Belle II Software development
PXDDataMCGainCalibrationAlgorithm Class Reference

Class implementing the PXD median cluster charge calibration algorithm. More...

#include <PXDDataMCGainCalibrationAlgorithm.h>

Inheritance diagram for PXDDataMCGainCalibrationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 PXDDataMCGainCalibrationAlgorithm ()
 Constructor set the prefix to PXDDataMCGainCalibrationAlgorithm.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int minClusters
 Minimum number of collected clusters for estimating median charge.
 
float noiseSigma
 Artificial noise sigma for smearing cluster charge.
 
float safetyFactor
 Safety factor for determining whether the collected number of clusters is enough.
 
bool forceContinue
 Force continue in low statistics runs instead of returning c_NotEnoughData.
 
int strategy
 strategy to used for gain calibration, 0 for medians, 1 for landau fit
 
bool doCalibration
 flag to perform full calibration or only esitmate charge: False: only estimate charge, input can be data or mc True: estimate data charge and calibrate using mc charge from payloads
 
bool useChargeHistogram
 Flag to use histogram as charge input.
 
std::string chargePayloadName
 Payload name for Cluster Charge.
 

Protected Member Functions

virtual EResult calibrate () override
 Run algo on data.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

double EstimateCharge (VxdID sensorID, unsigned short uBin, unsigned short vBin, unsigned short histoBin)
 Estimate median charge form collected clusters on part of PXD.
 
double EstimateGain (VxdID sensorID, unsigned short uBin, unsigned short vBin)
 Estimate gain as ratio of medians from MC and data for a part of PXD.
 
double CalculateMedian (std::vector< double > &signals)
 Calculate a median from unsorted signal vector. The input vector gets sorted.
 
double CalculateMedian (TH1D *histo_signals)
 Calculate a median from 1D histogram.
 
double FitLandau (std::vector< double > &signals)
 calculate MPV of unsorted signal vector using a Landau fit
 
double FitLandau (TH1D *histo_signals)
 calculate MPV from 1D histogram
 
std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class implementing the PXD median cluster charge calibration algorithm.

Definition at line 25 of file PXDDataMCGainCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ PXDDataMCGainCalibrationAlgorithm()

Constructor set the prefix to PXDDataMCGainCalibrationAlgorithm.

Definition at line 103 of file PXDDataMCGainCalibrationAlgorithm.cc.

103 :
104 CalibrationAlgorithm("PXDClusterChargeCollector"),
105 minClusters(5000), noiseSigma(0.6), safetyFactor(2.0), forceContinue(false), strategy(0),
106 doCalibration(false), useChargeHistogram(false), chargePayloadName("PXDClusterChargeMapPar")
107{
109 " ------------------------------ PXDDataMCGainCalibrationAlgorithm -----------------------------------\n"
110 " \n"
111 " Algorithm for estimating pxd median/MPV cluster charges for different position on sensor in ADU, and optionally calculate gain \n"
112 " ------------------------------------------------------------------------------------------------\n"
113 );
114
115}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
bool doCalibration
flag to perform full calibration or only esitmate charge: False: only estimate charge,...
int minClusters
Minimum number of collected clusters for estimating median charge.
std::string chargePayloadName
Payload name for Cluster Charge.
float noiseSigma
Artificial noise sigma for smearing cluster charge.
bool useChargeHistogram
Flag to use histogram as charge input.
int strategy
strategy to used for gain calibration, 0 for medians, 1 for landau fit
float safetyFactor
Safety factor for determining whether the collected number of clusters is enough.
bool forceContinue
Force continue in low statistics runs instead of returning c_NotEnoughData.

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ CalculateMedian() [1/2]

double CalculateMedian ( std::vector< double > &  signals)
private

Calculate a median from unsorted signal vector. The input vector gets sorted.

Definition at line 394 of file PXDDataMCGainCalibrationAlgorithm.cc.

395{
396 auto size = signals.size();
397
398 if (size == 0) {
399 return 0.0; // Undefined, really.
400 } else {
401 sort(signals.begin(), signals.end());
402 if (size % 2 == 0) {
403 return (signals[size / 2 - 1] + signals[size / 2]) / 2;
404 } else {
405 return signals[size / 2];
406 }
407 }
408}

◆ CalculateMedian() [2/2]

double CalculateMedian ( TH1D *  histo_signals)
private

Calculate a median from 1D histogram.

Definition at line 410 of file PXDDataMCGainCalibrationAlgorithm.cc.

