 points.push_back({{x, y}});
771 tangents.push_back({{px, py}});
772 }
773 primitivePlotter.drawCurve(points, tangents, attributeMap);
774 }
775
776 primitivePlotter.endGroup();
777}
Class containing the result of the unpacker in raw data and the result of the digitizer in simulation...
Definition: CDCHit.h:40
Example Detector.
Definition: CDCSimHit.h:21
double getFlightTime() const
The method to get flight time.
Definition: CDCSimHit.h:184
B2Vector3D getPosTrack() const
The method to get position on the track.
Definition: CDCSimHit.h:217
B2Vector3D getMomentum() const
The method to get momentum.
Definition: CDCSimHit.h:193
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
ROOT::Math::XYZVector getVertex() const
Return production vertex position, shorthand for getProductionVertex().
Definition: MCParticle.h:183
float getCharge() const
Return the particle charge defined in TDatabasePDG.
Definition: MCParticle.cc:36
float getProductionTime() const
Return production time in ns.
Definition: MCParticle.h:159
ROOT::Math::XYZVector getMomentum() const
Return momentum.
Definition: MCParticle.h:198
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
const std::vector< genfit::AbsTrackRep * > & getRepresentations() const
Return a list of track representations. You are not allowed to modify or delete them!
Definition: RecoTrack.h:638
bool wasFitSuccessful(const genfit::AbsTrackRep *representation=nullptr) const
Returns true if the last fit with the given representation was successful.
Definition: RecoTrack.cc:336
std::vector< Belle2::RecoTrack::UsedCDCHit * > getCDCHitList() const
Return an unsorted list of cdc hits.
Definition: RecoTrack.h:455
const genfit::TrackPoint * getCreatedTrackPoint(const RecoHitInformation *recoHitInformation) const
Get a pointer to the TrackPoint that was created from this hit.
Definition: RecoTrack.cc:230
std::vector< RecoHitInformation * > getRecoHitInformations(bool getSorted=false) const
Return a list of all RecoHitInformations associated with the RecoTrack.
Definition: RecoTrack.cc:557
A two dimensional rectangle that keeps track of the extend of a drawing.
Definition: BoundingBox.h:21
Class representing a pair of reconstructed axial segements in adjacent superlayer.
const CDCAxialSegment2D * getEndSegment() const
Getter for the end segment.
const CDCAxialSegment2D * getStartSegment() const
Getter for the start segment.
Class representing a two dimensional reconstructed hit in the central drift chamber.
Definition: CDCRecoHit2D.h:47
const CDCWireHit & getWireHit() const
Getter for the wire hit assoziated with the reconstructed hit.
Definition: CDCRecoHit2D.h:193
Vector2D getRecoPos2D() const
Getter for the position in the reference plane.
Definition: CDCRecoHit2D.h:238
Class representing a three dimensional reconstructed hit.
Definition: CDCRecoHit3D.h:52
CDCRecoHit2D getRecoHit2D() const
Constructs a two dimensional reconstructed hit by carrying out the stereo ! projection to the wire re...
A reconstructed sequence of two dimensional hits in one super layer.
Definition: CDCSegment2D.h:39
A segment consisting of three dimensional reconstructed hits.
Definition: CDCSegment3D.h:26
Class representing a pair of one reconstructed axial segement and one stereo segment in adjacent supe...
const CDCSegment2D * getToSegment() const
Getter for the to segment.
const CDCSegment2D * getFromSegment() const
Getter for the from segment.
Class representing a triple of reconstructed segements in adjacent superlayer.
const CDCStereoSegment2D * getMiddleSegment() const
Getter for the middle stereo segment.
const CDCAxialSegment2D * getEndSegment() const
Getter for the end axial segment.
const CDCTrajectory3D & getTrajectory3D() const
Getter for the three dimensional helix trajectory.
const CDCAxialSegment2D * getStartSegment() const
Getter for the start axial segment.
Class representating a linear track piece between two oriented wire hits.
Definition: CDCTangent.h:40
const Vector2D & getFromRecoPos2D() const
Getter for the touching point of the tangent to the first drift circle.
Definition: CDCTangent.h:63
Vector2D getToRecoPos2D() const
Getter for the touching point of the tangent to the second drift circle.
