Belle II Software development
CDCDedx2DCellAlgorithm Class Reference

A calibration algorithm for CDC dE/dx electron 2D enta vs doca correction. More...

#include <CDCDedx2DCellAlgorithm.h>

Inheritance diagram for CDCDedx2DCellAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 CDCDedx2DCellAlgorithm ()
 Constructor: Sets the description the properties and the parameters of the algorithm.
 
virtual ~CDCDedx2DCellAlgorithm ()
 Destructor.
 
void setGlobalEntaBins (int value)
 Set etna angle bins, Global in multiple of 8.
 
void setGlobalDocaBins (int value)
 Set doca angle bins, Global anything is fine for the moment.
 
void setAsymmetricBins (bool value)
 Set asym bins flag to on or off.
 
void setRotationSymmetry (bool value)
 Set asym bins flag to on or off.
 
void setOutFilePrefix (const std::string &value)
 adding prefix to filename for uniqueness in each iter
 
void setMonitoringPlots (bool value=false)
 function to set flag active for plotting
 
int GetRotationSymmericBin (int nbin, int ibin)
 function to set rotation symmetry
 
void GetVariableBin (int nbin, std::vector< int > &nBinEnta0to100Per)
 function to set variable bins
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 2D Cell algorithm algorithm
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

int fnEntaBinG
 Save arithmetic and truncated mean for the 'dedx' values.
 
int fnDocaBinG
 doca angle bins, Global
 
int fnEntaBinL
 etna angle bins, Local
 
int fnDocaBinL
 doca angle bins, Local
 
Double_t feaLE
 Lower edge of enta angle.
 
Double_t feaUE
 Upper edge of enta angle.
 
Double_t feaBS
 Binwidth edge of enta angle.
 
Double_t fdocaLE
 Lower edge of doca.
 
Double_t fdocaUE
 Upper edge of doca.
 
Double_t fdocaBS
 Binwidth edge of doca.
 
std::string fSetPrefix
 prefix to filename
 
std::vector< int > fDocaBinNums
 Vector for enta asym bin #.
 
std::vector< double > fDocaBinValues
 Vector for doca asym bin #.
 
std::vector< int > fEntaBinNums
 Vector for enta asym bin values.
 
std::vector< double > fEntaBinValues
 Vector for doca asym bin values.
 
bool IsLocalBin
 if local variable bin requested

 
bool IsMakePlots
 produce plots for status
 
bool IsRS
 if rotation symmtery requested
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

A calibration algorithm for CDC dE/dx electron 2D enta vs doca correction.

Definition at line 26 of file CDCDedx2DCellAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ CDCDedx2DCellAlgorithm()

Constructor: Sets the description the properties and the parameters of the algorithm.

Definition at line 30 of file CDCDedx2DCellAlgorithm.cc.

30 :
31 CalibrationAlgorithm("CDCDedxElectronCollector"),
32 fnEntaBinG(128),
33 fnDocaBinG(64),
34 fnEntaBinL(64),
35 fnDocaBinL(28),
36 feaLE(-TMath::Pi() / 2),
37 feaUE(+TMath::Pi() / 2),
38 fdocaLE(-1.50),
39 fdocaUE(1.50),
40 fSetPrefix("_it0"),
41 IsLocalBin(true),
42 IsMakePlots(false),
43 IsRS(true)
44{
45 // Set module properties
46 setDescription("A calibration algorithm for the CDC dE/dx two dimensional correction");
47}
bool IsRS
if rotation symmtery requested
bool IsLocalBin
if local variable bin requested
Double_t fdocaUE
Upper edge of doca.
Double_t fdocaLE
Lower edge of doca.
int fnDocaBinG
doca angle bins, Global
int fnDocaBinL
doca angle bins, Local
int fnEntaBinL
etna angle bins, Local
std::string fSetPrefix
prefix to filename
bool IsMakePlots
produce plots for status
int fnEntaBinG
Save arithmetic and truncated mean for the 'dedx' values.
Double_t feaLE
Lower edge of enta angle.
Double_t feaUE
Upper edge of enta angle.
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~CDCDedx2DCellAlgorithm()

virtual ~CDCDedx2DCellAlgorithm ( )
inlinevirtual

Destructor.

