Belle II Software development
FastInterceptFinder2DFPGA.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8#include <tracking/datcon/findlets/FastInterceptFinder2DFPGA.h>
9#include <tracking/trackFindingCDC/utilities/StringManipulation.h>
10#include <vxd/dataobjects/VxdID.h>
11#include <framework/core/ModuleParamList.h>
12#include <framework/core/ModuleParamList.templateDetails.h>
13
14using namespace Belle2;
15using namespace TrackFindingCDC;
16
18{
19}
20
21void FastInterceptFinder2DFPGA::exposeParameters(ModuleParamList* moduleParamList, const std::string& prefix)
22{
23 Super::exposeParameters(moduleParamList, prefix);
24
25 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "isUFinder"), m_param_isUFinder,
26 "Intercept finder for u-side or v-side?", m_param_isUFinder);
27
28 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "writeGnuplotOutput"), m_param_writeGnuplotOutput,
29 "Write gnuplot debugging output to file?", m_param_writeGnuplotOutput);
30
31 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "gnuplotHSOutputFileName"), m_param_gnuplotHSOutputFileName,
32 "Name of the gnuplot debug file.", m_param_gnuplotHSOutputFileName);
33
34 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "gnuplotHSRectOutputFileName"), m_param_gnuplotHSRectOutputFileName,
35 "Name of the gnuplot debug HS sectors file.", m_param_gnuplotHSRectOutputFileName);
36
37 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "gnuplotHSCoGOutputFileName"), m_param_gnuplotHSCoGOutputFileName,
38 "Name of the gnuplot debug cluster CoG file.", m_param_gnuplotHSCoGOutputFileName);
39
40 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "maximumRecursionLevel"), m_param_maxRecursionLevel,
41 "Maximum recursion level for the fast Hough trafo algorithm.", m_param_maxRecursionLevel);
42
43 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "nAngleSectors"), m_param_nAngleSectors,
44 "Number of angle sectors (= x-axis) dividing the Hough space.", m_param_nAngleSectors);
45
46 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "nVerticalSectors"), m_param_nVerticalSectors,
47 "Number of vertical sectors (= y-axis) dividing the Hough space.", m_param_nVerticalSectors);
48
49 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "verticalHoughSpaceSize"), m_param_verticalHoughSpaceSize,
50 "Vertical size of the Hough space. Data type: long", m_param_verticalHoughSpaceSize);
51
52 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "minimumX"), m_param_minimumX,
53 "Minimum x value of the Hough space.", m_param_minimumX);
54
55 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "maximumX"), m_param_maximumX,
56 "Maximum x value of the Hough space.", m_param_maximumX);
57
58 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "minimumHSClusterSize"), m_param_MinimumHSClusterSize,
59 "Minimum size of the Hough Space clusters.", m_param_MinimumHSClusterSize);
60
61 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "maximumHSClusterSize"), m_param_MaximumHSClusterSize,
62 "Maximum size of the Hough Space clusters.", m_param_MaximumHSClusterSize);
63
64 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "maximumHSClusterSizeX"), m_param_MaximumHSClusterSizeX,
65 "Maximum size of the Hough Space clusters in horizontal direction.", m_param_MaximumHSClusterSizeX);
66
67 moduleParamList->addParameter(TrackFindingCDC::prefixed(prefix, "maximumHSClusterSizeY"), m_param_MaximumHSClusterSizeY,
68 "Maximum size of the Hough Space clusters in vertical direction.", m_param_MaximumHSClusterSizeY);
69
70}
71
73{
75
77 B2ASSERT("The maximum number of currentRecursion in u must not be larger than 14, but it is " << m_param_maxRecursionLevel,
80 // If Hough trafo for theta, divide Hough space not linear in theta, but linear in tan(theta).
81 // This leads to smaller HS sectors in the forward and backward regions, but an even distributions of extrapolated PXD hits.
