14#include <G4LogicalVolume.hh>
15#include <G4PVPlacement.hh>
16#include <G4LogicalSkinSurface.hh>
17#include <G4OpticalSurface.hh>
20#include <G4SubtractionSolid.hh>
21#include <G4Material.hh>
25#include <arich/geometry/GeoARICHBtestCreator.h>
26#include <arich/geometry/ARICHGeometryPar.h>
27#include <arich/geometry/ARICHBtestGeometryPar.h>
29#include <geometry/Materials.h>
30#include <geometry/CreatorFactory.h>
31#include <geometry/utilities.h>
32#include <framework/gearbox/GearDir.h>
33#include <framework/gearbox/Unit.h>
34#include <framework/logging/Logger.h>
36#include <framework/datastore/StoreObjPtr.h>
37#include <framework/dataobjects/EventMetaData.h>
39#include <arich/simulation/SensitiveDetector.h>
40#include <arich/simulation/SensitiveAero.h>
58 geometry::CreatorFactory<GeoARICHBtestCreator> GeoARICHBtestFactory(
"ARICHBtestCreator");
88 B2INFO(
"GeoARICHBtestCreator::create");
93 PyObject* m = PyImport_AddModule(strdup(
"__main__"));
96 PyObject* v = PyObject_GetAttrString(m, strdup(
"runno"));
98 run = PyLong_AsLong(v);
101 B2INFO(
"GeoARICHBtestCreator::create runno = " << run);
104 B2INFO(
"eventMetaDataPtr run:" << run);
110 string Type = content.getString(
"@type",
"");
113 sprintf(nodestr,
"run[runno=%d]", run);
114 if (Type ==
"beamtest") {
115 for (
const GearDir& runparam : content.getNodes(nodestr)) {
116 m_runno = runparam.getInt(
"runno", -1);
117 m_author = runparam.getString(
"author",
"");
118 m_neve = runparam.getInt(
"neve", -1);
119 m_runtype = runparam.getString(
"calibration",
"pion");
120 m_hapdID = runparam.getString(
"setup1",
"unknown");
121 m_aerogelID = runparam.getString(
"aerogel1",
"unknown");
122 m_mirrorID = runparam.getString(
"mirror",
"unknown");
123 m_rotation = runparam.getDouble(
"rotation", 0);
124 m_rx = runparam.getDouble(
"positionx", 0);
125 m_ry = runparam.getDouble(
"positiony", 0);
126 m_mytype = runparam.getString(
"type1",
"unknown");
127 m_daqqa = runparam.getString(
"daqqa1",
"unknown");
128 m_comment = runparam.getString(
"comment1",
"unknown");
129 m_datum = runparam.getString(
"datum",
"unknown");
134 B2INFO(
"neve : " <<
m_neve);
140 B2INFO(
"rx : " <<
m_rx);
141 B2INFO(
"ry : " <<
m_ry);
150 sprintf(nodestr,
"setup/aerogel/row[@id=\"%s\"]",
m_aerogelID.c_str());
152 GearDir runparam(content, nodestr);
153 B2INFO(
"id : " << runparam.
getString(
"@id",
""));
155 aerogelname = aeroparam.getString(
".",
"");
156 string stype = aeroparam.getString(
"@type",
"");
157 B2INFO(stype <<
" aerogelname : " << aerogelname);
158 sprintf(nodestr,
"setup/aerogelinfo/row[@id=\"%s\"]", aerogelname.c_str());
159 GearDir infoparam(content, nodestr);
161 double agelrefind = infoparam.
getDouble(
"refind", 1);
162 double ageltrlen = infoparam.
getLength(
"trlen", 0);
163 double agelthickness = infoparam.
