Belle II Software development
Python.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <mva/methods/Python.h>
10
11#include <numpy/npy_common.h>
12#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
13#include <numpy/arrayobject.h>
14
15#include <framework/logging/Logger.h>
16#include <framework/utilities/FileSystem.h>
17#include <framework/utilities/TRandomWrapper.h>
18
19#include <fstream>
20#include <numeric>
21
22namespace Belle2 {
27 namespace MVA {
28
29 void PythonOptions::load(const boost::property_tree::ptree& pt)
30 {
31 int version = pt.get<int>("Python_version");
32 if (version < 1 or version > 2) {
33 B2ERROR("Unknown weightfile version " << std::to_string(version));
34 throw std::runtime_error("Unknown weightfile version " + std::to_string(version));
35 }
36 m_framework = pt.get<std::string>("Python_framework");
37 m_steering_file = pt.get<std::string>("Python_steering_file");
38 m_mini_batch_size = pt.get<unsigned int>("Python_mini_batch_size");
39 m_nIterations = pt.get<unsigned int>("Python_n_iterations");
40 m_config = pt.get<std::string>("Python_config");
41 m_training_fraction = pt.get<double>("Python_training_fraction");
42 if (version == 2) {
43 m_normalize = pt.get<bool>("Python_normalize");
44 } else {
45 m_normalize = false;
46 }
47
48 }
49
50 void PythonOptions::save(boost::property_tree::ptree& pt) const
51 {
52 pt.put("Python_version", 2);
53 pt.put("Python_framework", m_framework);
54 pt.put("Python_steering_file", m_steering_file);
55 pt.put("Python_mini_batch_size", m_mini_batch_size);
56 pt.put("Python_n_iterations", m_nIterations);
57 pt.put("Python_config", m_config);
58 pt.put("Python_training_fraction", m_training_fraction);
59 pt.put("Python_normalize", m_normalize);
60 }
61
62 po::options_description PythonOptions::getDescription()
63 {
64 po::options_description description("Python options");
65 description.add_options()
66 ("framework", po::value<std::string>(&m_framework),
67 "Framework which should be used. Currently supported are sklearn, xgboost, tensorflow, keras, torch, and theano")
68 ("steering_file", po::value<std::string>(&m_steering_file), "Steering file which describes the model")
69 ("mini_batch_size", po::value<unsigned int>(&m_mini_batch_size), "Size of the mini batch given to partial_fit function")
70 ("nIterations", po::value<unsigned int>(&m_nIterations), "Number of iterations")
71 ("normalize", po::value<bool>(&m_normalize), "Normalize input data (shift mean to 0 and std to 1)")
72 ("training_fraction", po::value<double>(&m_training_fraction),
73 "Training fraction used to split up dataset in training and validation sample.")
74 ("config", po::value<std::string>(&m_config), "Json encoded python object passed to begin_fit function");
75 return description;
76 }
77
83
84 public:
89
94
95 private:
100 {
101 if (not Py_IsInitialized()) {
102 Py_Initialize();
104 }
105
106 if (PyArray_API == nullptr) {
107 init_numpy();
108 }
109 }
110
115 {
117 if (Py_IsInitialized()) {
118 // We don't finalize Python because this call only frees some memory,
119 // but can cause crashes in loaded python-modules like Theano
120 // https://docs.python.org/3/c-api/init.html
121 // Py_Finalize();
122 }
123 }
124 }
125
132 {
133 // Import array is a macro which returns NUMPY_IMPORT_ARRAY_RETVAL
134 import_array();
135 return nullptr;
136 }
137
138 bool m_initialized_python = false;
139 };
140
142 {
143 static PythonInitializerSingleton singleton;
144 return singleton;
145 }
146
147
149 const PythonOptions& specific_options) : Teacher(general_options),
150 m_specific_options(specific_options)
151 {
153 }
154
155
157 {
158
159 Weightfile weightfile;
160 std::string custom_weightfile = weightfile.generateFileName();
161 std::string custom_steeringfile = weightfile.generateFileName();
162
163 uint64_t numberOfFeatures = training_data.getNumberOfFeatures();