Definition at line 38 of file CDCDedx2DCellAlgorithm.h.

38{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

2D Cell algorithm algorithm

Implements CalibrationAlgorithm.

Definition at line 53 of file CDCDedx2DCellAlgorithm.cc.

54{
55
56 //reading electron collector TREE
57 auto ttree = getObjectPtr<TTree>("tree");
58 if (ttree->GetEntries() < 100)return c_NotEnoughData;
59
60 std::vector<double>* dedxhit = 0, *doca = 0, *enta = 0;
61 std::vector<int>* layer = 0;
62
63 ttree->SetBranchAddress("dedxhit", &dedxhit);
64 ttree->SetBranchAddress("layer", &layer);
65 ttree->SetBranchAddress("docaRS", &doca);
66 ttree->SetBranchAddress("entaRS", &enta);
67
68 // Setting up bins for doca and entra angle
71
72 std::vector<int> globalbinsEnta, globalbinsDoca;
73 for (int ibin = 0; ibin < fnEntaBinG; ibin++)globalbinsEnta.push_back(ibin);
74 for (int ibin = 0; ibin < fnDocaBinG; ibin++)globalbinsDoca.push_back(ibin);
75
76 if (!IsLocalBin) {
77 fEntaBinNums = globalbinsEnta;
79 } else {
81 fnEntaBinL = fEntaBinNums.at(fEntaBinNums.size() - 1) + 1;
82 }
83
84 fDocaBinNums = globalbinsDoca;
86
87 std::vector<std::vector<TH1F*>> hILdEdxhitInEntaDocaBin(fnEntaBinL, std::vector<TH1F*>(fnDocaBinL, 0));
88 std::vector<std::vector<TH1F*>> hOLdEdxhitInEntaDocaBin(fnEntaBinL, std::vector<TH1F*>(fnDocaBinL, 0));
89 Double_t ifeaLE = 0, ifeaUE = 0, ifdocaLE = 0, ifdocaUE = 0;
90
91 for (int iea = 0; iea < fnEntaBinL; iea++) {
92 if (IsLocalBin) {
93 ifeaLE = fEntaBinValues.at(iea);
94 ifeaUE = fEntaBinValues.at(iea + 1);
95 } else {
96 ifeaLE = iea * feaBS - feaUE; //- because of -ive range shifting
97 ifeaUE = ifeaLE + feaBS;
98 }
99
100 for (int idoca = 0; idoca < fnDocaBinL; idoca++) {
101
102 ifdocaLE = idoca * fdocaBS - fdocaUE;
103 ifdocaUE = ifdocaLE + fdocaBS;
104
105 hILdEdxhitInEntaDocaBin[iea][idoca] = new TH1F(Form("hILdEdxhitInEntaBin%dDocaBin%d", iea, idoca), "bla-bla", 500, 0., 5.);
106 hILdEdxhitInEntaDocaBin[iea][idoca]->SetTitle(Form("IL: EntA = (%0.03f to %0.03f) and Doca = (%0.03f to %0.03f)", ifeaLE,
107 ifeaUE, ifdocaLE, ifdocaUE));
108 hILdEdxhitInEntaDocaBin[iea][idoca]->GetXaxis()->SetTitle("dedxhits in Inner Layer");
109 hILdEdxhitInEntaDocaBin[iea][idoca]->GetYaxis()->SetTitle("Entries");
110
111 hOLdEdxhitInEntaDocaBin[iea][idoca] = new TH1F(Form("hOLdEdxhitInEntaBin%dDocaBin%d", iea, idoca), "bla-bla", 500, 0., 5.);
112 hOLdEdxhitInEntaDocaBin[iea][idoca]->SetTitle(Form("OL: EntA = (%0.03f to %0.03f) and Doca = (%0.03f to %0.03f)", ifeaLE,
113 ifeaUE, ifdocaLE, ifdocaUE));
114 hOLdEdxhitInEntaDocaBin[iea][idoca]->GetXaxis()->SetTitle("dedxhits in Outer Layer");