Definition: CDCTangent.h:70
Class representing a sequence of three dimensional reconstructed hits.
Definition: CDCTrack.h:41
Particle trajectory as it is seen in xy projection represented as a circle.
PerigeeCircle getGlobalCircle() const
Getter for the circle in global coordinates.
Vector2D getOuterExit(double factor=1) const
Calculates the point where the trajectory meets the outer wall of the CDC.
double calcArcLength2D(const Vector2D &point) const
Calculate the travel distance from the start position of the trajectory.
ESign getChargeSign() const
Gets the charge sign of the trajectory.
Vector2D getSupport() const
Get the support point of the trajectory in global coordinates.
const UncertainPerigeeCircle & getLocalCircle() const
Getter for the cirlce in local coordinates.
Vector2D getInnerExit() const
Calculates the point where the trajectory meets the inner wall of the CDC.
CDCTrajectory2D getTrajectory2D() const
Getter for the two dimensional trajectory.
Class representing a hit wire in the central drift chamber.
Definition: CDCWireHit.h:55
const CDCHit * getHit() const
Getter for the CDCHit pointer into the StoreArray.
Definition: CDCWireHit.h:159
double getRefDriftLength() const
Getter for the drift length at the reference position of the wire.
Definition: CDCWireHit.h:224
const Vector2D & getRefPos2D() const
The two dimensional reference position (z=0) of the underlying wire.
Definition: CDCWireHit.cc:212
Class representating a sense wire layer in the central drift chamber.
Definition: CDCWireLayer.h:42
Class representating a sense wire superlayer in the central drift chamber.
double getInnerCylindricalR() const
Getter for the inner radius of the layer as retrived from the CDCGeometryPar by the inner most layer.
double getOuterCylindricalR() const
Getter for the outer radius of the layer as retrived from the CDCGeometryPar by the outer most layer.
Class representating the sense wire arrangement in the whole of the central drift chamber.
const std::vector< Belle2::TrackFindingCDC::CDCWireSuperLayer > & getWireSuperLayers() const
Getter for the underlying storing superlayer vector.
static CDCWireTopology & getInstance()
Getter for the singleton instance of the wire topology.
Class representing a sense wire in the central drift chamber.
Definition: CDCWire.h:58
const Vector2D & getRefPos2D() const
Getter for the wire reference position for 2D tracking Gives the wire's reference position projected ...
Definition: CDCWire.h:229
A two dimensional circle in its natural representation using center and radius as parameters.
Definition: Circle2D.h:26
double radius() const
Getter for the signed radius.
Definition: Circle2D.h:197
Vector2D center() const
Getter for the central point of the circle.
Definition: Circle2D.h:221
A class that can plot event related data types.
void drawInteractionPoint()
Marks the position of the interaction point with a filled circle.
float getCanvasHeight() const
Getter for the canvas height in pixels.
void setCanvasHeight(float height)
Setter for the canvas height in pixels The canvas height denotes the size of the image being produced...
void setBoundingBox(const BoundingBox &boundingBox)
Setter for the bounding box of all drawed objects.
bool m_forwardFade
Memory for the flag whether the orientation of tracks segments etc should be shown as diming opacity.
void drawOuterCDCWall(const AttributeMap &attributeMap=AttributeMap())
Draw the outer wall of the CDC.
void drawTrajectory(const MCParticle &mcParticle, const AttributeMap &attributeMap=AttributeMap())
Draws the trajectory that is represented by the MC particle.
void drawInnerCDCWall(const AttributeMap &attributeMap=AttributeMap())
Draw the inner wall of the CDC.
float getCanvasWidth() const
Getter for the canvas width in pixels.
PrimitivePlotter::AttributeMap AttributeMap
Forward the Attributre map from the primitive plotter.
void drawRange(const ARange &range, const AttributeMap &attributeMap=AttributeMap())
Draws a range iterable collection of drawable elements.
void startGroup(const AttributeMap &attributeMap=AttributeMap())
Indicates the start of a group of drawn elements.
bool m_animate
Memory for the flag if the event data should be animated. If animation is supported is backend depend...
void setCanvasWidth(float width)
Setter for the canvas width in pixels.
const std::string save(const std::string &fileName)
Saves the current plot stead to a file.
