Belle II Software development
PXDDataMCGainCalibrationAlgorithm.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <pxd/calibration/PXDDataMCGainCalibrationAlgorithm.h>
10#include <pxd/dbobjects/PXDClusterChargeMapPar.h>
11#include <pxd/dbobjects/PXDGainMapPar.h>
12
13#include <string>
14#include <algorithm>
15#include <map>
16#include <set>
17
18#include <sstream>
19#include <iostream>
20
21#include <boost/format.hpp>
22#include <cmath>
23
24
25//ROOT
26#include <TRandom.h>
27#include <TF1.h>
28#include <TH2I.h>
29#include <TCanvas.h>
30
31using namespace std;
32using boost::format;
33using namespace Belle2;
34
35
36// Anonymous namespace for data objects used by PXDDataMCGainCalibrationAlgorithm class
37namespace {
38
40 int m_signal;
42 int m_run;
44 int m_exp;
45
47 void getNumberOfBins(const std::shared_ptr<TH1I>& histo_ptr, unsigned short& nBinsU, unsigned short& nBinsV)
48 {
49 set<unsigned short> uBinSet;
50 set<unsigned short> vBinSet;
51
52 // Loop over all bins of input histo
53 for (auto histoBin = 1; histoBin <= histo_ptr->GetNbinsX(); histoBin++) {
54 // The bin label contains the vxdid, uBin and vBin
55 string label = histo_ptr->GetXaxis()->GetBinLabel(histoBin);
56
57 // Parse label string format to read sensorID, uBin and vBin
58 istringstream stream(label);
59 string token;
60 getline(stream, token, '_');
61 getline(stream, token, '_');
62 unsigned short uBin = std::stoi(token);
63
64 getline(stream, token, '_');
65 unsigned short vBin = std::stoi(token);
66
67 uBinSet.insert(uBin);
68 vBinSet.insert(vBin);
69 }
70
71 if (uBinSet.empty() || vBinSet.empty()) {
72 B2FATAL("Not able to determine the grid size. Something is wrong with collected data.");
73 } else {
74 nBinsU = *uBinSet.rbegin() + 1;
75 nBinsV = *vBinSet.rbegin() + 1;
76 }
77 }
78
80 unsigned short getNumberOfSensors(const std::shared_ptr<TH1I>& histo_ptr)
81 {
82 set<unsigned short> sensorSet;
83
84 // Loop over all bins of input histo
85 for (auto histoBin = 1; histoBin <= histo_ptr->GetNbinsX(); histoBin++) {
86 // The bin label contains the vxdid, uBin and vBin
87 string label = histo_ptr->GetXaxis()->GetBinLabel(histoBin);
88
89 // Parse label string format to read sensorID, uBin and vBin
90 istringstream stream(label);
91 string token;
92 getline(stream, token, '_');
93 VxdID sensorID(token);
94 sensorSet.insert(sensorID.getID());
95 }
96
97 return sensorSet.size();
98 }
99
100}
101
102
104 CalibrationAlgorithm("PXDClusterChargeCollector"),
105 minClusters(5000), noiseSigma(0.6), safetyFactor(2.0), forceContinue(false), strategy(0),
106 doCalibration(false), useChargeHistogram(false), chargePayloadName("PXDClusterChargeMapPar")
107{
109 " ------------------------------ PXDDataMCGainCalibrationAlgorithm -----------------------------------\n"
110 " \n"
111 " Algorithm for estimating pxd median/MPV cluster charges for different position on sensor in ADU, and optionally calculate gain \n"
112 " ------------------------------------------------------------------------------------------------\n"
113 );
114
115}
116
117
119{
120
121 // Get counter histogram
122 auto cluster_counter = getObjectPtr<TH1I>("PXDClusterCounter");
123 if (!cluster_counter) {
124 B2INFO("Not enough Data: cluster counter does not exist ");
125 return c_NotEnoughData;
126 }
127
128 // Extract number of sensors from counter histograms
129 auto nSensors = getNumberOfSensors(cluster_counter);
130
131 // Extract the number of grid bins from counter histograms
132 unsigned short nBinsU = 0;
133 unsigned short nBinsV = 0;
134 getNumberOfBins(cluster_counter, nBinsU, nBinsV);
135
136 // Check that we have collected enough Data
137 if (cluster_counter->GetEntries() < int(safetyFactor * minClusters * nSensors * nBinsU * nBinsV)) {
138 if (not forceContinue) {
139 B2INFO("Not enough Data: Only " << cluster_counter->GetEntries() << " hits were collected but " << int(safetyFactor * minClusters*