115 hOLdEdxhitInEntaDocaBin[iea][idoca]->GetYaxis()->SetTitle("Entries");
116
117 }
118 }
119
120 //Doca vs Enta stats
121 TH2D* hILDocaEntaG = new TH2D("hILDocaEntaG", "Doca vs EntA: Inner Layer", fnDocaBinG, fdocaLE, fdocaUE, fnEntaBinG, feaLE, feaUE);
122 hILDocaEntaG->GetXaxis()->SetTitle("Doca");
123 hILDocaEntaG->GetYaxis()->SetTitle("Entrance angle (#theta)");
124
125 TH2D* hOLDocaEntaG = new TH2D("hOLDocaEntaG", "Doca vs EntA: Outer Layer", fnDocaBinG, fdocaLE, fdocaUE, fnEntaBinG, feaLE, feaUE);
126 hOLDocaEntaG->GetXaxis()->SetTitle("Doca");
127 hOLDocaEntaG->GetYaxis()->SetTitle("Entrance angle (#theta)");
128
129 //when local enta angle is demanded
130 Double_t* RmapEntaValue = &fEntaBinValues[0];
131 TH2D* hILDocaEntaL = new TH2D("hILDocaEntaL", "Doca vs EntA: Inner Layer (rebin)", fnDocaBinL, fdocaLE, fdocaUE, fnEntaBinL,
132 RmapEntaValue);
133 hILDocaEntaL->GetXaxis()->SetTitle("Doca");
134 hILDocaEntaL->GetYaxis()->SetTitle("Entrance angle (#theta)");
135
136 TH2D* hOLDocaEntaL = new TH2D("hOLDocaEntaL", "Doca vs EntA: Outer Layer (rebin)", fnDocaBinL, fdocaLE, fdocaUE, fnEntaBinL,
137 RmapEntaValue);
138 hOLDocaEntaL->GetXaxis()->SetTitle("Doca");
139 hOLDocaEntaL->GetYaxis()->SetTitle("Entrance angle (#theta)");
140
141 TH1D* hILdEdx_all = new TH1D("hILdEdx_all", "", 500, 0., 5.);
142 TH1D* hOLdEdx_all = new TH1D("hOLdEdx_all", "", 500, 0., 5.);
143
144
145 Int_t ibinEA = 0, ibinDOCA = 0;
146 for (int i = 0; i < ttree->GetEntries(); ++i) {
147
148 ttree->GetEvent(i);
149
150 for (unsigned int j = 0; j < dedxhit->size(); ++j) {
151
152 if (dedxhit->at(j) == 0) continue;
153
154 Double_t ieaHit = enta->at(j);
155 if (ieaHit < -TMath::Pi() / 2.0) ieaHit += TMath::Pi() / 2.0;
156 else if (ieaHit > TMath::Pi() / 2.0) ieaHit -= TMath::Pi() / 2.0;
157 if (abs(ieaHit) > TMath::Pi() / 2.0) continue;
158
159 Double_t idocaHit = doca->at(j);
160 if (abs(idocaHit) > 1.50) continue;
161
162 //Bin corresponds to enta and doca value
163 ibinEA = (ieaHit - feaLE) / feaBS ; //from 0
164
165 ibinDOCA = (idocaHit - fdocaLE) / fdocaBS;
166
167 if (ibinEA >= fnEntaBinG || ibinDOCA >= fnDocaBinG) continue; //bin stats from 0
168
169 if (IsLocalBin) ibinEA = fEntaBinNums.at(ibinEA);
170
171 if (layer->at(j) < 8) {
172 hILDocaEntaG->Fill(idocaHit, ieaHit);
173 if (IsLocalBin)hILDocaEntaL->Fill(idocaHit, ieaHit);
174 hILdEdx_all->Fill(dedxhit->at(j));
175 hILdEdxhitInEntaDocaBin[ibinEA][ibinDOCA]->Fill(dedxhit->at(j));
176 } else {
177 hOLDocaEntaG->Fill(idocaHit, ieaHit);
178 if (IsLocalBin)hOLDocaEntaL->Fill(idocaHit, ieaHit);