getLength(
"thickness", 0);
164 if (stype !=
string(
"left")) {
169 B2INFO(
"refind : " << agelrefind);
170 B2INFO(
"trlen : " << ageltrlen /
Unit::mm);
171 B2INFO(
"thickness : " << agelthickness /
Unit::mm);
178 char agelsupport =
m_hapdID.at(size - 1);
184 sprintf(nodestr,
"setup/hapd/row[@id=\"%s\"]",
m_hapdID.substr(0, size).c_str());
185 B2INFO(
"nodestr : " << nodestr);
187 GearDir hapdparam(content, nodestr);
203 GearDir setup(content,
"setup");
211 G4MaterialPropertiesTable* mTable = material->GetMaterialPropertiesTable();
212 if (!mTable)
return 0;
213 G4MaterialPropertyVector* mVector = mTable->GetProperty(
"RINDEX");
214 if (!mVector)
return 0;
225 string wallMat =
Module.getString(
"wallMaterial");
226 string winMat =
Module.getString(
"windowMaterial");
227 string botMat =
Module.getString(
"Bottom/material");
235 if (!wref) B2WARNING(
"Material '" << winMat <<
236 "', required for ARICH photon detector window as no specified refractive index. Continuing, but no photons in ARICH will be detected.");
242 double wallThick =
Module.getLength(
"moduleWallThickness") /
Unit::mm;
243 double winThick =
Module.getLength(
"windowThickness") /
Unit::mm ;
245 double botThick =
Module.getLength(
"Bottom/thickness") /
Unit::mm;
248 if (sensXsize > modXsize - 2 * wallThick)
249 B2FATAL(
"ARICH photon detector module: Sensitive surface is too big. Doesn't fit into module box.");
250 if (winThick + botThick > modZsize)
251 B2FATAL(
"ARICH photon detector module: window + bottom thickness larger than module thickness.");
254 G4Box* moduleBox =
new G4Box(
"Box", modXsize / 2., modXsize / 2., modZsize / 2.);
255 G4LogicalVolume* lmoduleBox =
new G4LogicalVolume(moduleBox, boxFill,
"moduleBox");
258 G4Box* tempBox =
new G4Box(
"tempBox", modXsize / 2. - wallThick, modXsize / 2. - wallThick,
259 modZsize / 2. + 0.1);
260 G4SubtractionSolid* moduleWall =
new G4SubtractionSolid(
"Box-tempBox", moduleBox, tempBox);
261 G4LogicalVolume* lmoduleWall =
new G4LogicalVolume(moduleWall, wallMaterial,
"moduleWall");
262 setColor(*lmoduleWall,
"rgb(1.0,0.0,0.0,1.0)");
263 new G4PVPlacement(G4Transform3D(), lmoduleWall,
"moduleWall", lmoduleBox,
false, 1);
266 G4Box* winBox =
new G4Box(
"winBox", modXsize / 2. - wallThick, modXsize / 2. - wallThick, winThick / 2.);
267 G4LogicalVolume* lmoduleWin =
new G4LogicalVolume(winBox, windowMaterial,
"moduleWindow");
268 setColor(*lmoduleWin,
"rgb(0.7,0.7,0.7,1.0)");
269 G4Transform3D transform = G4Translate3D(0., 0., (-modZsize + winThick) / 2.);
270 new G4PVPlacement(transform, lmoduleWin,
"moduleWindow", lmoduleBox,
false, 1);
273 G4Box* botBox =
new G4Box(
"botBox", modXsize / 2. - wallThick, modXsize / 2. - wallThick, botThick / 2.);
274 G4LogicalVolume* lmoduleBot =
new G4LogicalVolume(botBox, bottomMaterial,
"moduleBottom");
276 setColor(*lmoduleBot,
"rgb(0.0,1.0,0.0,1.0)");
277 G4Transform3D transform1 = G4Translate3D(0., 0., (modZsize - botThick) / 2.);
283 new G4LogicalSkinSurface(
"bottomSurface", lmoduleBot, optSurf);
284 }
else B2INFO(
"ARICH: No optical properties are specified for detector module bottom surface.");
285 new G4PVPlacement(transform1, lmoduleBot,
"moduleBottom", lmoduleBox,
false, 1);
288 G4Box* sensBox =
new G4Box(
"sensBox", sensXsize / 2., sensXsize / 2., 0.1 *
Unit::mm);
289 G4LogicalVolume* lmoduleSens =
new G4LogicalVolume(sensBox, boxFill,
"moduleSensitive");
291 setColor(*lmoduleSens,
"rgb(0.5,0.5,0.5,1.0)");
292 G4Transform3D transform2 = G4Translate3D(0., 0., (-modZsize + 0.1) / 2. + winThick);
293 new G4PVPlacement(transform2, lmoduleSens,
"moduleSensitive", lmoduleBox,
false, 1);
304 G4double density = (RefractiveIndex - 1) / 0.21 * CLHEP::g / CLHEP::cm3;
305 B2INFO(
"Creating ARICH " << aeroname <<
" n=" << RefractiveIndex <<
" density=" << density / CLHEP::g * CLHEP::cm3 <<
" g/cm3");
307 G4Material* _aerogel =
new G4Material(aeroname, density, 4);
308 _aerogel->AddElement(materials.