140 nSensors * nBinsU * nBinsV) << " needed!");
141 return c_NotEnoughData;
142 } else {
143 B2INFO("Continue despite low statistics: Only " << cluster_counter->GetEntries() << " hits were collected but" << int(
145 nSensors * nBinsU * nBinsV) << " would be desirable!");
146 }
147 }
148
149 B2INFO("Start calibration using a " << nBinsU << "x" << nBinsV << " grid per sensor.");
150
151 // This is the PXD charge calibration payload for conditions DB
152 PXDClusterChargeMapPar* chargeMapPar = new PXDClusterChargeMapPar(nBinsU, nBinsV);
153 // This is the PXD gain correction payload for conditions DB
154 PXDGainMapPar* gainMapPar = new PXDGainMapPar(nBinsU, nBinsV);
155 set<VxdID> pxdSensors;
156
157 // Read back existing DB payloads
158 PXDClusterChargeMapPar* chargeMapPtr = nullptr;
159 PXDGainMapPar* gainMapPtr = nullptr;
160 auto dbtree = getObjectPtr<TTree>("dbtree");
161 dbtree->SetBranchAddress("run", &m_run);
162 dbtree->SetBranchAddress("exp", &m_exp);
163 dbtree->SetBranchAddress("chargeMap", &chargeMapPtr);
164 dbtree->SetBranchAddress("gainMap", &gainMapPtr);
165
166 // Loop over all bins of input histo
167 for (auto histoBin = 1; histoBin <= cluster_counter->GetNbinsX(); histoBin++) {
168
169 // The bin label contains the vxdid, uBin and vBin
170 string label = cluster_counter->GetXaxis()->GetBinLabel(histoBin);
171
172 // Parse label string format to read sensorID, uBin and vBin
173 istringstream stream(label);
174 string token;
175 getline(stream, token, '_');
176 VxdID sensorID(token);
177
178 getline(stream, token, '_');
179 unsigned short uBin = std::stoi(token);
180
181 getline(stream, token, '_');
182 unsigned short vBin = std::stoi(token);
183
184 // Read back the counters for number of collected clusters
185 int numberOfDataHits = cluster_counter->GetBinContent(histoBin);
186
187 // Only perform fitting, when enough data is available
188 if (numberOfDataHits >= minClusters) {
189
190 B2INFO("start EstimateCharge");
191 // Compute the cluster charge or gain for the part of PXD
192 auto Charge = EstimateCharge(sensorID, uBin, vBin, histoBin);
193
194 // Store the charge or gain
195 if (!doCalibration) {
196
197 B2INFO("EstimateCharge: sensor " << sensorID.getID() << " U " << uBin << " V " << vBin << " Charge " << Charge);
198 chargeMapPar->setContent(sensorID.getID(), uBin, vBin, Charge);
199
200 } else {
201
202 auto Gain = 0.0;
203
204 if (Charge <= 0.0) {
205 B2WARNING("Retrieved negative charge for data for sensor=" << sensorID << " uBin=" << uBin << " vBin=" << vBin <<
206 ". Set gain to default value (=1.0).");
207 Gain = 1.0;
208 } else {
209 dbtree->GetEntry(0);
210 double mcCharge = chargeMapPtr->getContent(sensorID.getID(), uBin, vBin);
211 //GetChargeFromDB(sensorID, uBin, vBin, dbtree);
212 if (mcCharge <= 0.0) {
213 B2WARNING("Retrieved negative charge for MC from DB for sensor=" << sensorID << " uBin=" << uBin << " vBin=" << vBin <<
214 ". Set gain to default value (=1.0).");
215 Gain = 1.0;
216 } else {
217 Gain = Charge / mcCharge;
218 B2INFO("Estimated Gain: sensor " << sensorID.getID() << " U " << uBin << " V " << vBin << " Gain " << Gain << " = " << Charge <<
219 " / " << mcCharge);
220 }
221
222 }
223
224 gainMapPar->setContent(sensorID.getID(), uBin, vBin, Gain);
225
226 }
227
228 } else {
229
230 B2WARNING(label << ": Number of data hits too small for fitting (" << numberOfDataHits << " < " << minClusters <<
231 "). Use default value of 0 for charge, 1 for gain.");
232 if (!doCalibration) chargeMapPar->setContent(sensorID.getID(), uBin, vBin, 0.0);
233 else gainMapPar->setContent(sensorID.getID(), uBin, vBin, 1.0);
234
235 }
236
237 pxdSensors.insert(sensorID);
238
239 }
240
241 chargeMapPtr = nullptr;
242 gainMapPtr = nullptr;
243
244 // Save the charge map to database. Note that this will set the database object name to the same as the collector but you
245 // are free to change it.