179 hOLdEdx_all->Fill(dedxhit->at(j));
180 hOLdEdxhitInEntaDocaBin[ibinEA][ibinDOCA]->Fill(dedxhit->at(j));
181 }
182 }
183 }
184
185
186 if (IsMakePlots) {
187 TCanvas* ctmpde = new TCanvas("DocavsEnta", "Doca vs Enta distributions", 800, 400);
188 if (IsLocalBin) {
189 ctmpde->SetCanvasSize(800, 800);
190 ctmpde->Divide(2, 2);
191 ctmpde->cd(1); hILDocaEntaG->Draw("colz");
192 ctmpde->cd(2); hOLDocaEntaG->Draw("colz");
193 ctmpde->cd(3); hILDocaEntaL->Draw("colz");
194 ctmpde->cd(4); hOLDocaEntaL->Draw("colz");
195 } else {
196 ctmpde->Divide(2, 1);
197 ctmpde->cd(1); hILDocaEntaG->Draw("colz");
198 ctmpde->cd(2); hOLDocaEntaG->Draw("colz");
199 }
200 ctmpde->SaveAs(Form("DocavsEnta_%s.pdf", fSetPrefix.data()));
201 ctmpde->SaveAs(Form("DocavsEnta_%s.root", fSetPrefix.data()));
202
203 TCanvas* ctem = new TCanvas("Layerhisto", "Inner and Outer Histo", 600, 600);
204 hOLdEdx_all->Draw("histo");
205 hILdEdx_all->SetMarkerColor(kRed);
206 hILdEdx_all->Draw("same histo");
207 ctem->SaveAs(Form("Layerhistodedxhit_TwoDCorr_%s.pdf", fSetPrefix.data()));
208 }
209
210
211 //Calculating 5-75% global truncation mean
212 double InsumPer5 = 0.0, InsumPer75 = 0.0;
213 double OutsumPer5 = 0.0, OutsumPer75 = 0.0;
214 double InLayInt = hILdEdx_all->Integral();
215 double OutLayInt = hOLdEdx_all->Integral();
216
217 Int_t lBinInLayer = 1, hBinInLayer = 1;
218 Int_t lBinOutLayer = 1, hBinOutLayer = 1;
219
220 for (int ibin = 1; ibin <= hILdEdx_all->GetNbinsX(); ibin++) {
221
222 if (InsumPer5 <= 0.05 * InLayInt) {
223 InsumPer5 += hILdEdx_all->GetBinContent(ibin);
224 lBinInLayer = ibin;
225 }
226
227 if (InsumPer75 <= 0.75 * InLayInt) {
228 InsumPer75 += hILdEdx_all->GetBinContent(ibin);
229 hBinInLayer = ibin;
230 }
231
232 if (OutsumPer5 <= 0.05 * OutLayInt) {
233 OutsumPer5 += hOLdEdx_all->GetBinContent(ibin);
234 lBinOutLayer = ibin;
235 }
236
237 if (OutsumPer75 <= 0.75 * OutLayInt) {
238 OutsumPer75 += hOLdEdx_all->GetBinContent(ibin);
239 hBinOutLayer = ibin;
240 }
241 }
242
243 short version = 1;
244 TCanvas* ctmp = new TCanvas("tmp", "tmp", 1200, 1200);
245 ctmp->Divide(4, 4);
246 std::stringstream psname; psname << Form("dedx_2dcell_%s.pdf[", fSetPrefix.data());
247 TLine* tl = new TLine();
248 tl->SetLineColor(kRed);
249
250 TBox* tb = new TBox();
251
252 if (IsMakePlots) {
253 ctmp->Print(psname.str().c_str());
254 psname.str(""); psname << Form("dedx_2dcell_%s.pdf", fSetPrefix.data());
255 }
256
257 gStyle->SetOptStat("nemriou");
258 TH1D* htemp = NULL;
259 std::vector<TH2F> twodcors;