getElement(
"O"), 0.665);
309 _aerogel->AddElement(materials.
getElement(
"H"), 0.042);
310 _aerogel->AddElement(materials.
getElement(
"Si"), 0.292);
311 _aerogel->AddElement(materials.
getElement(
"C"), 0.001);
314 const G4double AerogelAbsorbtionLength = 1000 *
Unit::mm;
316 const G4int NBins = 40;
317 G4double MomentumBins[NBins];
319 G4double AerogelRindex[NBins];
320 G4double AerogelAbsorption[NBins];
321 G4double AerogelRayleigh[NBins];
323 G4double MaxPhotonEnergy = 5 * CLHEP::eV;
324 G4double MinPhotonEnergy = 1.5 * CLHEP::eV;
326 for (G4int i = 0; i < NBins; i++) {
328 const G4double energy = float(i) / NBins * (MaxPhotonEnergy - MinPhotonEnergy) + MinPhotonEnergy;
330 MomentumBins[i] = energy;
331 AerogelRindex[i] = RefractiveIndex;
332 AerogelAbsorption[i] = AerogelAbsorbtionLength;
334 const G4double Lambda0 = 400 * 1e-6 * CLHEP::mm;
335 const G4double Lambda = 1240 * CLHEP::eV / energy * 1e-6 * CLHEP::mm;
336 G4double x = Lambda / Lambda0;
337 AerogelRayleigh[i] = AerogelTransmissionLength * x * x * x * x;
341 G4MaterialPropertiesTable* AeroProperty =
new G4MaterialPropertiesTable();
342 AeroProperty->AddProperty(
"RINDEX", MomentumBins, AerogelRindex, NBins);
343 AeroProperty->AddProperty(
"ABSLENGTH", MomentumBins, AerogelAbsorption, NBins);
344 AeroProperty->AddProperty(
"RAYLEIGH", MomentumBins, AerogelRayleigh, NBins);
347 _aerogel->SetMaterialPropertiesTable(AeroProperty);
357 B2INFO(
"ARICH Btest geometry will be built.");
364 GearDir boxParams(content,
"ExperimentalBox");
371 double zoffset = boxParams.
getLength(
"beamcenter/z") * CLHEP::mm /
Unit::mm - zBox / 2.;
372 G4ThreeVector roffset(xoffset, yoffset, zoffset);
374 ROOT::Math::XYZVector sh(boxParams.
getLength(
"beamcenter/x"), boxParams.
getLength(
"beamcenter/y"),
378 string boxMat = boxParams.
getString(
"material");
380 G4Box* expBox =
new G4Box(
"ExperimentalBox", xBox / 2., yBox / 2., zBox / 2.);
381 G4LogicalVolume* topVolume =
new G4LogicalVolume(expBox, boxMaterial,
"ARICH.experimentalbox");
382 new G4PVPlacement(G4Transform3D(), topVolume,
"ARICH.experimentalbox", &topWorld,
false, 1);
385 ROOT::Math::XYZVector trackingshift(content.getLength(
"tracking/shift/x"),
386 content.getLength(
"tracking/shift/y"),
387 content.getLength(
"tracking/shift/z"));
390 sprintf(mnodestr,
"tracking/shift/run[@id=\"%d\"]",
m_runno);
391 if (content.exists(mnodestr)) {
392 GearDir runtrackingshift(content, mnodestr);
393 trackingshift.SetXYZ(runtrackingshift.