82 if (not m_param_isUFinder) {
84 }
85 for (uint i = 0; i < m_param_nAngleSectors; i++) {
86 double x = m_param_minimumX + m_unitX * (double)i;
87 double xc = x + 0.5 * m_unitX;
88 if (not m_param_isUFinder) {
89 x = atan(tan(m_param_minimumX) + m_unitX * i);
90 xc = atan(tan(m_param_minimumX) + m_unitX * ((double)i + 0.5));
91 }
92
93 m_HSXLUT[i] = x;
94 m_HSSinValuesLUT[i] = convertFloatToInt(sin(x), 3);
95 m_HSCosValuesLUT[i] = convertFloatToInt(cos(x), 3);
98 m_HSXCenterLUT[i] = xc;
99 }
103
105 for (uint i = 0; i <= m_param_nVerticalSectors; i++) {
108 }
109 B2DEBUG(29, "HS size x: " << (m_param_maximumX - m_param_minimumX) << " HS size y: " << m_param_verticalHoughSpaceSize <<
110 " unitX: " << m_unitX << " unitY: " << m_unitY);
111}
112
113void FastInterceptFinder2DFPGA::apply(const std::vector<std::pair<VxdID, std::pair<long, long>>>& hits,
114 std::vector<std::pair<double, double>>& tracks)
115{
117 m_activeSectorArray.clear();
118 m_activeSectorArray.reserve(4096);
119 m_trackCandidates.clear();
120
122 m_rectcounter = 1;
123 m_rectoutstream.open(m_param_gnuplotHSRectOutputFileName.c_str(), std::ios::trunc);
124 m_cogoutstream.open(m_param_gnuplotHSCoGOutputFileName.c_str(), std::ios::trunc);
125 gnuplotoutput(hits);
126 }
127
129
131
132 for (auto& trackCand : m_trackCandidates) {
133 tracks.emplace_back(trackCand);
134 }
135
136 B2DEBUG(29, "m_activeSectorArray.size: " << m_activeSectorArray.size() << " m_trackCandidates.size: " << m_trackCandidates.size());
137
139 m_rectoutstream.close();
140 m_cogoutstream.close();
141 }
142
143}
144
145void FastInterceptFinder2DFPGA::fastInterceptFinder2d(const std::vector<std::pair<VxdID, std::pair<long, long>>>& hits,
146 uint xmin, uint xmax, uint ymin, uint ymax, uint currentRecursion)
147{
148 std::vector<std::pair<VxdID, std::pair<long, long>>> containedHits;
149
150 if (currentRecursion == m_param_maxRecursionLevel + 1) return;
151
152 // these int-divisions can cause {min, center} or {center, max} to be the same, which is a desired behaviour
153 const uint centerx = xmin + (uint)((xmax - xmin) / 2);
154 const uint centery = ymin + (uint)((ymax - ymin) / 2);
155 const uint xIndexCache[3] = {xmin, centerx, xmax};
156 const uint yIndexCache[3] = {ymin, centery, ymax};
157
158 for (int i = 0; i < 2 ; ++i) {
159 const uint left = xIndexCache[i];
160 const uint right = xIndexCache[i + 1];
161 const uint localIndexX = left;
162
163 if (left == right) continue;
164
165 const double& localLeft = m_HSXLUT[left];
166 const double& localRight = m_HSXLUT[right];
167 const short& sinLeft = m_HSSinValuesLUT[left];
168 const short& cosLeft = m_HSCosValuesLUT[left];
169 const short& sinRight = m_HSSinValuesLUT[right];
170 const short& cosRight = m_HSCosValuesLUT[right];
171
172 // the sin and cos of the current center can't be stored in a LUT, as the number of possible centers
173 // is quite large and the logic would become rather complex
174 const short& sinCenter = m_HSCenterSinValuesLUT[(left + right) / 2];
175 const short& cosCenter = m_HSCenterCosValuesLUT[(left + right) / 2];
176
177 for (int j = 0; j < 2; ++j) {
178
179 const uint lowerIndex = yIndexCache[j];
180 const uint upperIndex = yIndexCache[j + 1];
181
182 const uint localIndexY = lowerIndex;
183 const long& localUpperCoordinate = m_HSYLUT[lowerIndex];
184 const long& localLowerCoordinate = m_HSYLUT[upperIndex];
185
186 if (lowerIndex == upperIndex) continue;
187
188 std::vector<bool> layerHits(7); /* For layer filter */
189 containedHits.clear();
190 for (auto& hit : hits) {
191 const VxdID& sensor = hit.first;
192
193 const long& m = hit.second.first;
194 const long& a = hit.second.second;
195
196 long yLeft = m * cosLeft + a * sinLeft;
197 long yRight = m * cosRight + a * sinRight;
198 long yCenter = m * cosCenter + a * sinCenter;
199 long derivativeyLeft = m * -sinLeft + a * cosLeft;
200 long derivativeyRight = m * -sinRight + a * cosRight;
201 long derivativeyCenter = m * -sinCenter + a * cosCenter;
202
203 // Only interested in the rising arm of the sinosoidal curves.
