Belle II Software development
EvtKstarnunu_REV.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <generators/evtgen/EvtGenModelRegister.h>
10
11#include "EvtGenBase/EvtPatches.hh"
12#include <stdlib.h>
13#include <iostream>
14#include <string>
15#include <cmath>
16#include "EvtGenBase/EvtParticle.hh"
17#include "EvtGenBase/EvtPDL.hh"
18#include "EvtGenBase/EvtGenKine.hh"
19#include "EvtGenBase/EvtDiracSpinor.hh"
20#include "EvtGenBase/EvtTensor4C.hh"
21#include "EvtGenBase/EvtReport.hh"
22#include "EvtGenBase/EvtVector4C.hh"
23
24#include "generators/evtgen/models/EvtKstarnunu_REV.h"
25
26using std::endl;
27
28namespace Belle2 {
36
38
40 {
41 return "KSTARNUNU_REV";
42 }
43
45 {
46 return new EvtKstarnunu_REV;
47 }
48
49 void EvtKstarnunu_REV::decay(EvtParticle* p)
50 {
51
52 static EvtId NUE = EvtPDL::getId("nu_e");
53 static EvtId NUM = EvtPDL::getId("nu_mu");
54 static EvtId NUT = EvtPDL::getId("nu_tau");
55 static EvtId NUEB = EvtPDL::getId("anti-nu_e");
56 static EvtId NUMB = EvtPDL::getId("anti-nu_mu");
57 static EvtId NUTB = EvtPDL::getId("anti-nu_tau");
58
59 p->initializePhaseSpace(getNDaug(), getDaugs());
60
61 double m_b = p->mass();
62
63 EvtParticle* meson, * neutrino1, * neutrino2;
64 meson = p->getDaug(0);
65 neutrino1 = p->getDaug(1);
66 neutrino2 = p->getDaug(2);
67 EvtVector4R momnu1 = neutrino1->getP4();
68 EvtVector4R momnu2 = neutrino2->getP4();
69 EvtVector4R momkstar = meson->getP4();
70
71 EvtVector4R q = momnu1 + momnu2;
72 double q2 = q.mass2();
73
74 double m_k = meson->mass();
75
76 EvtVector4R p4b; p4b.set(m_b, 0., 0., 0.); // Do calcs in mother rest frame
77
78 // calculate form factors [arXiv:1503.05534v3]
79 // see Table 15, eq 15, eq 16, Table 3
80
81 // FFs
82 double tp = (m_b + m_k) * (m_b + m_k);
83 double tm = (m_b - m_k) * (m_b - m_k);
84 double t0 = tp * (1 - sqrt(1 - tm / tp));
85 double z = (sqrt(tp - q2) - sqrt(tp - t0)) / (sqrt(tp - q2) + sqrt(tp - t0));
86 double z0 = (sqrt(tp) - sqrt(tp - t0)) / (sqrt(tp) + sqrt(tp - t0));
87
88 // v0
89 double alpha0_v0 = 0.38;
90 double alpha1_v0 = -1.17;
91 double alpha2_v0 = 2.42;
92 double mR_v0 = 5.415;
93 double v0 = (1 / (1 - q2 / (mR_v0 * mR_v0))) * (alpha0_v0 + alpha1_v0 * (z - z0) + alpha2_v0 * (z - z0) * (z - z0));
94
95 // A1
96 double alpha0_A1 = 0.3;
97 double alpha1_A1 = 0.39;
98 double alpha2_A1 = 1.19;
99 double mR_A1 = 5.829;
100 double A1 = (1 / (1 - q2 / (mR_A1 * mR_A1))) * (alpha0_A1 + alpha1_A1 * (z - z0) + alpha2_A1 * (z - z0) * (z - z0));
101
102 // A12
103 double alpha0_A12 = 0.27;
104 double alpha1_A12 = 0.53;
105 double alpha2_A12 = 0.48;
106 double mR_A12 = 5.829;
107 double A12 = (1 / (1 - q2 / (mR_A12 * mR_A12))) * (alpha0_A12 + alpha1_A12 * (z - z0) + alpha2_A12 * (z - z0) * (z - z0));
108
109 // lambda
110 double lambda = (tp - q2) * (tm - q2);
111
112 // A2
113 double A2 = ((m_b + m_k) * (m_b + m_k) * (m_b * m_b - m_k * m_k - q2) * A1 - A12 * 16 * m_b * m_k * m_k * (m_b + m_k)) / lambda;
114
115 // calculate quark decay amplitude from [arXiv:hep-ph/9910221v2]
116 // see eq 3.3, eq 3.4, eq 3.5, eq 4.1, eq 4.4, and eq 4.5
117 // but in B->Kstar nu nubar, A3, A0, and all T terms are ignored
118
119 // definition of A12 can be found from [arXiv:1303.5794v2]
120
121 // definition of A3 can be found from [arXiv:1408.5614v1]
122
123 EvtTensor4C tds = (-2 * v0 / (m_b + m_k)) * dual(EvtGenFunctions::directProd(p4b, momkstar))
124 - EvtComplex(0.0, 1.0) *
125 ((m_b + m_k) * A1 * EvtTensor4C::g()
126 - (A2 / (m_b + m_k)) * EvtGenFunctions::directProd(p4b - momkstar, p4b + momkstar));
127
128 EvtVector4C l;
129
130 if (getDaug(1) == NUE || getDaug(1) == NUM || getDaug(1) == NUT) {
131 l = EvtLeptonVACurrent(neutrino1->spParentNeutrino(),
132 neutrino2->spParentNeutrino());
133 }
134 if (getDaug(1) == NUEB || getDaug(1) == NUMB || getDaug(1) == NUTB) {
135 l = EvtLeptonVACurrent(neutrino2->spParentNeutrino(),
136 neutrino1->spParentNeutrino());
137 }
138
139 EvtVector4C et0, et1, et2;
140 et0 = tds.cont1(meson->epsParent(0).conj());
141 et1 = tds.cont1(meson->epsParent(1).conj());
142 et2 = tds.cont1(meson->epsParent(2).conj());
143
144 vertex(0, l * et0);
145 vertex(1, l * et1);
146 vertex(2, l * et2);
147
148 return;
149
150 }
151
153 {
154
155 // check that there are 0 arguments
156 checkNArg(0);
157 checkNDaug(3);
158
159 //We expect the parent to be a scalar
160 //and the daughters to be Kstar neutrino netrino
161
162 checkSpinParent(EvtSpinType::SCALAR);
163
164 checkSpinDaughter(0, EvtSpinType::VECTOR);
165 checkSpinDaughter(1, EvtSpinType::NEUTRINO);
166 checkSpinDaughter(2, EvtSpinType::NEUTRINO);
167 }
168
170 {
171 // Maximum probability was obtained by 10^6 MC samples. It was 20000.169
172 // About 10% higher value is used.
173 setProbMax(22000.0);
174 }
175
177}
The evtgen model to produce B-> Kstar nu nubar decay sample.
EvtKstarnunu_REV()
Constructor.
void init()
The function for an initialization.
virtual ~EvtKstarnunu_REV()
Destructor.
EvtDecayBase * clone()
The function which makes a copy of the model.
void initProbMax()
The function to sets a maximum probability.
std::string getName()
The function which returns the name of the model.
#define B2_EVTGEN_REGISTER_MODEL(classname)
Class to register B2_EVTGEN_REGISTER_MODEL.
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
void decay(EvtParticle *p)
The function to calculate a quark decay amplitude.
Abstract base class for different kinds of events.