getLength(
"x"),
400 for (
const GearDir& mwpc : content.getNodes(
"tracking/mwpc")) {
401 double x = mwpc.getLength(
"size/x") * CLHEP::mm /
Unit::mm;
402 double y = mwpc.getLength(
"size/y") * CLHEP::mm /
Unit::mm;
403 double z = mwpc.getLength(
"size/z") * CLHEP::mm /
Unit::mm;
405 double px = mwpc.getLength(
"position/x") * CLHEP::mm /
Unit::mm;
406 double py = mwpc.getLength(
"position/y") * CLHEP::mm /
Unit::mm;
407 double pz = mwpc.getLength(
"position/z") * CLHEP::mm /
Unit::mm;
409 G4Box* mwpcBox =
new G4Box(
"MwpcBox", x / 2., y / 2., z / 2.);
410 G4LogicalVolume* mwpcVol =
new G4LogicalVolume(mwpcBox,
Materials::get(mwpc.getString(
"material")),
"ARICH.mwpc");
411 new G4PVPlacement(G4Transform3D(G4RotationMatrix(), G4ThreeVector(px, py, pz) + roffset), mwpcVol,
"ARICH.mwpc", topVolume,
false,
415 int id = mwpc.getInt(
"@id", -1);
416 B2INFO(
"GeoARICHBtestCreator::" <<
LogVar(
"MWPC ID",
id));
417 if (id < 4 && id >= 0) {
418 m_mwpc[id].
tdc[0] = mwpc.getInt(
"tdc/y/up");
419 m_mwpc[id].
tdc[1] = mwpc.getInt(
"tdc/y/down");
420 m_mwpc[id].
tdc[2] = mwpc.getInt(
"tdc/x/left");
421 m_mwpc[id].
tdc[3] = mwpc.getInt(
"tdc/x/right");
422 m_mwpc[id].
atdc = mwpc.getInt(
"tdc/anode", 0);
423 m_mwpc[id].
slp[0] = mwpc.getDouble(
"slope/x");
424 m_mwpc[id].
slp[1] = mwpc.getDouble(
"slope/y");
425 m_mwpc[id].
offset[0] = mwpc.getDouble(
"offset/x");
426 m_mwpc[id].
offset[1] = mwpc.getDouble(
"offset/y");
427 m_mwpc[id].
cutll[0] = mwpc.getInt(
"tdccut/y/min");
428 m_mwpc[id].
cutll[1] = mwpc.getInt(
"tdccut/x/min");
429 m_mwpc[id].
cutul[0] = mwpc.getInt(
"tdccut/y/max");
430 m_mwpc[id].
cutul[1] = mwpc.getInt(
"tdccut/x/max");
431 m_mwpc[id].
pos[0] = mwpc.getDouble(
"position/x");
432 m_mwpc[id].
pos[1] = mwpc.getDouble(
"position/y");
433 m_mwpc[id].
pos[2] = mwpc.getDouble(
"position/z");
440 istringstream mapstream;
442 mapstream.str(content.getString(
"hapdmap"));
443 while (mapstream >> mx >> my) {
450 mapstream.str(content.getString(
"hapdchmap"));
451 while (mapstream >> ipx >> ipy) {
456 GearDir frameParams(content,
"Frame");
460 string envMat = frameParams.