204 // Thus if derivative on both sides of the cell is negative, ignore and continue.
205 if (derivativeyLeft < 0 and derivativeyRight < 0 and derivativeyCenter < 0) continue;
206
207 /* Check if HS-parameter curve is inside (or outside) actual sub-HS */
208 if ((yLeft <= localUpperCoordinate and yRight >= localLowerCoordinate) or
209 (yCenter <= localUpperCoordinate and yLeft >= localLowerCoordinate and yRight >= localLowerCoordinate) or
210 (yCenter >= localLowerCoordinate and yLeft <= localUpperCoordinate and yRight <= localUpperCoordinate)) {
211 layerHits[sensor.getLayerNumber()] = true; /* layer filter */
212 containedHits.emplace_back(hit);
213 }
214 }
215
216 if (layerFilter(layerHits) > 0) {
217 // recursive call of fastInterceptFinder2d, until currentRecursion == m_maxRecursionLevel
218 if (currentRecursion < m_param_maxRecursionLevel) {
219
221 m_rectoutstream << "set object " << m_rectcounter << " rect from " << localLeft << ", " << localLowerCoordinate <<
222 " to " << localRight << ", " << localUpperCoordinate << " fc rgb \"" <<
223 m_const_rectColor[currentRecursion % 8] << "\" fs solid 0.5 behind" << std::endl;
225 }
226
227 fastInterceptFinder2d(containedHits, left, right, lowerIndex, upperIndex, currentRecursion + 1);
228
229 } else {
230 m_SectorArray[localIndexY * m_param_nAngleSectors + localIndexX] = -layerFilter(layerHits);
231 m_activeSectorArray.push_back(std::make_pair(localIndexX, localIndexY));
232
234 m_rectoutstream << "set object " << m_rectcounter << " rect from " << localLeft << ", " << localLowerCoordinate <<
235 " to " << localRight << ", " << localUpperCoordinate << " fc rgb \"" <<
236 m_const_rectColor[currentRecursion % 8] << "\" fs solid 0.5 behind" << std::endl;
238 }
239
240 }
241 }
242 }
243 }
244}
245
247{
248 // cell content meanings:
249 // -3, -4 : active sector, not yet visited
250 // 0 : non-active sector (will never be visited, only checked)
251 // 1,2,3...: index of the clusters
252
253 m_clusterCount = 1;
254
255 // this sorting makes sure the clusters can be searched from bottom left of the HS to top right
256 // normally, a C++ array looks like a matrix:
257 // (0 , 0) ... (maxX, 0 )
258 // ... ...
259 // (0, maxY) ... (maxX, maxY)
260 // but for sorting we want it to be like regular coordinates
261 // (0, maxY) ... (maxX, maxY)
262 // ... ...
263 // (0, 0 ) ... (maxX, 0 )
264 // By setting the offset to the maximum allowed number of cells (2^14) and simplifying
265 // (16384 - a.second) * 16384 + a.first < (16384 - b.second) * 16384 + b.first
266 // we get the formula below
267 auto sortSectors = [](const std::pair<uint, uint> a, const std::pair<uint, uint> b) {
268 return ((int)b.second - (int)a.second) * 16384 < (int)b.first - (int)a.first;
269 };
270 std::sort(m_activeSectorArray.begin(), m_activeSectorArray.end(), sortSectors);
271
272 for (const auto& currentCell : m_activeSectorArray) {
273 const uint currentIndex = currentCell.second * m_param_nAngleSectors + currentCell.first;
274 if (m_SectorArray[currentIndex] > -1) continue;
275
276 m_clusterInitialPosition = currentCell;
277 m_clusterCoG = currentCell;
278 m_clusterSize = 1;
279 m_SectorArray[currentIndex] = m_clusterCount;
280 // Check for HS sectors connected to each other which could form a cluster
281 DepthFirstSearch(currentCell.first, currentCell.second);
282 // if cluster valid (i.e. not too small and not too big): finalize!