411{
412 auto size = hist_signals->GetEntries();
413
414 if (size == 0) return 0.0; // Undefined.
415
416 int sum = 0;
417 for (int ibin = 0; ibin < hist_signals->GetNbinsX(); ++ibin) {
418 sum += hist_signals->GetBinContent(ibin + 1);
419 if (sum > size / 2) {
420 return hist_signals->GetBinLowEdge(ibin + 1);
421 }
422 }
423
424 B2WARNING("Could not find median! using default value 0.0!");
425 return 0.0;
426}

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Run algo on data.

Implements CalibrationAlgorithm.

Definition at line 118 of file PXDDataMCGainCalibrationAlgorithm.cc.

119{
120
121 // Get counter histogram
122 auto cluster_counter = getObjectPtr<TH1I>("PXDClusterCounter");
123 if (!cluster_counter) {
124 B2INFO("Not enough Data: cluster counter does not exist ");
125 return c_NotEnoughData;
126 }
127
128 // Extract number of sensors from counter histograms
129 auto nSensors = getNumberOfSensors(cluster_counter);
130
131 // Extract the number of grid bins from counter histograms
132 unsigned short nBinsU = 0;
133 unsigned short nBinsV = 0;
134 getNumberOfBins(cluster_counter, nBinsU, nBinsV);
135
136 // Check that we have collected enough Data
137 if (cluster_counter->GetEntries() < int(safetyFactor * minClusters * nSensors * nBinsU * nBinsV)) {
138 if (not forceContinue) {
139 B2INFO("Not enough Data: Only " << cluster_counter->GetEntries() << " hits were collected but " << int(safetyFactor * minClusters*
140 nSensors * nBinsU * nBinsV) << " needed!");
141 return c_NotEnoughData;
142 } else {
143 B2INFO("Continue despite low statistics: Only " << cluster_counter->GetEntries() << " hits were collected but" << int(
145 nSensors * nBinsU * nBinsV) << " would be desirable!");
146 }
147 }
148
149 B2INFO("Start calibration using a " << nBinsU << "x" << nBinsV << " grid per sensor.");
150
151 // This is the PXD charge calibration payload for conditions DB
152 PXDClusterChargeMapPar* chargeMapPar = new PXDClusterChargeMapPar(nBinsU, nBinsV);
153 // This is the PXD gain correction payload for conditions DB
154 PXDGainMapPar* gainMapPar = new PXDGainMapPar(nBinsU, nBinsV);
155 set<VxdID> pxdSensors;
156
157 // Read back existing DB payloads
158 PXDClusterChargeMapPar* chargeMapPtr = nullptr;
159 PXDGainMapPar* gainMapPtr = nullptr;
160 auto dbtree = getObjectPtr<TTree>("dbtree");
161 dbtree->SetBranchAddress("run", &m_run);
162 dbtree->SetBranchAddress("exp", &m_exp);
163 dbtree->SetBranchAddress("chargeMap", &chargeMapPtr);
164 dbtree->SetBranchAddress("gainMap", &gainMapPtr);
165
166 // Loop over all bins of input histo
167 for (auto histoBin = 1; histoBin <= cluster_counter->GetNbinsX(); histoBin++) {
168
169 // The bin label contains the vxdid, uBin and vBin
170 string label = cluster_counter->GetXaxis()->GetBinLabel(histoBin);
171
172 // Parse label string format to read sensorID, uBin and vBin
173 istringstream stream(label);
174 string token;
175 getline(stream, token, '_');
176 VxdID sensorID(token);
177
178 getline(stream, token, '_');
179 unsigned short uBin = std::stoi(token);
180
181 getline(stream, token, '_');
182 unsigned short vBin = std::stoi(token);
183
184 // Read back the counters for number of collected clusters
185 int numberOfDataHits = cluster_counter->GetBinContent(histoBin);
186
187 // Only perform fitting, when enough data is available
188 if (numberOfDataHits >= minClusters) {
189
190 B2INFO("start EstimateCharge");
191 // Compute the cluster charge or gain for the part of PXD
192 auto Charge = EstimateCharge(sensorID, uBin, vBin, histoBin);
193
194 // Store the charge or gain
195 if (!doCalibration) {
196
197 B2INFO("EstimateCharge: sensor " << sensorID.getID() << " U " << uBin << " V " << vBin << " Charge " << Charge);
198 chargeMapPar->setContent(sensorID.getID(), uBin, vBin, Charge);
199
200 } else {
201
202 auto Gain = 0.0;
203
204 if (Charge <= 0.0) {
205 B2WARNING("Retrieved negative charge for data for sensor=" << sensorID << " uBin=" << uBin << " vBin=" << vBin <<
206 ". Set gain to default value (=1.0).");
207 Gain = 1.0;
208 } else {
209 dbtree->GetEntry(0);
210 double mcCharge = chargeMapPtr->getContent(sensorID.getID(), uBin, vBin);
211 //GetChargeFromDB(sensorID, uBin, vBin, dbtree);
212 if (mcCharge <= 0.0) {