246 if (!doCalibration) {
247 saveCalibration(chargeMapPar, chargePayloadName);
248
249 B2INFO("PXD Cluster Charge Calibration Successful");
250 return c_OK;
251
252 } else {
253
254 // Post processing of gain map. It is possible that the gain
255 // computation failed on some parts. Here, we replace default
256 // values (1.0) by local averages of neighboring sensor parts.
257
258 for (const auto& sensorID : pxdSensors) {
259 for (unsigned short vBin = 0; vBin < nBinsV; ++vBin) {
260 float meanGain = 0;
261 unsigned short nGood = 0;
262 unsigned short nBad = 0;
263 for (unsigned short uBin = 0; uBin < nBinsU; ++uBin) {
264 auto gain = gainMapPar->getContent(sensorID.getID(), uBin, vBin);
265 // Filter default gains
266 if (gain != 1.0) {
267 nGood += 1;
268 meanGain += gain;
269 } else {
270 nBad += 1;
271 }
272 }
273 B2RESULT("Gain calibration on sensor=" << sensorID << " and vBin=" << vBin << " was successful on " << nGood << "/" << nBinsU <<
274 " uBins.");
275
276 // Check if we can repair bad calibrations with a local avarage
277 if (nGood > 0 && nBad > 0) {
278 meanGain /= nGood;
279 for (unsigned short uBin = 0; uBin < nBinsU; ++uBin) {
280 auto gain = gainMapPar->getContent(sensorID.getID(), uBin, vBin);
281 if (gain == 1.0) {
282 gainMapPar->setContent(sensorID.getID(), uBin, vBin, meanGain);
283 B2RESULT("Gain calibration on sensor=" << sensorID << ", vBin=" << vBin << " uBin " << uBin << ": Replace default gain wih average "
284 << meanGain);
285 }
286 }
287 }
288 }
289 }
290
291 // Save the gain map to database. Note that this will set the database object name to the same as the collector but you
292 // are free to change it.
293 saveCalibration(gainMapPar, "PXDGainMapPar");
294
295 B2INFO("PXD Gain Calibration Successful");
296 return c_OK;
297
298 }
299
300}
301
302
303double PXDDataMCGainCalibrationAlgorithm::EstimateCharge(VxdID sensorID, unsigned short uBin, unsigned short vBin,
304 unsigned short histoBin)
305{
306
307 double charge = -1.;
308
309 if (strategy < 0 || strategy > 2) {
310 B2FATAL("strategy unavailable, use 0 for medians, 1 for landau fit and 2 for mean!");
311 }
312
313 // Construct a tree name for requested part of PXD
314 auto layerNumber = sensorID.getLayerNumber();
315 auto ladderNumber = sensorID.getLadderNumber();
316 auto sensorNumber = sensorID.getSensorNumber();
317
318 if (!useChargeHistogram) {
319 const string treename = str(format("tree_%1%_%2%_%3%_%4%_%5%") % layerNumber % ladderNumber % sensorNumber % uBin % vBin);
320 // Vector with cluster signals from collected data
321 vector<double> signals;
322 // Fill data_signal vector from input data
323 auto tree = getObjectPtr<TTree>(treename);
324 tree->SetBranchAddress("signal", &m_signal);
325
326 // Loop over tree
327 const auto nEntries = tree->GetEntries();
328 int incr(1);
329 if (int(nEntries / minClusters) > 2) incr = int(2 * nEntries / minClusters);
330 for (int i = 0; i < nEntries; i += incr) {
331 tree->GetEntry(i);
332 double noise = gRandom->Gaus(0.0, noiseSigma);
333 signals.push_back(m_signal + noise); //qyliu: why we introduce noise simulation here?