284 double CoGX = (((double)m_clusterCoG.first / (double)m_clusterSize) + 0.5) * m_unitX + m_param_minimumX;
285 if (not m_param_isUFinder) {
286 CoGX = atan(tan(m_param_minimumX) + m_unitX * (((double)m_clusterCoG.first / (double)m_clusterSize) + 0.5));
287 }
288 double CoGY = m_param_verticalHoughSpaceSize - ((double)m_clusterCoG.second / (double)m_clusterSize - 0.5) * m_unitY;
289
290 if (m_param_isUFinder) {
291 // Angle from Hough space only yields phi-pi/2, so adjust for this and make sure phi still is in -pi...+pi
292 double trackPhi = CoGX + M_PI_2;
293 if (trackPhi < -M_PI) trackPhi += 2 * M_PI;
294 if (trackPhi > M_PI) trackPhi -= 2 * M_PI;
295
296 // 1./CoGY * 1e10 yields trackRadius in mm. To convert to µm, which all other values are in,
297 // multiplication by another 1e3 is required -> total of 1e13
298 double trackRadius = 1. / CoGY * 1e+13;
299
300 m_trackCandidates.emplace_back(std::make_pair(trackPhi, trackRadius));
301 } else {
302 m_trackCandidates.emplace_back(std::make_pair(CoGX, CoGY));
303 }
304 B2DEBUG(29, "m_clusterCoG.first: " << m_clusterCoG.first << " " << ((double)m_clusterCoG.first / (double)m_clusterSize) <<
305 " m_clusterCoG.second: " << m_clusterCoG.second << " " << ((double)m_clusterCoG.second / (double)m_clusterSize) <<
306 " CoGX: " << CoGX << " CoGY: " << CoGY);
307
309 m_cogoutstream << CoGX << " " << CoGY << std::endl;
310 }
311 }
313 }
314}
315
316void FastInterceptFinder2DFPGA::DepthFirstSearch(uint lastIndexX, uint lastIndexY)
317{
319
320 for (uint currentIndexY = lastIndexY; currentIndexY >= lastIndexY - 1; currentIndexY--) {
321 if (abs((int)m_clusterInitialPosition.second - (int)currentIndexY) >= m_param_MaximumHSClusterSizeY or
323 for (uint currentIndexX = lastIndexX; currentIndexX <= lastIndexX + 1; currentIndexX++) {
324 if (abs((int)m_clusterInitialPosition.first - (int)currentIndexX) >= m_param_MaximumHSClusterSizeX or
326
327 // The cell (currentIndexX, currentIndexY) is the current one has already been checked, so continue
328 if (lastIndexX == currentIndexX && lastIndexY == currentIndexY) continue;
329
330 // first check bounds to avoid out-of-bound array access
331 // as they are uints, they are always >= 0, and in case of an overflow they would be too large
332 if (currentIndexX < m_param_nAngleSectors and currentIndexY < m_param_nVerticalSectors) {
333
334 if (m_SectorArray[currentIndexY * m_param_nAngleSectors + currentIndexX] < 0 /*and m_clusterSize < m_MaximumHSClusterSize*/) {
335 // Only continue searching if the current cluster is smaller than the maximum cluster size
336 m_SectorArray[currentIndexY * m_param_nAngleSectors + currentIndexX] = m_clusterCount;
337 m_clusterCoG = std::make_pair(m_clusterCoG.first + currentIndexX, m_clusterCoG.second + currentIndexY);
339 // search in the next Hough Space cells...