213 B2WARNING("Retrieved negative charge for MC from DB for sensor=" << sensorID << " uBin=" << uBin << " vBin=" << vBin <<
214 ". Set gain to default value (=1.0).");
215 Gain = 1.0;
216 } else {
217 Gain = Charge / mcCharge;
218 B2INFO("Estimated Gain: sensor " << sensorID.getID() << " U " << uBin << " V " << vBin << " Gain " << Gain << " = " << Charge <<
219 " / " << mcCharge);
220 }
221
222 }
223
224 gainMapPar->setContent(sensorID.getID(), uBin, vBin, Gain);
225
226 }
227
228 } else {
229
230 B2WARNING(label << ": Number of data hits too small for fitting (" << numberOfDataHits << " < " << minClusters <<
231 "). Use default value of 0 for charge, 1 for gain.");
232 if (!doCalibration) chargeMapPar->setContent(sensorID.getID(), uBin, vBin, 0.0);
233 else gainMapPar->setContent(sensorID.getID(), uBin, vBin, 1.0);
234
235 }
236
237 pxdSensors.insert(sensorID);
238
239 }
240
241 chargeMapPtr = nullptr;
242 gainMapPtr = nullptr;
243
244 // Save the charge map to database. Note that this will set the database object name to the same as the collector but you
245 // are free to change it.
246 if (!doCalibration) {
247 saveCalibration(chargeMapPar, chargePayloadName);
248
249 B2INFO("PXD Cluster Charge Calibration Successful");
250 return c_OK;
251
252 } else {
253
254 // Post processing of gain map. It is possible that the gain
255 // computation failed on some parts. Here, we replace default
256 // values (1.0) by local averages of neighboring sensor parts.
257
258 for (const auto& sensorID : pxdSensors) {
259 for (unsigned short vBin = 0; vBin < nBinsV; ++vBin) {
260 float meanGain = 0;
261 unsigned short nGood = 0;
262 unsigned short nBad = 0;
263 for (unsigned short uBin = 0; uBin < nBinsU; ++uBin) {
264 auto gain = gainMapPar->getContent(sensorID.getID(), uBin, vBin);
265 // Filter default gains
266 if (gain != 1.0) {
267 nGood += 1;
268 meanGain += gain;
269 } else {
270 nBad += 1;
271 }
272 }
273 B2RESULT("Gain calibration on sensor=" << sensorID << " and vBin=" << vBin << " was successful on " << nGood << "/" << nBinsU <<
274 " uBins.");
275
276 // Check if we can repair bad calibrations with a local avarage
277 if (nGood > 0 && nBad > 0) {
278 meanGain /= nGood;
279 for (unsigned short uBin = 0; uBin < nBinsU; ++uBin) {
280 auto gain = gainMapPar->getContent(sensorID.getID(), uBin, vBin);
281 if (gain == 1.0) {
282 gainMapPar->setContent(sensorID.getID(), uBin, vBin, meanGain);
283 B2RESULT("Gain calibration on sensor=" << sensorID << ", vBin=" << vBin << " uBin " << uBin << ": Replace default gain wih average "
284 << meanGain);
285 }
286 }
287 }
288 }
289 }
290
291 // Save the gain map to database. Note that this will set the database object name to the same as the collector but you
292 // are free to change it.
293 saveCalibration(gainMapPar, "PXDGainMapPar");
294
295 B2INFO("PXD Gain Calibration Successful");
296 return c_OK;
297
298 }
299
300}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
The payload class for PXD cluster charge calibrations.
float getContent(unsigned short sensorID, unsigned short globalID) const
Get content.
void setContent(unsigned short sensorID, unsigned short globalID, float value)
Set map content.
double EstimateCharge(VxdID sensorID, unsigned short uBin, unsigned short vBin, unsigned short histoBin)
Estimate median charge form collected clusters on part of PXD.
The payload class for PXD gain corrections.
Definition: PXDGainMapPar.h:43
float getContent(unsigned short sensorID, unsigned short globalID) const
Get content.
void setContent(unsigned short sensorID, unsigned short globalID, float value)
Set map content.
Definition: PXDGainMapPar.h:68
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
unsigned short getNumberOfSensors(const std::shared_ptr< TH1I > &histo_ptr)
Helper function to extract number of sensors from counter histogram labels.
void getNumberOfBins(const std::shared_ptr< TH1I > &histo_ptr, unsigned short &nBinsU, unsigned short &nBinsV)
Helper function to extract number of bins along u side and v side from counter histogram labels.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ EstimateCharge()

double EstimateCharge ( VxdID  sensorID,
unsigned short  uBin,
unsigned short  vBin,
unsigned short  histoBin 
)
private

Estimate median charge form collected clusters on part of PXD.