getString(
"material");
469 G4Box* envBox =
new G4Box(
"FrameBox", xFrame / 2., yFrame / 2., zFrame / 2.);
470 G4LogicalVolume* lenvBox =
new G4LogicalVolume(envBox, envMaterial,
"ARICH.frame");
471 G4ThreeVector frameOrigin0(
m_framedx + px, py, pz);
472 G4ThreeVector frameOrigin = frameOrigin0 + roffset;
473 G4RotationMatrix frameRotation;
474 frameRotation.rotateY(-
m_rotation1 * CLHEP::degree);
475 G4Transform3D frameTransformation = G4Transform3D(frameRotation, frameOrigin);
477 new G4PVPlacement(frameTransformation, lenvBox,
"ARICH.frame", topVolume,
false, 1);
480 ROOT::Math::XYZVector rotationCenter(frameOrigin0.x() *
Unit::mm / CLHEP::mm,
481 frameOrigin0.y() *
Unit::mm / CLHEP::mm,
482 frameOrigin0.z() *
Unit::mm / CLHEP::mm);
488 B2INFO(content.getPath());
490 GearDir hapdcontent(content, nodestr);
495 char mirrornodestr[256];
496 sprintf(mirrornodestr,
"Mirrors/setup[@id=\"%s\"]",
m_mirrorID.c_str());
498 GearDir mirrorcontent(content, mirrornodestr);
499 B2INFO(mirrorcontent.
getPath());
502 m_arichgp->
Initialize(hapdcontent, mirrorcontent);
505 GearDir moduleParam(hapdcontent,
"Detector/Module");
506 G4LogicalVolume* detModule =
buildModule(moduleParam);
508 double detZpos = hapdcontent.
getLength(
"Detector/Plane/zPosition") * CLHEP::mm /
Unit::mm;
509 double detThick = hapdcontent.
getLength(
"Detector/Module/moduleZSize") * CLHEP::mm /
Unit::mm;
512 for (
int i = 1; i <= nModules; i++) {
514 origin.setZ(detZpos + detThick / 2.);
518 G4Transform3D trans = G4Transform3D(Ra, origin);
519 new G4PVPlacement(G4Transform3D(Ra, origin), detModule,
"detModule", lenvBox,
false, i);
520 B2INFO(nodestr <<
"Module " << i <<
" is build ");
524 for (
const double& ch : hapdcontent.
getArray(
"HotChannels")) {
525 int channelID = (int) ch;
526 int moduleID = (npx) ? channelID / (npx * npx) : 0;
527 channelID %= (npx * npx);
528 m_arichgp->
setActive(moduleID, channelID,
false);
529 B2INFO(
"HotChannel " << ch <<
" : Module " << moduleID <<
"channelID " << channelID <<
" disabled");
532 for (
const double& ch : hapdcontent.
getArray(
"DeadChannels")) {
533 int channelID = (int) ch;
534 int moduleID = (npx) ? channelID / (npx * npx) : 0;
535 channelID %= (npx * npx);
536 m_arichgp->
setActive(moduleID, channelID,
false);
537 B2INFO(
"DeadChannel " << ch <<
" : Module " << moduleID <<
"channelID " << channelID <<
" disabled");
540 GearDir aerogelParam(content,
"Aerogel");
547 double meanrefind = 0;
548 double meantrlen = 0;
552 PyObject* m = PyImport_AddModule(strdup(
"__main__"));
556 PyObject* v = PyObject_GetAttrString(m, strdup(
"averageagel"));
558 averageagel = PyLong_AsLong(v);
561 B2INFO(
"Python averageagel = " << averageagel);
565 for (
unsigned int ilayer = 0; ilayer <
m_agelthickness.size(); ilayer++) {
567 sprintf(aeroname,
"Aerogel%u", ilayer + 1);
580 G4Box* tileBox =
new G4Box(
"tileBox", sizeX / 2., sizeY / 2., sizeZ / 2.);
581 G4LogicalVolume* lTile =
new G4LogicalVolume(tileBox, tileMaterial,
"Tile", 0, ilayer == 0 ?
m_sensitiveAero : 0);
582 setColor(*lTile,
"rgb(0.0, 1.0, 1.0,1.0)");
583 G4Transform3D trans = G4Translate3D(posX, posY, posZ + sizeZ / 2. - zFrame / 2.);
584 new G4PVPlacement(trans, lTile,
"ARICH.tile", lenvBox,
false, ilayer + 1);
588 B2INFO(
"Average aerogel will be used in the reconstruction ");
592 if (meantrlen > 0 && posZ > 0) meantrlen = 1 / meantrlen / posZ;
598 GearDir mirrorsParam(mirrorcontent,
"Mirrors");
602 string mirrMat = mirrorsParam.