164 uint64_t numberOfSpectators = training_data.getNumberOfSpectators();
165 uint64_t numberOfEvents = training_data.getNumberOfEvents();
166
168 B2ERROR("Please provide a positive training fraction");
169 throw std::runtime_error("Please provide a training fraction between (0.0,1.0]");
170 }
171
172 auto numberOfTrainingEvents = static_cast<uint64_t>(numberOfEvents * 100 * m_specific_options.m_training_fraction);
173 numberOfTrainingEvents = numberOfTrainingEvents / 100 + (numberOfTrainingEvents % 100 != 0);
174 auto numberOfValidationEvents = numberOfEvents - numberOfTrainingEvents;
175
176 uint64_t batch_size = m_specific_options.m_mini_batch_size;
177 if (batch_size == 0) {
178 batch_size = numberOfTrainingEvents;
179 }
180
181 if (batch_size > numberOfTrainingEvents) {
182 B2WARNING("Mini batch size (" << batch_size << ") is larger than the number of training events (" << numberOfTrainingEvents << ")"\
183 " The batch size has been set equal to the number of training events.");
184 batch_size = numberOfTrainingEvents;
185 };
186
187 auto X = std::unique_ptr<float[]>(new float[batch_size * numberOfFeatures]);
188 auto S = std::unique_ptr<float[]>(new float[batch_size * numberOfSpectators]);
189 auto y = std::unique_ptr<float[]>(new float[batch_size]);
190 auto w = std::unique_ptr<float[]>(new float[batch_size]);
191 npy_intp dimensions_X[2] = {static_cast<npy_intp>(batch_size), static_cast<npy_intp>(numberOfFeatures)};
192 npy_intp dimensions_S[2] = {static_cast<npy_intp>(batch_size), static_cast<npy_intp>(numberOfSpectators)};
193 npy_intp dimensions_y[2] = {static_cast<npy_intp>(batch_size), 1};
194 npy_intp dimensions_w[2] = {static_cast<npy_intp>(batch_size), 1};
195
196 auto X_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents * numberOfFeatures]);
197 auto S_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents * numberOfSpectators]);
198 auto y_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents]);
199 auto w_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents]);
200 npy_intp dimensions_X_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), static_cast<npy_intp>(numberOfFeatures)};
201 npy_intp dimensions_S_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), static_cast<npy_intp>(numberOfSpectators)};
202 npy_intp dimensions_y_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), 1};
203 npy_intp dimensions_w_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), 1};
204
205 std::string steering_file_source_code;
208 std::ifstream steering_file(filename);
209 if (not steering_file) {
210 throw std::runtime_error(std::string("Couldn't open file ") + filename);
211 }
212 steering_file.seekg(0, std::ios::end);
213 steering_file_source_code.resize(steering_file.tellg());
214 steering_file.seekg(0, std::ios::beg);
215 steering_file.read(&steering_file_source_code[0], steering_file_source_code.size());
216 }
217
218 std::vector<float> means(numberOfFeatures, 0.0);
219 std::vector<float> stds(numberOfFeatures, 0.0);
220
222 // Stable calculation of mean and variance with weights
223 // see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
224 auto weights = training_data.getWeights();
225 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature) {
226 double wSum = 0.0;
227 double mean = 0.0;
228 double running_std = 0.0;
229 auto feature = training_data.getFeature(iFeature);
230 for (uint64_t i = 0; i < weights.size(); ++i) {
231 wSum += weights[i];
232 double meanOld = mean;
233 mean += (weights[i] / wSum) * (feature[i] - meanOld);
234 running_std += weights[i] * (feature[i] - meanOld) * (feature[i] - mean);
235 }
236 means[iFeature] = mean;
237 stds[iFeature] = std::sqrt(running_std / (wSum - 1));
238 }
239 }
240
241 try {
242 // Load python modules
243 auto json = boost::python::import("json");