BoundingBox getBoundingBox() const
Getter for the current bounding box.
std::unique_ptr< PrimitivePlotter > m_ptrPrimitivePlotter
Reference to the primitivePlotter instance used as backend for the draw commands.
EventDataPlotter(bool animate=false, bool forwardFade=false)
Default constructor for ROOT compatibility. Uses an SVGPrimitivePlotter as backend.
void clear()
Clears all drawed elements from the plotter.
void drawSuperLayerBoundaries(const AttributeMap &attributeMap=AttributeMap())
Draw the super layer bounds of the CDC.
void drawRangeWithFade(const ARange &range, const AttributeMap &attributeMap=AttributeMap())
Draws a range iterable collection of drawable elements.
void draw(const Belle2::TrackFindingCDC::Circle2D &circle, AttributeMap attributeMap=AttributeMap())
Draws a filled circle.
void drawLine(float startX, float startY, float endX, float endY, const AttributeMap &attributeMap=AttributeMap())
Draws a straight Line.
void startAnimationGroup(const Belle2::CDCSimHit &simHit)
Start a group in the underlying plotter with an animation uncovering the elements at the time of flig...
void endGroup()
Indicates the end of a group of drawn elements.
std::string getAnimationTimeFromNanoSeconds(float nanoseconds)
Converts a time given in nanoseconds to a time sting of the from "%fs".
Vector2D center() const
Getter for the center of the circle. If it was a line both components will be infinity.
bool isCircle() const
Indicates if the perigee parameters represent a closed circle.
double absRadius() const
Gives the signed radius of the circle. If it was a line this will be infinity.
A base class for plots of primitive objects.
void setCanvasHeight(float height)
Setter for the canvas height in pixels The canvas height denotes the size of the image being produced...
void setBoundingBox(const BoundingBox &boundingBox)
Setter for the bounding box of all drawed objects.
float getCanvasWidth()
Getter for the canvas width in pixels.
virtual void drawCurve(const std::vector< std::array< float, 2 > > &points, const std::vector< std::array< float, 2 > > &tangents, const AttributeMap &attributeMap=AttributeMap())
Adds a smooth curve to the plot.
const BoundingBox & getBoundingBox() const
Getter for the bounding box of all drawed objects.
virtual void startGroup(const AttributeMap &attributeMap=AttributeMap())
Indicates the start of a group of drawn elements.
void setCanvasWidth(float width)
Setter for the canvas width in pixels.
virtual void drawCircleArc(float startX, float startY, float endX, float endY, float radius, bool longArc, bool sweepFlag, const AttributeMap &attributeMap=AttributeMap())
Adds a circle arc to the plot.
virtual void drawArrow(float startX, float startY, float endX, float endY, const AttributeMap &attributeMap=AttributeMap())
Adds an arrow to the plot.
virtual const std::string save(const std::string &fileName)
Saves the current plot state to a file.
float getCanvasHeight()
Getter for the canvas height in pixels.
virtual void clear()
Clears all drawed elements from the plotter.
virtual void drawLine(float startX, float startY, float endX, float endY, const AttributeMap &attributeMap=AttributeMap())
Adds a line to the plot.
virtual void drawCircle(float centerX, float centerY, float radius, const AttributeMap &attributeMap=AttributeMap())
Adds a circle to the plot.
virtual void endGroup()
Indicates the end of a group of drawn elements.
A concrete plotter that can draw primitive objects to standalone SVG files.
A two dimensional vector which is equipped with functions for correct handeling of orientation relat...
Definition: Vector2D.h:32
double x() const
Getter for the x coordinate.
Definition: Vector2D.h:595
bool hasNAN() const
Checks if one of the coordinates is NAN.
Definition: Vector2D.h:149
double y() const
Getter for the y coordinate.
Definition: Vector2D.h:605
A three dimensional vector.
Definition: Vector3D.h:33
const Vector2D & xy() const
Getter for the xy projected vector ( reference ! )
Definition: Vector3D.h:508
bool isPrimaryParticle() const
Check if particle is a primary particle which was created by the generator (and not,...
Definition: MCParticle.h:595
Abstract base class for different kinds of events.
STL namespace.