getString(
"material");
604 G4Box* mirrBox =
new G4Box(
"mirrBox", thickness / 2., height / 2., width / 2.);
605 G4LogicalVolume* lmirror =
new G4LogicalVolume(mirrBox, mirrMaterial,
"mirror");
608 GearDir surface(mirrorsParam,
"Surface");
610 new G4LogicalSkinSurface(
"mirrorsSurface", lmirror, optSurf);
613 double xpos = mirror.getLength(
"xPos") * CLHEP::mm /
Unit::mm;
614 double ypos = mirror.getLength(
"yPos") * CLHEP::mm /
Unit::mm;
615 double zpos = mirror.getLength(
"zPos") * CLHEP::mm /
Unit::mm;
616 double angle = mirror.getAngle(
"angle") /
Unit::rad;
617 G4ThreeVector origin(xpos, ypos, zpos + width / 2. - zFrame / 2.);
620 G4Transform3D trans = G4Transform3D(Ra, origin);
621 new G4PVPlacement(G4Transform3D(Ra, origin), lmirror,
"ARICH.mirror", lenvBox,
false, iMirror);
625 m_arichbtgp->
Print();
The Class for ARICH Beamtest Geometry Parameters.
The Class for ARICH Geometry Parameters.
Beamtest ARICH Geometry Tracking Class.
float slp[2]
Calibration constants of the MWPC ( ) - slopes for x an y direction.
int cutll[2]
Cuts on the tdc sums - lower levels.
float pos[3]
MWPC chamber position.
int tdc[4]
TDC of the 4 cathode signals.
int atdc
TDC of the anode signal.
float offset[2]
Calibration constants of the MWPC - offsets for x an y direction.
int cutul[2]
Cuts on the tdc sums - upper levels.
GearDir is the basic class used for accessing the parameter store.
virtual std::string getString(const std::string &path="") const noexcept(false) override
Get the parameter path as a string.
Type-safe access to single objects in the data store.
static const double mm
[millimeters]
static const double rad
Standard of [angle].
static const double eV
[electronvolt]
static const double MeV
[megaelectronvolt]
std::string m_comment
comment in the runlog
double m_framedx
shift of the frame
int m_aerosupport
Type of aerogel support - not used at the moment.
std::string m_aerogelID
ID of the aerogel configuration setup.
double m_rotation1
rotation angle of the frame
std::string m_runtype
Type of the beamtest run.
std::vector< double > m_agelrefind
vector of aerogel refractive indices
std::string m_comment1
tbc
void createBtestGeometry(const GearDir &content, G4LogicalVolume &topVolume)
Creation of the beamtest geometry.
int m_runno
Beamtest Run number.
std::string m_mytype
type of the run
G4Material * createAerogel(const char *aeroname, double rind, double trl)
create aerogel material
double m_ry
y shift of the prototype ARICH frame
std::vector< double > m_ageltrlen
vector of aerogel transmission lengths
virtual ~GeoARICHBtestCreator()
The destructor of the GeoPXDCreator class.
G4LogicalVolume * buildModule(GearDir Module)
Build the module.
double getAvgRINDEX(G4Material *material)
Get the average refractive index if the material.
std::string m_mirrorID
ID of the mirror configuration setup.
virtual void create(const GearDir &content, G4LogicalVolume &topVolume, geometry::GeometryTypes type)
Creates the ROOT Objects for the ARICH Beamtest 2011 geometry.
double m_aerogeldx
shift of the aerogel center
std::string m_datum
datum of the runlog
SensitiveAero * m_sensitiveAero
pointer to the sesnitive aerogel
std::string m_author
Beamtest runlog record author.