260 TH2F tempTwoD = TH2F("tempTwoD", "dE/dx in bins of DOCA/Enta;DOCA;Entrance Angle", fnDocaBinL, fdocaLE, fdocaUE, fnEntaBinL,
261 RmapEntaValue);
262 TH2F twodcor = TH2F("twodcorrection", "dE/dx in bins of DOCA/Enta;DOCA;Entrance Angle", fnDocaBinG, fdocaLE, fdocaUE, fnEntaBinG,
263 feaLE, feaUE);
264
265 std::ofstream file2DILout;
266
267 for (int iIOLayer = 0; iIOLayer <= 1; iIOLayer++) {
268
269 file2DILout.open(Form("f2D_Constants_Local_Layer%d_%s.txt", iIOLayer, fSetPrefix.data()));
270
271 int startfrom = 1, endat = 1;
272 if (iIOLayer == 0) {
273 startfrom = lBinInLayer; endat = hBinInLayer;
274 } else {
275 startfrom = lBinOutLayer; endat = hBinOutLayer;
276 }
277
278 //std::cout << "Layer I/O # = " << iIOLayer << std::endl;
279 for (int iea = 1; iea <= fnEntaBinL; iea++) {
280
281 Int_t ieaprime = iea; //rotation symmtery for 1<->3 and 4<->2
282 if (IsRS)ieaprime = GetRotationSymmericBin(fnEntaBinL, iea);
283
284 for (int idoca = 1; idoca <= fnDocaBinL; idoca++) {
285
286 if (iIOLayer == 0)
287 htemp = (TH1D*)hILdEdxhitInEntaDocaBin[ieaprime - 1][idoca - 1]->Clone(Form("hL%d_Ea%d_Doca%d", iIOLayer, iea, idoca));
288 else if (iIOLayer == 1)
289 htemp = (TH1D*)hOLdEdxhitInEntaDocaBin[ieaprime - 1][idoca - 1]->Clone(Form("hL%d_Ea%d_Doca%d", iIOLayer, iea, idoca));
290 else continue;
291
292 double truncMean = 1.0;
293 if (htemp->GetEntries() < 400) truncMean = 1.0; //low stats
294 else {
295 double binweights = 0.0;
296 int sumofbc = 0;
297 for (int ibin = startfrom; ibin <= endat; ibin++) {
298 //std::cout << " dedxhit bin = " << ibin << ", Entries =" << htemp->GetBinContent(ibin) << std::endl;
299 if (htemp->GetBinContent(ibin) > 0) {
300 binweights += (htemp->GetBinContent(ibin) * htemp->GetBinCenter(ibin));
301 sumofbc += htemp->GetBinContent(ibin);
302 }
303 }
304 if (sumofbc > 0)truncMean = (double)(binweights / sumofbc);
305 else truncMean = 1.0;
306 }
307
308 if (truncMean <= 0)truncMean = 1.0; //protection only
309 tempTwoD.SetBinContent(idoca, iea, truncMean); //binning starts at 1
310
311 if (IsMakePlots) {
312 ctmp->cd(((idoca - 1) % 16) + 1);
313 htemp->SetTitle(Form("%s, mean = %0.4f", htemp->GetTitle(), truncMean));
314 htemp->SetFillColorAlpha(kGreen, 0.30);
315 if (truncMean >= 1.02 || truncMean <= 0.98)htemp->SetFillColor(kYellow);
316 if (truncMean >= 1.05 || truncMean <= 0.95)htemp->SetFillColor(kOrange);
317 if (truncMean >= 1.10 || truncMean <= 0.90)htemp->SetFillColor(kRed);
318 htemp->DrawClone(); //clone is nessesory for pointer survival
319 tl->SetLineColor(kRed);
320 tl->SetX1(truncMean); tl->SetX2(truncMean);