334 }
335
336 if (strategy == 0) {
337 double median = CalculateMedian(signals);
338 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
339 << ") U " << uBin << " V " << vBin
340 << " Charge " << median);
341 charge = median;
342 } else if (strategy == 1) {
343 double median = CalculateMedian(signals);
344 double landaumpv = FitLandau(signals);
345 double diff = (landaumpv - median);
346 double difff = 0.;
347 if (landaumpv > 0.) difff = (landaumpv - median) / landaumpv;
348 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
349 << ") U " << uBin << " V " << vBin
350 << " Charge " << landaumpv << " Median " << median << " diff = " << diff << "/" << difff);
351 charge = landaumpv; //FitLandau(signals);
352 } else if (strategy == 2) {
353 double mean = 0;
354 for (auto& each : signals)
355 mean += each;
356 if (signals.size() > 0) mean = mean / signals.size();
357 charge = mean;
358 }
359
360 } else {
361
362 auto cluster_counter = getObjectPtr<TH2I>("PXDClusterCharge");
363 TH1D* hist_signals = cluster_counter->ProjectionY("proj", histoBin, histoBin);
364
365 if (strategy == 0) {
366 double median = CalculateMedian(hist_signals);
367 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
368 << ") U " << uBin << " V " << vBin
369 << " Charge " << median);
370 charge = median;
371 } else if (strategy == 1) {
372 double median = CalculateMedian(hist_signals);
373 double landaumpv = FitLandau(hist_signals);
374 double diff = (landaumpv - median);
375 double difff = 0.;
376 if (landaumpv > 0.) difff = (landaumpv - median) / landaumpv;
377 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
378 << ") U " << uBin << " V " << vBin
379 << " Charge " << landaumpv << " Median " << median << " diff = " << diff << "/" << difff);
380
381 //return landaumpv; //FitLandau(signals);
382 charge = landaumpv;
383 } else if (strategy == 2) {
384 charge = hist_signals->GetMean();
385 }
386
387 delete hist_signals;
388 }
389
390 return charge;
391
392}
393
395{
396 auto size = signals.size();
397
398 if (size == 0) {
399 return 0.0; // Undefined, really.
400 } else {
401 sort(signals.begin(), signals.end());
402 if (size % 2 == 0) {
403 return (signals[size / 2 - 1] + signals[size / 2]) / 2;
404 } else {
405 return signals[size / 2];
406 }
407 }
408}
409
411{
412 auto size = hist_signals->GetEntries();
413
414 if (size == 0) return 0.0; // Undefined.
415
416 int sum = 0;
417 for (int ibin = 0; ibin < hist_signals->GetNbinsX(); ++ibin) {
418 sum += hist_signals->GetBinContent(ibin + 1);
419 if (sum > size / 2) {
420 return hist_signals->GetBinLowEdge(ibin + 1);
421 }
422 }
423
424 B2WARNING("Could not find median! using default value 0.0!");
425 return 0.0;
426}
427
428double PXDDataMCGainCalibrationAlgorithm::FitLandau(vector<double>& signals)
429{
430 auto size = signals.size();
431 if (size == 0) return 0.0; // Undefined, really.
432
433 // get max and min values of vector
434 int max = *max_element(signals.begin(), signals.end());
435 int min = *min_element(signals.begin(), signals.end());
436 // make even bins
437 if ((max - min) % 2) max--;
438 int nbin = max - min;
439
440 // create histogram to hold signals and fill it
441 TH1D* hist_signals = new TH1D("", "", nbin, min, max);
442 for (auto it = signals.begin(); it != signals.end(); ++it) {
443 hist_signals->Fill(*it);
444 }
445
446 // create fit function
447 TF1* landau = new TF1("landau", "TMath::Landau(x,[0],[1])*[2]", min, max);
448 landau->SetParNames("MPV", "sigma", "scale");
449 landau->SetParameters(35, 8, 1000);
450 landau->SetParLimits(0, 0., 80.);
451
452 //do fit and get results, fit range restricted to exclude low charge peak
453 float fitmin(min);
454 float fitmax(350);
455 Int_t status = hist_signals->Fit("landau", "Lq", "", fitmin, fitmax);
456 double MPV = landau->GetParameter("MPV");
457
458 B2INFO("Fit result: " << status << " MPV " << MPV << " sigma " << landau->GetParameter("sigma")
459 << " scale " << landau->GetParameter("scale") << " chi2 " << landau->GetChisquare());
460
461 // clean up
462 delete hist_signals;
463 delete landau;
464
465 // check fit status
466 if (status == 0) return MPV;
467 else {
468 B2WARNING("Fit failed! using default value 0.0!");
469 return 0.0;
470 }
471}
472
474{
475 auto size = hist_signals->GetEntries();
476 if (size == 0) return 0.0; // Undefined.
477
478 int max = hist_signals->GetBinLowEdge(hist_signals->GetNbinsX() + 1);
479 int min = hist_signals->GetBinLowEdge(1);
480
481 // create fit function
482 TF1* landau = new TF1("landau", "TMath::Landau(x,[0],[1])*[2]", min, max);
483 landau->SetParNames("MPV", "sigma", "scale");
484 landau->SetParameters(35, 8, 1000);
485 landau->SetParLimits(0, 0., 80.);
486
487 // do fit and get results, fit range restricted to exclude low charge peak
488 float fitmin(min);
489 float fitmax(250);
490 Int_t status = hist_signals->Fit("landau", "Lq", "", fitmin, fitmax);
491 double MPV = landau->GetParameter("MPV");
492
493 B2INFO("Fit result: " << status << " MPV " << MPV << " sigma " << landau->GetParameter("sigma")
494 << " scale " << landau->GetParameter("scale") << " chi2 " << landau->GetChisquare());
495
496 // clean up
497 delete landau;
498
499 // check fit status
500 if (status == 0) return MPV;
501 else {
502 B2WARNING("Fit failed! using default value 0.0!");
503 return 0.0;
504 }
505}
506
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfully =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
The payload class for PXD cluster charge calibrations.
float getContent(unsigned short sensorID, unsigned short globalID) const
Get content.
void setContent(unsigned short sensorID, unsigned short globalID, float value)
Set map content.
bool doCalibration
flag to perform full calibration or only esitmate charge: False: only estimate charge,...
double FitLandau(std::vector< double > &signals)
calculate MPV of unsorted signal vector using a Landau fit
double EstimateCharge(VxdID sensorID, unsigned short uBin, unsigned short vBin, unsigned short histoBin)
Estimate median charge form collected clusters on part of PXD.
int minClusters
Minimum number of collected clusters for estimating median charge.
std::string chargePayloadName
Payload name for Cluster Charge.
float noiseSigma
Artificial noise sigma for smearing cluster charge.
bool useChargeHistogram
Flag to use histogram as charge input.
virtual EResult calibrate() override
Run algo on data.
int strategy
strategy to used for gain calibration, 0 for medians, 1 for landau fit
float safetyFactor
Safety factor for determining whether the collected number of clusters is enough.
double CalculateMedian(std::vector< double > &signals)
Calculate a median from unsorted signal vector. The input vector gets sorted.
PXDDataMCGainCalibrationAlgorithm()
Constructor set the prefix to PXDDataMCGainCalibrationAlgorithm.
bool forceContinue
Force continue in low statistics runs instead of returning c_NotEnoughData.
The payload class for PXD gain corrections.
Definition: PXDGainMapPar.h:43
float getContent(unsigned short sensorID, unsigned short globalID) const
Get content.
void setContent(unsigned short sensorID, unsigned short globalID, float value)
Set map content.
Definition: PXDGainMapPar.h:68
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
baseType getID() const
Get the unique id.
Definition: VxdID.h:94
baseType getSensorNumber() const
Get the sensor id.
Definition: VxdID.h:100
baseType getLadderNumber() const
Get the ladder id.
Definition: VxdID.h:98
baseType getLayerNumber() const
Get the layer id.
Definition: VxdID.h:96
unsigned short getNumberOfSensors(const std::shared_ptr< TH1I > &histo_ptr)
Helper function to extract number of sensors from counter histogram labels.
void getNumberOfBins(const std::shared_ptr< TH1I > &histo_ptr, unsigned short &nBinsU, unsigned short &nBinsV)
Helper function to extract number of bins along u side and v side from counter histogram labels.
Abstract base class for different kinds of events.
STL namespace.