GeoARICHBtestCreator()
Constructor of the GeoPXDCreator class.
std::string m_daqqa
classification of the run
std::string m_hapdID
ID of the HAPD configuration setup.
std::vector< double > m_agelthickness
vector of aerogel thicknesses
double m_rotation
rotation angle of the setup
SensitiveDetector * m_sensitive
pointer to the sensitive detector
double m_rx
x shift of the prototype ARICH frame
int m_neve
Number of event in the beamtest run.
int m_configuration
configuration number of the HAPD
This is optional (temporary) class that provides information on track parameters on aerogel plane,...
The Class for ARICH Sensitive Detector.
std::vector< double > getArray(const std::string &path) const noexcept(false)
Get the parameter path as a list of double values converted to the standard unit.
double getDouble(const std::string &path="") const noexcept(false)
Get the parameter path as a double.
std::string getPath() const
Return path of the current interface.
double getLength(const std::string &path="") const noexcept(false)
Get the parameter path as a double converted to the standard length unit.
std::vector< GearDir > getNodes(const std::string &path="") const
Get vector of GearDirs which point to all the nodes the given path evaluates to.
int getInt(const std::string &path="") const noexcept(false)
Get the parameter path as a int.
Thin wrapper around the Geant4 Material system.
static G4Material * get(const std::string &name)
Find given material.
static Materials & getInstance()
Get a reference to the singleton instance.
G4OpticalSurface * createOpticalSurface(const gearbox::Interface ¶meters)
Create an optical surface from parameters, will abort on error.
G4Element * getElement(const std::string &name)
Find given chemical element.
Class to store variables with their name which were sent to the logging service.
void setOffset(const ROOT::Math::XYZVector &)
Set of the setup global offset.
int getDetectorXPadNumber()
get number of pads of detector module (in one direction)
void setAeroTransLength(int ilayer, double trlen)
set transmission length of "ilayer" aerogel layer
int AddHapdElectronicMapPair(int, int)
Set the mapping of the electronic channel to the HAPD module nr and the channel number.
void setRotationCenter(const ROOT::Math::XYZVector &)
Set the rotation center of the Aerogel RICH frame.
void setAerogelThickness(int ilayer, double thick)
set thickness of "ilayer" aerogel layer
void setTrackingShift(const ROOT::Math::XYZVector &)
Set the tracking shift.
double getSensitiveSurfaceSize() const
get size of detector sensitive surface (size of two chips + gap between)
bool getAverageAgel()
Get the flag for the reconstruction by using the average aerogel refractive index.
void setFrameRotation(double)
Set the rotation angle of the Aerogel RICH frame.
void setMwpc(ARICHTracking *m_mwpc)
Set the pointer of the tracking MWPCs.
void Initialize(const GearDir &content)
calculates detector parameters needed for geometry build and reconstruction.
void setAerogelZPosition(int ilayer, double zPos)
set z position of "ilayer" aerogel layer
static ARICHBtestGeometryPar * Instance()
Static method to get a reference to the ARICHBtestGeometryPar instance.
void Print(void) const
Print some debug information.
static ARICHGeometryPar * Instance()
Static method to get a reference to the ARICHGeometryPar instance.
void setAeroRefIndex(int ilayer, double n)
set refractive index of "ilayer" aerogel layer
double getModAngle(int copyno)
get the angle of copyno-th HAPD rotation
G4ThreeVector getOriginG4(int copyNo)
get the position of copyNo-th HAPD module origin (returns G4ThreeVector)
void setAverageAgel(bool)
Set the flag for the reconstruction by using the average aerogel refractive index.
int getNMCopies() const
get the total number of HAPD modules
void setActive(int module, int channel, bool val)
set the channel on/off
int AddHapdChannelPositionPair(double, double)
Set the position of the HAPD channel.
void setWindowRefIndex(double refInd)
set detector module window refractive index
Common code concerning the geometry representation of the detector.
void setVisibility(G4LogicalVolume &volume, bool visible)
Helper function to quickly set the visibility of a given volume.
void setColor(G4LogicalVolume &volume, const std::string &color)
Set the color of a logical volume.
GeometryTypes
Flag indicating the type of geometry to be used.
Abstract base class for different kinds of events.