321 tl->SetY1(0); tl->SetY2(htemp->GetMaximum());
322 tl->DrawClone("same");
323
324 tb->SetLineColor(kPink);
325 tb->SetLineStyle(6);
326 tb->SetFillColorAlpha(kPink, 0.15);
327 tb->SetX1(htemp->GetBinLowEdge(startfrom));
328 tb->SetY1(0);
329 tb->SetX2(htemp->GetBinLowEdge(endat));
330 tb->SetY2(htemp->GetMaximum());
331 tb->DrawClone("same");
332 if (idoca % 16 == 0)ctmp->Print(psname.str().c_str());
333 }
334
335 file2DILout << iea << ", \t" << idoca << ", \t" << truncMean << "\n";
336 htemp->Reset();
337 }
338 }
339
340 //conversion from local to global
341 for (int iea = 0; iea < fnEntaBinG; iea++) {
342 ibinEA = iea;
343 if (IsLocalBin)ibinEA = fEntaBinNums.at(iea);
344 for (int idoca = 0; idoca < fnDocaBinG; idoca++) {
345 ibinDOCA = idoca;
346 twodcor.SetBinContent(idoca + 1, iea + 1, tempTwoD.GetBinContent(ibinDOCA + 1, ibinEA + 1));
347 }
348 }
349
350 if (iIOLayer == 0)twodcor.SetTitle("InnerLayer: dE/dx in bins of DOCA/Enta");
351 else if (iIOLayer == 1)twodcor.SetTitle("OuterLayer: dE/dx in bins of DOCA/Enta");
352 twodcors.push_back(twodcor);
353 twodcor.Reset();
354 tempTwoD.Reset();
355 file2DILout.close();
356 }
357
358 if (IsMakePlots) {
359 psname.str(""); psname << Form("dedx_2dcell_%s.pdf]", fSetPrefix.data());
360 ctmp->Print(psname.str().c_str());
361
362 // //Drawing final constants
363 TCanvas* cconst = new TCanvas("FinalConstantHistoMap", "Inner and Outer Histo", 800, 400);
364 cconst->Divide(2, 1);
365 cconst->cd(1); twodcors.at(0).Draw("colz");
366 cconst->cd(2); twodcors.at(1).Draw("colz");
367 cconst->SaveAs(Form("Final2DConstantMap_wGlobalBin_%s.pdf", fSetPrefix.data()));
368 cconst->SaveAs(Form("Final2DConstantMap_wGlobalBin_%s.root", fSetPrefix.data()));
369 }
370
371
372 B2INFO("dE/dx calibration done for 2D correction");
373 CDCDedx2DCell* gain = new CDCDedx2DCell(version, twodcors);
374 saveCalibration(gain, "CDCDedx2DCell");
375
376 delete htemp;
377 delete ctmp;
378 delete tl;
379 delete tb;
380 return c_OK;
381
382}
std::vector< double > fEntaBinValues
Vector for doca asym bin values.
Double_t feaBS
Binwidth edge of enta angle.
std::vector< int > fEntaBinNums
Vector for enta asym bin values.
Double_t fdocaBS
Binwidth edge of doca.
int GetRotationSymmericBin(int nbin, int ibin)
function to set rotation symmetry
std::vector< int > fDocaBinNums
Vector for enta asym bin #.
void GetVariableBin(int nbin, std::vector< int > &nBinEnta0to100Per)
function to set variable bins
dE/dx wire gain calibration constants
Definition: CDCDedx2DCell.h:26
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ GetRotationSymmericBin()