244 auto builtins = boost::python::import("builtins");
245 auto inspect = boost::python::import("inspect");
246
247 // Load framework
248 auto framework = boost::python::import((std::string("basf2_mva_python_interface.") + m_specific_options.m_framework).c_str());
249 // Overwrite framework with user-defined code from the steering file
250 builtins.attr("exec")(steering_file_source_code.c_str(), boost::python::object(framework.attr("__dict__")));
251
252 // Call get_model with the parameters provided by the user
253 auto parameters = json.attr("loads")(m_specific_options.m_config.c_str());
254 auto model = framework.attr("get_model")(numberOfFeatures, numberOfSpectators,
255 numberOfEvents, m_specific_options.m_training_fraction, parameters);
256
257 // Call begin_fit with validation sample
258 for (uint64_t iEvent = 0; iEvent < numberOfValidationEvents; ++iEvent) {
259 training_data.loadEvent(iEvent);
261 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
262 X_v[iEvent * numberOfFeatures + iFeature] = (training_data.m_input[iFeature] - means[iFeature]) / stds[iFeature];
263 } else {
264 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
265 X_v[iEvent * numberOfFeatures + iFeature] = training_data.m_input[iFeature];
266 }
267 for (uint64_t iSpectator = 0; iSpectator < numberOfSpectators; ++iSpectator)
268 S_v[iEvent * numberOfSpectators + iSpectator] = training_data.m_spectators[iSpectator];
269 y_v[iEvent] = training_data.m_target;
270 w_v[iEvent] = training_data.m_weight;
271 }
272
273 auto ndarray_X_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X_v, NPY_FLOAT32, X_v.get()));
274 auto ndarray_S_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_S_v, NPY_FLOAT32, S_v.get()));
275 auto ndarray_y_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_y_v, NPY_FLOAT32, y_v.get()));
276 auto ndarray_w_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_w_v, NPY_FLOAT32, w_v.get()));
277
278 uint64_t nBatches = std::floor(numberOfTrainingEvents / batch_size);
279
280 auto state = framework.attr("begin_fit")(model, ndarray_X_v, ndarray_S_v, ndarray_y_v, ndarray_w_v, nBatches);
281
282 bool continue_loop = true;
283
284 std::vector<uint64_t> iteration_index_vector(numberOfTrainingEvents);
285 std::iota(std::begin(iteration_index_vector), std::end(iteration_index_vector), 0);
286
287 for (uint64_t iIteration = 0; (iIteration < m_specific_options.m_nIterations or m_specific_options.m_nIterations == 0)
288 and continue_loop; ++iIteration) {
289
290 // shuffle the indices on each iteration to get randomised batches
291 if (iIteration > 0) std::shuffle(std::begin(iteration_index_vector), std::end(iteration_index_vector), TRandomWrapper());
292
293 for (uint64_t iBatch = 0; iBatch < nBatches and continue_loop; ++iBatch) {
294
295 // Release Global Interpreter Lock in python to allow multithreading while reading root files
296 // also see: https://docs.python.org/3.5/c-api/init.html
297 PyThreadState* m_thread_state = PyEval_SaveThread();
298 for (uint64_t iEvent = 0; iEvent < batch_size; ++iEvent) {
299 training_data.loadEvent(iteration_index_vector.at(iEvent + iBatch * batch_size) + numberOfValidationEvents);
301 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
302 X[iEvent * numberOfFeatures + iFeature] = (training_data.m_input[iFeature] - means[iFeature]) / stds[iFeature];
303 } else {
304 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
305 X[iEvent * numberOfFeatures + iFeature] = training_data.m_input[iFeature];
306 }
307 for (uint64_t iSpectator = 0; iSpectator < numberOfSpectators; ++iSpectator)
308 S[iEvent * numberOfSpectators + iSpectator] = training_data.m_spectators[iSpectator];
309 y[iEvent] = training_data.m_target;
310 w[iEvent] = training_data.m_weight;
311 }
312
313 // Maybe slow, create ndarrays outside of loop?
314 auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
315 auto ndarray_S = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_S, NPY_FLOAT32, S.get()));
316 auto ndarray_y = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_y, NPY_FLOAT32, y.get()));
317 auto ndarray_w = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_w, NPY_FLOAT32, w.get()));
318
319 // Reactivate Global Interpreter Lock to safely execute python code
320 PyEval_RestoreThread(m_thread_state);
321 auto r = framework.attr("partial_fit")(state, ndarray_X, ndarray_S, ndarray_y,
322 ndarray_w, iIteration, iBatch);
323 boost::python::extract<bool> proxy(r);
324 if (proxy.check())
325 continue_loop = static_cast<bool>(proxy);
326 }
327 }
328
329 auto result = framework.attr("end_fit")(state);
330
331 auto pickle = boost::python::import("pickle");
332 auto file = builtins.attr("open")(custom_weightfile.c_str(), "wb");
333 pickle.attr("dump")(result, file);
334
335 auto steeringfile = builtins.attr("open")(custom_steeringfile.c_str(), "wb");
336 pickle.attr("dump")(steering_file_source_code.c_str(), steeringfile);
337
338 auto importances = framework.attr("feature_importance")(state);
339 if (len(importances) == 0) {
340 B2INFO("Python method returned empty feature importance. There won't be any information about the feature importance in the weightfile.");
341 } else if (numberOfFeatures != static_cast<uint64_t>(len(importances))) {
342 B2WARNING("Python method didn't return the correct number of importance value. I ignore the importances");
343 } else {
344 std::map<std::string, float> feature_importances;
345 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature) {
346 boost::python::extract<float> proxy(importances[iFeature]);
347 if (proxy.check()) {
348 feature_importances[m_general_options.m_variables[iFeature]] = static_cast<float>(proxy);
349 } else {
350 B2WARNING("Failed to convert importance output of the method to a float, using 0 instead");
351 feature_importances[m_general_options.m_variables[iFeature]] = 0.0;
352 }
353 }
354 weightfile.addFeatureImportance(feature_importances);
355 }
356
357 } catch (...) {
358 PyErr_Print();
359 PyErr_Clear();
360 B2ERROR("Failed calling train in PythonTeacher");
361 throw std::runtime_error(std::string("Failed calling train in PythonTeacher"));
362 }
363
364 weightfile.addOptions(m_general_options);
365 weightfile.addOptions(m_specific_options);
366 weightfile.addFile("Python_Weightfile", custom_weightfile);
367 weightfile.addFile("Python_Steeringfile", custom_steeringfile);
368 weightfile.addSignalFraction(training_data.getSignalFraction());
370 weightfile.addVector("Python_Means", means);
371 weightfile.addVector("Python_Stds", stds);
372 }
373
374 return weightfile;
375
376 }
377
379 {
381 }
382
383
385 {
386
387 std::string custom_weightfile = weightfile.generateFileName();
388 weightfile.getFile("Python_Weightfile", custom_weightfile);
389 weightfile.getOptions(m_general_options);
390 weightfile.getOptions(m_specific_options);
391
393 m_means = weightfile.getVector<float>("Python_Means");
394 m_stds = weightfile.getVector<float>("Python_Stds");
395 }
396
397 try {
398 auto pickle = boost::python::import("pickle");
399 auto builtins = boost::python::import("builtins");
400 m_framework = boost::python::import((std::string("basf2_mva_python_interface.") + m_specific_options.m_framework).c_str());
401
402 if (weightfile.containsElement("Python_Steeringfile")) {
403 std::string custom_steeringfile = weightfile.generateFileName();
404 weightfile.getFile("Python_Steeringfile", custom_steeringfile);
405 auto steeringfile = builtins.attr("open")(custom_steeringfile.c_str(), "rb");
406 auto source_code = pickle.attr("load")(steeringfile);
407 builtins.attr("exec")(boost::python::object(source_code), boost::python::object(m_framework.attr("__dict__")));
408 }
409
410 auto file = builtins.attr("open")(custom_weightfile.c_str(), "rb");
411 auto unpickled_fit_object = pickle.attr("load")(file);
412 m_state = m_framework.attr("load")(unpickled_fit_object);
413 } catch (...) {
414 PyErr_Print();
415 PyErr_Clear();
416 B2ERROR("Failed calling load in PythonExpert");
417 throw std::runtime_error("Failed calling load in PythonExpert");
418 }
419
420 }
421
422 std::vector<float> PythonExpert::apply(Dataset& test_data) const
423 {
424
425 uint64_t numberOfFeatures = test_data.getNumberOfFeatures();
426 uint64_t numberOfEvents = test_data.getNumberOfEvents();
427
428 auto X = std::unique_ptr<float[]>(new float[numberOfEvents * numberOfFeatures]);
429 npy_intp dimensions_X[2] = {static_cast<npy_intp>(numberOfEvents), static_cast<npy_intp>(numberOfFeatures)};
430
431 for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
432 test_data.loadEvent(iEvent);
434 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
435 X[iEvent * numberOfFeatures + iFeature] = (test_data.m_input[iFeature] - m_means[iFeature]) / m_stds[iFeature];
436 } else {
437 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
438 X[iEvent * numberOfFeatures + iFeature] = test_data.m_input[iFeature];
439 }
440 }
441
442 std::vector<float> probabilities(test_data.getNumberOfEvents(), std::numeric_limits<float>::quiet_NaN());
443
444 try {
445 auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
446 auto result = m_framework.attr("apply")(m_state, ndarray_X);
447 for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
448 // We have to do some nasty casting here, because the Python C-Api uses structs which are binary compatible
449 // to a PyObject but do not inherit from it!
450 probabilities[iEvent] = static_cast<float>(*static_cast<float*>(PyArray_GETPTR1(reinterpret_cast<PyArrayObject*>(result.ptr()),
451 iEvent)));
452 }
453 } catch (...) {
454 PyErr_Print();
455 PyErr_Clear();
456 B2ERROR("Failed calling applying PythonExpert");
457 throw std::runtime_error("Failed calling applying PythonExpert");
458 }
459
460 return probabilities;
461 }
462
463 std::vector<std::vector<float>> PythonExpert::applyMulticlass(Dataset& test_data) const
464 {
465
466 uint64_t numberOfFeatures = test_data.getNumberOfFeatures();
467 uint64_t numberOfEvents = test_data.getNumberOfEvents();
468
469 auto X = std::unique_ptr<float[]>(new float[numberOfEvents * numberOfFeatures]);
470 npy_intp dimensions_X[2] = {static_cast<npy_intp>(numberOfEvents), static_cast<npy_intp>(numberOfFeatures)};
471
472 for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
473 test_data.loadEvent(iEvent);
475 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
476 X[iEvent * numberOfFeatures + iFeature] = (test_data.m_input[iFeature] - m_means[iFeature]) / m_stds[iFeature];
477 } else {
478 for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
479 X[iEvent * numberOfFeatures + iFeature] = test_data.m_input[iFeature];
480 }
481 }
482
483 unsigned int nClasses = m_general_options.m_nClasses;
484 std::vector<std::vector<float>> probabilities(test_data.getNumberOfEvents(), std::vector<float>(nClasses,
485 std::numeric_limits<float>::quiet_NaN()));
486
487 try {
488 auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
489 auto result = m_framework.attr("apply")(m_state, ndarray_X);
490 for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
491 // We have to do some nasty casting here, because the Python C-Api uses structs which are binary compatible
492 // to a PyObject but do not inherit from it!
493 for (uint64_t iClass = 0; iClass < nClasses; ++iClass) {
494 probabilities[iEvent][iClass] = static_cast<float>(*static_cast<float*>(PyArray_GETPTR2(reinterpret_cast<PyArrayObject*>
495 (result.ptr()),
496 iEvent, iClass)));
497 }
498 }
499 } catch (...) {
500 PyErr_Print();
501 PyErr_Clear();
502 B2ERROR("Failed calling applying PythonExpert");
503 throw std::runtime_error("Failed calling applying PythonExpert");
504 }
505
506 return probabilities;
507 }
508 }
510}
static std::string findFile(const std::string &path, bool silent=false)
Search for given file or directory in local or central release directory, and return absolute path if...
Definition: FileSystem.cc:151
Abstract base class of all Datasets given to the MVA interface The current event can always be access...
Definition: Dataset.h:33
GeneralOptions m_general_options
General options loaded from the weightfile.
Definition: Expert.h:70
General options which are shared by all MVA trainings.
Definition: Options.h:62
std::vector< std::string > m_variables
Vector of all variables (branch names) used in the training.
Definition: Options.h:86
unsigned int m_nClasses
Number of classes in a classification problem.
Definition: Options.h:89
PythonExpert()
Constructs a new Python Expert.
Definition: Python.cc:378
boost::python::object m_state
current state object of method
Definition: Python.h:142
std::vector< float > m_stds
Stds of all features for normalization.
Definition: Python.h:144
boost::python::object m_framework
Framework module.
Definition: Python.h:141
virtual std::vector< float > apply(Dataset &test_data) const override
Apply this expert onto a dataset.
Definition: Python.cc:422
PythonOptions m_specific_options
Method specific options.
Definition: Python.h:140
virtual void load(Weightfile &weightfile) override
Load the expert from a Weightfile.
Definition: Python.cc:384
std::vector< float > m_means
Means of all features for normalization.
Definition: Python.h:143
virtual std::vector< std::vector< float > > applyMulticlass(Dataset &test_data) const override
Apply this expert onto a dataset for multiclass problem.
Definition: Python.cc:463
Singleton class which handles the initialization and finalization of Python and numpy.
Definition: Python.cc:82
void * init_numpy()
Helper function which initializes array system of numpy.
Definition: Python.cc:131
~PythonInitializerSingleton()
Destructor of PythonInitializerSingleton.
Definition: Python.cc:114
bool m_initialized_python
Member which keeps indicate if this class initialized python.
Definition: Python.cc:138
static PythonInitializerSingleton & GetInstance()
Return static instance of PythonInitializerSingleton.
Definition: Python.cc:141
PythonInitializerSingleton()
Constructor of PythonInitializerSingleton.
Definition: Python.cc:99
PythonInitializerSingleton(const PythonInitializerSingleton &)=delete
Forbid copy constructor of PythonInitializerSingleton.
Options for the Python MVA method.
Definition: Python.h:52
unsigned int m_nIterations
Number of iterations through the whole data.
Definition: Python.h:81
std::string m_steering_file
steering file provided by the user to override the functions in the framework
Definition: Python.h:78
std::string m_framework
framework to use e.g.
Definition: Python.h:77
std::string m_config
Config string in json, which is passed to the get model function.
Definition: Python.h:79
virtual po::options_description getDescription() override
Returns a program options description for all available options.
Definition: Python.cc:62
bool m_normalize
Normalize the inputs (shift mean to zero and std to 1)
Definition: Python.h:83
double m_training_fraction
Fraction of data passed as training data, rest is passed as test data.
Definition: Python.h:82
virtual void load(const boost::property_tree::ptree &pt) override
Load mechanism to load Options from a xml tree.
Definition: Python.cc:29
virtual void save(boost::property_tree::ptree &pt) const override
Save mechanism to store Options in a xml tree.
Definition: Python.cc:50
unsigned int m_mini_batch_size
Mini batch size, 0 passes the whole data in one call.
Definition: Python.h:80
PythonTeacher(const GeneralOptions &general_options, const PythonOptions &specific_options)
Constructs a new teacher using the GeneralOptions and specific options of this training.
Definition: Python.cc:148
PythonOptions m_specific_options
Method specific options.
Definition: Python.h:107
virtual Weightfile train(Dataset &training_data) const override
Train a mva method using the given dataset returning a Weightfile.
Definition: Python.cc:156
Abstract base class of all Teachers Each MVA library has its own implementation of this class,...
Definition: Teacher.h:29
GeneralOptions m_general_options
GeneralOptions containing all shared options.
Definition: Teacher.h:49
The Weightfile class serializes all information about a training into an xml tree.
Definition: Weightfile.h:38
void addFile(const std::string &identifier, const std::string &custom_weightfile)
Add a file (mostly a weightfile from a MVA library) to our Weightfile.
Definition: Weightfile.cc:115
bool containsElement(const std::string &identifier) const
Returns true if given element is stored in the property tree.
Definition: Weightfile.h:160
std::vector< T > getVector(const std::string &identifier) const
Returns a stored vector from the xml tree.
Definition: Weightfile.h:181
void addOptions(const Options &options)
Add an Option object to the xml tree.
Definition: Weightfile.cc:62
void getOptions(Options &options) const
Fills an Option object from the xml tree.
Definition: Weightfile.cc:67
void addSignalFraction(float signal_fraction)
Saves the signal fraction in the xml tree.
Definition: Weightfile.cc:95
void addFeatureImportance(const std::map< std::string, float > &importance)
Add variable importance.
Definition: Weightfile.cc:72
void addVector(const std::string &identifier, const std::vector< T > &vector)
Add a vector to the xml tree.
Definition: Weightfile.h:125
std::string generateFileName(const std::string &suffix="")
Returns a temporary filename with the given suffix.
Definition: Weightfile.cc:105
void getFile(const std::string &identifier, const std::string &custom_weightfile)
Creates a file from our weightfile (mostly this will be a weightfile of an MVA library)
Definition: Weightfile.cc:138
Abstract base class for different kinds of events.
Wrap TRandom to be useable as a uniform random number generator with STL algorithms like std::shuffle...