Definition at line 303 of file PXDDataMCGainCalibrationAlgorithm.cc.

305{
306
307 double charge = -1.;
308
309 if (strategy < 0 || strategy > 2) {
310 B2FATAL("strategy unavailable, use 0 for medians, 1 for landau fit and 2 for mean!");
311 }
312
313 // Construct a tree name for requested part of PXD
314 auto layerNumber = sensorID.getLayerNumber();
315 auto ladderNumber = sensorID.getLadderNumber();
316 auto sensorNumber = sensorID.getSensorNumber();
317
318 if (!useChargeHistogram) {
319 const string treename = str(format("tree_%1%_%2%_%3%_%4%_%5%") % layerNumber % ladderNumber % sensorNumber % uBin % vBin);
320 // Vector with cluster signals from collected data
321 vector<double> signals;
322 // Fill data_signal vector from input data
323 auto tree = getObjectPtr<TTree>(treename);
324 tree->SetBranchAddress("signal", &m_signal);
325
326 // Loop over tree
327 const auto nEntries = tree->GetEntries();
328 int incr(1);
329 if (int(nEntries / minClusters) > 2) incr = int(2 * nEntries / minClusters);
330 for (int i = 0; i < nEntries; i += incr) {
331 tree->GetEntry(i);
332 double noise = gRandom->Gaus(0.0, noiseSigma);
333 signals.push_back(m_signal + noise); //qyliu: why we introduce noise simulation here?
334 }
335
336 if (strategy == 0) {
337 double median = CalculateMedian(signals);
338 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
339 << ") U " << uBin << " V " << vBin
340 << " Charge " << median);
341 charge = median;
342 } else if (strategy == 1) {
343 double median = CalculateMedian(signals);
344 double landaumpv = FitLandau(signals);
345 double diff = (landaumpv - median);
346 double difff = 0.;
347 if (landaumpv > 0.) difff = (landaumpv - median) / landaumpv;
348 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
349 << ") U " << uBin << " V " << vBin
350 << " Charge " << landaumpv << " Median " << median << " diff = " << diff << "/" << difff);
351 charge = landaumpv; //FitLandau(signals);
352 } else if (strategy == 2) {
353 double mean = 0;
354 for (auto& each : signals)
355 mean += each;
356 if (signals.size() > 0) mean = mean / signals.size();
357 charge = mean;
358 }
359
360 } else {
361
362 auto cluster_counter = getObjectPtr<TH2I>("PXDClusterCharge");
363 TH1D* hist_signals = cluster_counter->ProjectionY("proj", histoBin, histoBin);
364
365 if (strategy == 0) {
366 double median = CalculateMedian(hist_signals);
367 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
368 << ") U " << uBin << " V " << vBin
369 << " Charge " << median);
370 charge = median;
371 } else if (strategy == 1) {
372 double median = CalculateMedian(hist_signals);
373 double landaumpv = FitLandau(hist_signals);
374 double diff = (landaumpv - median);
375 double difff = 0.;
376 if (landaumpv > 0.) difff = (landaumpv - median) / landaumpv;
377 B2INFO("EstimateCharge: sensor " << sensorID.getID() << "(" << layerNumber << "," << ladderNumber << "," << sensorNumber
378 << ") U " << uBin << " V " << vBin
379 << " Charge " << landaumpv << " Median " << median << " diff = " << diff << "/" << difff);
380
381 //return landaumpv; //FitLandau(signals);
382 charge = landaumpv;
383 } else if (strategy == 2) {
384 charge = hist_signals->GetMean();
385 }
386
387 delete hist_signals;
388 }
389
390 return charge;
391
392}
double FitLandau(std::vector< double > &signals)
calculate MPV of unsorted signal vector using a Landau fit
double CalculateMedian(std::vector< double > &signals)
Calculate a median from unsorted signal vector. The input vector gets sorted.
baseType getID() const
Get the unique id.
Definition: VxdID.h:94
baseType getSensorNumber() const
Get the sensor id.
Definition: VxdID.h:100
baseType getLadderNumber() const
Get the ladder id.
Definition: VxdID.h:98
baseType getLayerNumber() const
Get the layer id.
Definition: VxdID.h:96
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ FitLandau() [1/2]

double FitLandau ( std::vector< double > &  signals)
private

calculate MPV of unsorted signal vector using a Landau fit

Definition at line 428 of file PXDDataMCGainCalibrationAlgorithm.cc.