int GetRotationSymmericBin ( int  nbin,
int  ibin 
)
inline

function to set rotation symmetry

Definition at line 72 of file CDCDedx2DCellAlgorithm.h.

73 {
74
75 if (nbin % 4 != 0)return -1;
76 int jbin;
77 if (ibin <= nbin / 4) jbin = ibin + nbin / 2 ;
78 else if (ibin > 3 * nbin / 4) jbin = ibin - nbin / 2 ;
79 else jbin = ibin;
80
81 return jbin;
82 }

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ GetVariableBin()

void GetVariableBin ( int  nbin,
std::vector< int > &  nBinEnta0to100Per 
)
inline

function to set variable bins

Definition at line 87 of file CDCDedx2DCellAlgorithm.h.

88 {
89
90 if (nbin % 8 != 0) {
91 std::cout << "Please select global in multiple of 8 " << std::endl;
92 return ;
93 }
94
95 int jbin = -1;
96 std::vector<int> nBinEnta0to25Per;
97 for (int ibin = 0; ibin < nbin / 4; ibin++) {
98 if (ibin < nbin / 8) jbin++;
99 else if (TMath::Abs(ibin - nbin / 8) % 2 == 0)jbin++;
100 nBinEnta0to25Per.push_back(jbin);
101 }
102
103 std::vector<int> temp = nBinEnta0to25Per;
104 std::reverse(temp.begin(), temp.end());
105
106 std::vector<int> nBinEnta25to50Per; //second half (0 to pi/2)
107 for (unsigned int it = 0; it < temp.size(); ++it)nBinEnta25to50Per.push_back(2 * jbin - temp.at(it) + 1);
108
109 std::vector<int> nBinEnta0to50Per = nBinEnta0to25Per;
110 nBinEnta0to50Per.insert(nBinEnta0to50Per.end(), nBinEnta25to50Per.begin(), nBinEnta25to50Per.end());
111
112 std::vector<int> nBinEnta50to100Per;
113 for (unsigned int it = 0; it < nBinEnta0to50Per.size(); ++it) {
114 nBinEnta50to100Per.push_back(nBinEnta0to50Per.at(nBinEnta0to50Per.size() - 1) + nBinEnta0to50Per.at(it) + 1);
115 }
116
117 nBinEnta0to100Per = nBinEnta0to50Per;
118 nBinEnta0to100Per.insert(nBinEnta0to100Per.end(), nBinEnta50to100Per.begin(), nBinEnta50to100Per.end());
119
120 TH1F* tempEnta = new TH1F("tempEnta", "tempEnta", fnEntaBinG, feaLE, feaUE);
121 fEntaBinValues.push_back(tempEnta->GetBinLowEdge(1)); //first and last manual
122 for (unsigned int i = 0; i < nBinEnta0to100Per.size() - 1; ++i) {
123 if (nBinEnta0to100Per.at(i) < nBinEnta0to100Per.at(i + 1)) {
124 double binval = tempEnta->GetBinLowEdge(i + 1) + tempEnta->GetBinWidth(i + 1);
125 if (TMath::Abs(binval) < 10e-5)binval = 0; //avoid infinite deep
126 fEntaBinValues.push_back(binval);
127 } else continue;
128 }
129 fEntaBinValues.push_back(tempEnta->GetBinLowEdge(fnEntaBinG) + tempEnta->GetBinWidth(fnEntaBinG));
130 delete tempEnta;
131 }

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setAsymmetricBins()

void setAsymmetricBins ( bool  value)
inline

Set asym bins flag to on or off.

Definition at line 53 of file CDCDedx2DCellAlgorithm.h.

53{IsLocalBin = value;}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setGlobalDocaBins()

void setGlobalDocaBins ( int  value)
inline

Set doca angle bins, Global anything is fine for the moment.

Definition at line 48 of file CDCDedx2DCellAlgorithm.h.

48{fnDocaBinG = value;}

◆ setGlobalEntaBins()

void setGlobalEntaBins ( int  value)
inline

Set etna angle bins, Global in multiple of 8.

