Belle II Software development
GRLMLP.h
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#ifndef GRLMLP_H
10#define GRLMLP_H
11
12#include <TObject.h>
13#include <framework/logging/Logger.h>
14
15namespace Belle2 {
21 class GRLMLP : public TObject {
22
23 // weights etc. are set only by the trainer
24 friend class GRLNeuroTrainerModule;
25
26 public:
28 GRLMLP();
29
31 GRLMLP(std::vector<unsigned short>& nodes, unsigned short targets, const std::vector<float>& outputscale);
32
34 ~GRLMLP() { }
35
37 bool isTrained() const { return m_trained; }
39 unsigned getNumberOfLayers() const { return m_nNodes.size(); }
41 unsigned getNumberOfNodesLayer(unsigned iLayer) const { return m_nNodes[iLayer]; }
43 unsigned getNumberOfWeights() const { return m_weights.size(); }
45 unsigned nWeightsCal() const;
47 unsigned nBiasCal() const;
49 std::vector<float> getWeights() const { return m_weights; }
51 std::vector<float> getBias() const { return m_bias; }
53 void setWeights(std::vector<float>& weights) { m_weights = weights; }
55 void setBias(std::vector<float>& bias) { m_bias = bias; }
56
58 void Trained(bool trained) { m_trained = trained; }
59
60 private:
62 std::vector<unsigned short> m_nNodes;
64 std::vector<float> m_weights;
66 std::vector<float> m_bias;
70
72 unsigned short m_targetVars;
75 std::vector<float> m_outputScale;
76
79 };
81}
82#endif
Class to keep all parameters of an expert MLP for the neuro trigger.
Definition: GRLMLP.h:21
std::vector< float > m_weights
Weights of the network.
Definition: GRLMLP.h:64
GRLMLP()
default constructor.
Definition: GRLMLP.cc:14
unsigned nWeightsCal() const
calculate number of weights from number of nodes
Definition: GRLMLP.cc:32
bool isTrained() const
check if weights are default values or set by some trainer
Definition: GRLMLP.h:37
unsigned getNumberOfLayers() const
get number of layers
Definition: GRLMLP.h:39
std::vector< float > getBias() const
get bias vector
Definition: GRLMLP.h:51
std::vector< float > m_outputScale
Output[i] of the MLP is scaled from [-1, 1] to [outputScale[2i], outputScale[2i+1]].
Definition: GRLMLP.h:75
unsigned getNumberOfWeights() const
get number of weights from length of weights vector
Definition: GRLMLP.h:43
void Trained(bool trained)
check if weights are default values or set by some trainer
Definition: GRLMLP.h:58
ClassDef(GRLMLP, 2)
Needed to make the ROOT object storable.
std::vector< unsigned short > m_nNodes
Number of nodes in each layer, not including bias nodes.
Definition: GRLMLP.h:62
void setWeights(std::vector< float > &weights)
set weights vector
Definition: GRLMLP.h:53
std::vector< float > m_bias
bias of the network.
Definition: GRLMLP.h:66
void setBias(std::vector< float > &bias)
set bias vector
Definition: GRLMLP.h:55
unsigned getNumberOfNodesLayer(unsigned iLayer) const
get number of nodes in a layer
Definition: GRLMLP.h:41
unsigned nBiasCal() const
calculate number of weights from number of nodes
Definition: GRLMLP.cc:45
unsigned short m_targetVars
output variables: 1: z, 2: theta, 3: (z, theta)
Definition: GRLMLP.h:72
std::vector< float > getWeights() const
get weights vector
Definition: GRLMLP.h:49
~GRLMLP()
destructor, empty because we don't allocate memory anywhere.
Definition: GRLMLP.h:34
bool m_trained
Indicator whether the weights are just default values or have been set by some trainer (set to true w...
Definition: GRLMLP.h:69
The trainer module for the neural networks of the CDC trigger.
Abstract base class for different kinds of events.