340 DepthFirstSearch(currentIndexX, currentIndexY);
341 }
342
343 }
344 }
345 }
346}
347
348void FastInterceptFinder2DFPGA::gnuplotoutput(const std::vector<std::pair<VxdID, std::pair<long, long>>>& hits)
349{
350 std::ofstream hsoutstream;
351 hsoutstream.open(m_param_gnuplotHSOutputFileName.c_str(), std::ios::trunc);
352
353 hsoutstream << "set pointsize 1.5\nset style line 42 lc rgb '#0060ad' pt 7 # circle" << std::endl;
354
355 hsoutstream << "set style line 80 lt rgb \"#808080\"" << std::endl;
356 hsoutstream << "set style line 81 lt 0" << std::endl;
357 hsoutstream << "set style line 81 lt rgb \"#808080\"" << std::endl << std::endl;
358
359 hsoutstream << "set style line 1 lt rgb \"#A00000\" lw 1 pt 1" << std::endl;
360 hsoutstream << "set style line 2 lt rgb \"#00A000\" lw 1 pt 6" << std::endl;
361 hsoutstream << "set style line 3 lt rgb \"#000000\" lw 1 pt 6" << std::endl;
362
363 hsoutstream << "set style line 3 lt rgb 'black' lw 1 pt 6" << std::endl;
364 hsoutstream << "set style line 4 lt rgb 'blue' lw 1 pt 6" << std::endl;
365 hsoutstream << "set style line 5 lt rgb 'green' lw 1 pt 6" << std::endl;
366 hsoutstream << "set style line 6 lt rgb 'red' lw 1 pt 6" << std::endl;
367
368 hsoutstream << "# Description position\nset key top right" << std::endl << std::endl;
369 hsoutstream << "# Grid and border style\nset grid back linestyle 81\nset border 3 back linestyle 80" << std::endl << std::endl;
370
371 hsoutstream << "# No mirrors\nset xtics nomirror\nset ytics nomirror" << std::endl << std::endl;
372 hsoutstream << "# Encoding\nset encoding utf8" << std::endl << std::endl;
373 hsoutstream << "set xlabel \"x\"\nset ylabel \"y\"" << std::endl << std::endl;
374
375 hsoutstream << "set xrange [-pi-0.5:pi+0.5]" << std::endl << std::endl;
376
377 hsoutstream << "load '" << m_param_gnuplotHSRectOutputFileName << "'" << std::endl << std::endl;
378
379 uint count = 0;
380 for (auto& hit : hits) {
381 const VxdID& id = hit.first;
382 int layer = id.getLayerNumber();
383 // Multiplication with 1000 is necessary, as in the actual intercept finding step, cos and sin are multiplied by 1000, too.
384 // To directly compare the information in the gnuplot HoughSpace, just multiply by 1000 here instead of adding another
385 // '1000 * ' when writing to the gnuplot debug file.
386 const long xc = 1000 * hit.second.first;
387 const long yc = 1000 * hit.second.second;
388
389 // only plot when derivative is positive
390 hsoutstream << "plot " << xc << " * -sin(x) + " << yc << " * cos(x) > 0 ? " << xc << " * cos(x) + " << yc <<
391 " * sin(x) : 1/0 notitle linestyle " << layer << " # " << id << std::endl;
392 if (count < hits.size() - 1) hsoutstream << "re";
393 count++;
394 }
395
396 hsoutstream << std::endl;
397 hsoutstream << "replot '" << m_param_gnuplotHSCoGOutputFileName << "' u 1:2 w p ls 42 notitle" << std::endl << std::endl;
398 hsoutstream << "pause -1" << std::endl;
399 hsoutstream.close();
400}
std::vector< int > m_SectorArray
vector containing only the 1D representation of active cells to speed up processing
uint m_param_MinimumHSClusterSize
minimum cluster size of sectors belonging to intercepts in the Hough Space
void gnuplotoutput(const std::vector< std::pair< VxdID, std::pair< long, long > > > &hits)
gnuplot output for debugging
const std::string m_const_rectColor[8]
color definition for the sector debug output
void FindHoughSpaceCluster()
Find Hough Space clusters.
double m_param_maximumX
maximum x value of the Hough Space, defaults to the value for u-side
uint m_clusterSize
size of the current cluster
void fastInterceptFinder2d(const std::vector< std::pair< VxdID, std::pair< long, long > > > &hits, uint xmin, uint xmax, uint ymin, uint ymax, uint currentRecursion)
find intercepts in the 2D Hough Space by recursively calling itself until no hits are assinged to a g...
void initialize() override
Create the store arrays.
std::array< long, 16385 > m_HSYLUT
y values of the Hough Space sector boarders
std::array< double, 16385 > m_HSXLUT
x values of the Hough Space sector boarders
std::vector< std::pair< double, double > > m_trackCandidates
vector containing track candidates, consisting of the found intersection values in the Hough Space
std::string m_param_gnuplotHSRectOutputFileName
gnuplot HS sector output filename
uint m_param_nVerticalSectors
number of sectors of the Hough Space on the vertical axis
bool m_param_isUFinder
Is this the intercept finder for the u-side hits (r-phi) or v-side (r-z)?
long m_param_verticalHoughSpaceSize
vertical size of the Hough Space, defaults to the value for u-side
std::array< long, 16385 > m_HSCosValuesLUT
cosine values of the Hough Space sector boarder coordinates
void DepthFirstSearch(uint lastIndexX, uint lastIndexY)
Perform depth first search recursive algorithm to find clusters in the Hough Space.
std::array< long, 16385 > m_HSSinValuesLUT
Look-Up-Tables for values as cache to speed up calculation sine values of the Hough Space sector boar...
std::array< long, 16384 > m_HSCenterCosValuesLUT
cosine values of the Hough Space sector center coordinates
uint m_param_maxRecursionLevel
maximum number of recursive calls of fastInterceptFinder2d
std::ofstream m_rectoutstream
HS sector debug file.
std::ofstream m_cogoutstream
HS CoG debug file.
void apply(const std::vector< std::pair< VxdID, std::pair< long, long > > > &hits, std::vector< std::pair< double, double > > &tracks) override
Load in the prepared hits and create tracks for extrapolation to PXD.
std::pair< int, int > m_clusterCoG
center of gravity containing describing the current best track parameters in the Hough Space
double m_param_minimumX
minimum x value of the Hough Space, defaults to the value for u-side
uint m_param_nAngleSectors
number of sectors of the Hough Space on the horizontal axis
std::string m_param_gnuplotHSOutputFileName
gnuplot HS output filename
std::vector< std::pair< uint, uint > > m_activeSectorArray
vector containing information for each cell whether it contained enough hits after m_maxRecursionLeve...
std::array< long, 16384 > m_HSYCenterLUT
y values of the Hough Space sector centers
uint m_param_MaximumHSClusterSizeX
maximum cluster size in x of sectors belonging to intercepts in the Hough Space
std::string m_param_gnuplotHSCoGOutputFileName
gnuplot HS sector output filename
uint m_param_MaximumHSClusterSize
maximum cluster size of sectors belonging to intercepts in the Hough Space
bool m_param_writeGnuplotOutput
use gnuplot output?
unsigned short layerFilter(std::vector< bool > layer)
Layer filter, checks if at least hits from 3 layers are in a set of hits.
FastInterceptFinder2DFPGA()
Find intercepts in the 2D Hough space.
uint m_rectcounter
count HS debug rectangles
void exposeParameters(ModuleParamList *moduleParamList, const std::string &prefix) override
Expose the parameters of the sub findlets.
std::array< double, 16384 > m_HSXCenterLUT
x values of the Hough Space sector centers
std::pair< int, int > m_clusterInitialPosition
start cell of the recursive cluster finding in the Hough Space
uint m_param_MaximumHSClusterSizeY
maximum cluster size in y of sectors belonging to intercepts in the Hough Space
std::array< long, 16384 > m_HSCenterSinValuesLUT
sine values of the Hough Space sector center coordinates
The Module parameter list class.
void initialize() override
Receive and dispatch signal before the start of the event processing.
virtual void exposeParameters(ModuleParamList *moduleParamList, const std::string &prefix)
Forward prefixed parameters of this findlet to the module parameter list.
Definition: Findlet.h:69
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
void addParameter(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module list.
double atan(double a)
atan for double
Definition: beamHelpers.h:34
long convertFloatToInt(double value, int power)
Convert float or double to long int for more similarity to the FPGA implementation.
Definition: DATCONHelpers.h:21
Abstract base class for different kinds of events.