Definition at line 43 of file CDCDedx2DCellAlgorithm.h.

43{fnEntaBinG = value;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMonitoringPlots()

void setMonitoringPlots ( bool  value = false)
inline

function to set flag active for plotting

Definition at line 68 of file CDCDedx2DCellAlgorithm.h.

68{IsMakePlots = value;}

◆ setOutFilePrefix()

void setOutFilePrefix ( const std::string &  value)
inline

adding prefix to filename for uniqueness in each iter

Definition at line 63 of file CDCDedx2DCellAlgorithm.h.

63{fSetPrefix = value;}

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setRotationSymmetry()

void setRotationSymmetry ( bool  value)
inline

Set asym bins flag to on or off.

Definition at line 58 of file CDCDedx2DCellAlgorithm.h.

58{IsRS = value;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ fDocaBinNums

std::vector<int> fDocaBinNums
private

Vector for enta asym bin #.

Definition at line 162 of file CDCDedx2DCellAlgorithm.h.

◆ fDocaBinValues

std::vector<double> fDocaBinValues
private

Vector for doca asym bin #.

Definition at line 163 of file CDCDedx2DCellAlgorithm.h.

◆ fdocaBS

Double_t fdocaBS
private

Binwidth edge of doca.

Definition at line 159 of file CDCDedx2DCellAlgorithm.h.

◆ fdocaLE

Double_t fdocaLE
private

Lower edge of doca.

Definition at line 157 of file CDCDedx2DCellAlgorithm.h.

◆ fdocaUE

Double_t fdocaUE
private

Upper edge of doca.

Definition at line 158 of file CDCDedx2DCellAlgorithm.h.

◆ feaBS

Double_t feaBS
private

Binwidth edge of enta angle.

Definition at line 155 of file CDCDedx2DCellAlgorithm.h.

◆ feaLE

Double_t feaLE
private

Lower edge of enta angle.

Definition at line 153 of file CDCDedx2DCellAlgorithm.h.

◆ feaUE

Double_t feaUE
private

Upper edge of enta angle.

Definition at line 154 of file CDCDedx2DCellAlgorithm.h.

◆ fEntaBinNums

std::vector<int> fEntaBinNums
private

Vector for enta asym bin values.

Definition at line 165 of file CDCDedx2DCellAlgorithm.h.

◆ fEntaBinValues

std::vector<double> fEntaBinValues
private

Vector for doca asym bin values.

Definition at line 166 of file CDCDedx2DCellAlgorithm.h.

◆ fnDocaBinG

int fnDocaBinG
private

doca angle bins, Global

Definition at line 149 of file CDCDedx2DCellAlgorithm.h.

◆ fnDocaBinL

int fnDocaBinL
private

doca angle bins, Local

Definition at line 151 of file CDCDedx2DCellAlgorithm.h.

◆ fnEntaBinG

int fnEntaBinG
private

Save arithmetic and truncated mean for the 'dedx' values.

Parameters
dedxinput values
removeLowestlowest fraction of hits to remove (0.05)
removeHighesthighest fraction of hits to remove (0.25) etna angle bins, Global

Definition at line 148 of file CDCDedx2DCellAlgorithm.h.

◆ fnEntaBinL

int fnEntaBinL
private

etna angle bins, Local

Definition at line 150 of file CDCDedx2DCellAlgorithm.h.

◆ fSetPrefix

std::string fSetPrefix
private

prefix to filename

Definition at line 161 of file CDCDedx2DCellAlgorithm.h.

◆ IsLocalBin

bool IsLocalBin
private

if local variable bin requested

Definition at line 168 of file CDCDedx2DCellAlgorithm.h.

◆ IsMakePlots

bool IsMakePlots
private

produce plots for status

Definition at line 169 of file CDCDedx2DCellAlgorithm.h.

◆ IsRS

bool IsRS
private

if rotation symmtery requested

Definition at line 170 of file CDCDedx2DCellAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.


The documentation for this class was generated from the following files: