Returns a program options description for all available options.
63 {
64 po::options_description description("Python options");
65 description.add_options()
67 "Framework which should be used. Currently supported are sklearn, xgboost, tensorflow, keras, torch, and theano")
68 (
"steering_file", po::value<std::string>(&
m_steering_file),
"Steering file which describes the model")
69 (
"mini_batch_size", po::value<unsigned int>(&
m_mini_batch_size),
"Size of the mini batch given to partial_fit function")
70 (
"nIterations", po::value<unsigned int>(&
m_nIterations),
"Number of iterations")
71 (
"normalize", po::value<bool>(&
m_normalize),
"Normalize input data (shift mean to 0 and std to 1)")
73 "Training fraction used to split up dataset in training and validation sample.")
74 (
"config", po::value<std::string>(&
m_config),
"Json encoded python object passed to begin_fit function");
75 return description;
76 }
unsigned int m_nIterations
Number of iterations through the whole data.
std::string m_steering_file
steering file provided by the user to override the functions in the framework
std::string m_framework
framework to use e.g.
std::string m_config
Config string in json, which is passed to the get model function.
bool m_normalize
Normalize the inputs (shift mean to zero and std to 1)
double m_training_fraction
Fraction of data passed as training data, rest is passed as test data.
unsigned int m_mini_batch_size
Mini batch size, 0 passes the whole data in one call.