429{
430 auto size = signals.size();
431 if (size == 0) return 0.0; // Undefined, really.
432
433 // get max and min values of vector
434 int max = *max_element(signals.begin(), signals.end());
435 int min = *min_element(signals.begin(), signals.end());
436 // make even bins
437 if ((max - min) % 2) max--;
438 int nbin = max - min;
439
440 // create histogram to hold signals and fill it
441 TH1D* hist_signals = new TH1D("", "", nbin, min, max);
442 for (auto it = signals.begin(); it != signals.end(); ++it) {
443 hist_signals->Fill(*it);
444 }
445
446 // create fit function
447 TF1* landau = new TF1("landau", "TMath::Landau(x,[0],[1])*[2]", min, max);
448 landau->SetParNames("MPV", "sigma", "scale");
449 landau->SetParameters(35, 8, 1000);
450 landau->SetParLimits(0, 0., 80.);
451
452 //do fit and get results, fit range restricted to exclude low charge peak
453 float fitmin(min);
454 float fitmax(350);
455 Int_t status = hist_signals->Fit("landau", "Lq", "", fitmin, fitmax);
456 double MPV = landau->GetParameter("MPV");
457
458 B2INFO("Fit result: " << status << " MPV " << MPV << " sigma " << landau->GetParameter("sigma")
459 << " scale " << landau->GetParameter("scale") << " chi2 " << landau->GetChisquare());
460
461 // clean up
462 delete hist_signals;
463 delete landau;
464
465 // check fit status
466 if (status == 0) return MPV;
467 else {
468 B2WARNING("Fit failed! using default value 0.0!");
469 return 0.0;
470 }
471}

◆ FitLandau() [2/2]

double FitLandau ( TH1D *  histo_signals)
private

calculate MPV from 1D histogram

Definition at line 473 of file PXDDataMCGainCalibrationAlgorithm.cc.

474{
475 auto size = hist_signals->GetEntries();
476 if (size == 0) return 0.0; // Undefined.
477
478 int max = hist_signals->GetBinLowEdge(hist_signals->GetNbinsX() + 1);
479 int min = hist_signals->GetBinLowEdge(1);
480
481 // create fit function
482 TF1* landau = new TF1("landau", "TMath::Landau(x,[0],[1])*[2]", min, max);
483 landau->SetParNames("MPV", "sigma", "scale");
484 landau->SetParameters(35, 8, 1000);
485 landau->SetParLimits(0, 0., 80.);
486
487 // do fit and get results, fit range restricted to exclude low charge peak
488 float fitmin(min);
489 float fitmax(250);
490 Int_t status = hist_signals->Fit("landau", "Lq", "", fitmin, fitmax);
491 double MPV = landau->GetParameter("MPV");
492
493 B2INFO("Fit result: " << status << " MPV " << MPV << " sigma " << landau->GetParameter("sigma")
494 << " scale " << landau->GetParameter("scale") << " chi2 " << landau->GetChisquare());
495
496 // clean up
497 delete landau;
498
499 // check fit status
500 if (status == 0) return MPV;
501 else {
502 B2WARNING("Fit failed! using default value 0.0!");
503 return 0.0;
504 }
505}

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ chargePayloadName

std::string chargePayloadName

Payload name for Cluster Charge.

Definition at line 55 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ doCalibration

bool doCalibration

flag to perform full calibration or only esitmate charge: False: only estimate charge, input can be data or mc True: estimate data charge and calibrate using mc charge from payloads

Definition at line 49 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ forceContinue

bool forceContinue

Force continue in low statistics runs instead of returning c_NotEnoughData.

Definition at line 41 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ minClusters

int minClusters

Minimum number of collected clusters for estimating median charge.

Definition at line 32 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ noiseSigma

float noiseSigma

Artificial noise sigma for smearing cluster charge.

Definition at line 35 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ safetyFactor

float safetyFactor

Safety factor for determining whether the collected number of clusters is enough.

Definition at line 38 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ strategy

int strategy

strategy to used for gain calibration, 0 for medians, 1 for landau fit

Definition at line 44 of file PXDDataMCGainCalibrationAlgorithm.h.

◆ useChargeHistogram

bool useChargeHistogram

Flag to use histogram as charge input.

Definition at line 52 of file PXDDataMCGainCalibrationAlgorithm.h.


The documentation for this class was generated from the following files: