Belle II Software development
SpaceResolutionCalibrationAlgorithm Class Reference

Class for Space resolution calibration. More...

#include <SpaceResolutionCalibrationAlgorithm.h>

Inheritance diagram for SpaceResolutionCalibrationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 SpaceResolutionCalibrationAlgorithm ()
 Constructor.
 
 ~SpaceResolutionCalibrationAlgorithm ()
 Destructor.
 
void setDebug (bool debug=false)
 Set Debug mode.
 
void setMinimumNDF (double ndf)
 minimum NDF required for track
 
void setMinimumPval (double pval)
 Minimum Pval required.
 
void setBinWidth (double bw)
 Bin width of each slide.
 
void setBField (bool bfield)
 Work with B field or not;.
 
void setStoreHisto (bool storeHist=false)
 Store histograms during the calibration or not.
 
void enableTextOutput (bool output=true)
 Enable text output of calibration result.
 
void setOutputFileName (std::string outputname)
 output file name
 
void setHistFileName (const std::string &name)
 Set name for histogram output.
 
void setThreshold (double th=0.6)
 Set threshold for the fraction of fitted results.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

EResult calibrate () override
 Run algo on data.
 
void createHisto ()
 create histogram
 
void storeHisto ()
 store histogram
 
void write ()
 save calibration, in text file or db
 
void prepare ()
 Prepare the calibration of space resolution.
 
double getUpperBoundaryForFit (TGraphErrors *graph)
 search max point at boundary region
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T>
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T>
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T>
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T>
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T>
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

double m_minNdf = 5
 Minimum NDF.
 
double m_minPval = 0.
 Minimum Prob(chi2) of track.
 
double m_binWidth = 0.05
 width of each bin, unit cm
 
bool m_debug = false
 Debug or not.
 
bool m_storeHisto = false
 Store histogram or not.
 
bool m_bField = true
 Work with BField, fit range and initial parameters is different incase B and noB.
 
double m_threshold = 0.6
 minimal requirement for the fraction of fitted results
 
double m_sigma [56][2][18][7][8]
 new sigma parameters.
 
TGraphErrors * m_gFit [56][2][18][7]
 sigma*sigma graph for fit
 
TGraphErrors * m_graph [56][2][18][7]
 sigma graph.
 
TH2F * m_hBiased [56][2][Max_nalpha][Max_ntheta]
 2D histogram of biased residual
 
TH2F * m_hUnbiased [56][2][Max_nalpha][Max_ntheta]
 2D histogram of unbiased residual
 
TH1F * m_hMeanBiased [56][2][Max_nalpha][Max_ntheta]
 mean histogram biased residual
 
TH1F * m_hSigmaBiased [56][2][Max_nalpha][Max_ntheta]
 sigma histogram of biased residual
 
TH1F * m_hMeanUnbiased [56][2][Max_nalpha][Max_ntheta]
 mean histogram of unbiased residual
 
TH1F * m_hSigmaUnbiased [56][2][Max_nalpha][Max_ntheta]
 sigma histogram of ubiased residual
 
int m_fitStatus [56][2][Max_nalpha][Max_ntheta] = {{{{0}}}}
 Fit flag; 1:OK ; 0:error.
 
int m_nAlphaBins
 number of alpha bins
 
int m_nThetaBins
 number of theta bins
 
float m_lowerAlpha [18]
 Lower boundaries of alpha bins.
 
float m_upperAlpha [18]
 Upper boundaries of alpha bins.
 
float m_iAlpha [18]
 represented alphas of alpha bins.
 
float m_lowerTheta [7]
 Lower boundaries of theta bins.
 
float m_upperTheta [7]
 Upper boundaries of theta bins.
 
float m_iTheta [7]
 represented alphas of theta bins.
 
unsigned short m_sigmaParamMode = 0
 sigma mode for this calibration.
 
double m_sigmaPost [56][2][18][7][8]
 sigma parameters before calibration
 
unsigned short m_sigmaParamModePost
 sigma mode before this calibration.
 
bool m_textOutput = false
 output text file if true
 
std::string m_outputFileName = "sigma_new.dat"
 Output sigma filename.
 
std::string m_histName = "histSigma.root"
 root file name
 
DBObjPtr< CDCGeometrym_cdcGeo
 Geometry of CDC.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const int Max_nalpha = 18
 Maximum alpha bin.
 
static const int Max_ntheta = 7
 maximum theta bin
 
static const unsigned short Max_np = 40
 Maximum number of point =1/binwidth.
 
static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class for Space resolution calibration.

Definition at line 28 of file SpaceResolutionCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
43 c_NotEnoughData,
44 c_Failure,
45 c_Undefined
46 };

Constructor & Destructor Documentation

◆ SpaceResolutionCalibrationAlgorithm()

Constructor.

Definition at line 28 of file SpaceResolutionCalibrationAlgorithm.cc.

28 :
29 CalibrationAlgorithm("CDCCalibrationCollector")
30{
32 " -------------------------- Position Resolution Calibration Algorithm -------------------------\n"
33 );
34}
void setDescription(const std::string &description)
Set algorithm description (in constructor)
CalibrationAlgorithm(const std::string &collectorModuleName)
Constructor - sets the prefix for collected objects (won't be accesses until execute(....

◆ ~SpaceResolutionCalibrationAlgorithm()

Destructor.

Definition at line 36 of file SpaceResolutionCalibrationAlgorithm.h.

36{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun > ,
int  )
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, SVDCoGTimeCalibrationAlgorithm, TestBoundarySettingAlgorithm, and TestCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Run algo on data.

Upper limit of fitting.

Implements CalibrationAlgorithm.

Definition at line 311 of file SpaceResolutionCalibrationAlgorithm.cc.

312{
313
314 B2INFO("Start calibration");
315 gPrintViaErrorHandler = true; // Suppress huge log output from TMinuit
316 gROOT->SetBatch(1);
317 gErrorIgnoreLevel = 3001;
318
319 const auto exprun = getRunList()[0];
320 B2INFO("ExpRun used for DB Geometry : " << exprun.first << " " << exprun.second);
321 updateDBObjPtrs(1, exprun.second, exprun.first);
322 // B2INFO("Creating CDCGeometryPar object");
323 // CDC::CDCGeometryPar::Instance(&(*m_cdcGeo));
324
325 prepare();
326 createHisto();
327
328 TF1* func = new TF1("func", "[0]/(x*x + [1])+[2]* x+[3]+[4]*exp([5]*(x-[6])*(x-[6]))", 0, 1.);
329 TH1F* hprob = new TH1F("h1", "", 20, 0, 1);
330 double upFit;
331 double intp6;
332
333 for (int i = 0; i < 56; ++i) {
334 for (int lr = 0; lr < 2; ++lr) {
335 for (int al = 0; al < m_nAlphaBins; ++al) {
336 for (int th = 0; th < m_nThetaBins; ++th) {
337 if (!m_gFit[i][lr][al][th]) continue;
338 if (m_fitStatus[i][lr][al][th] != -1) { /*if graph exist, do fitting*/
339 upFit = getUpperBoundaryForFit(m_gFit[i][lr][al][th]);
340 intp6 = upFit + 0.2;
341 B2DEBUG(199, "xmax for fitting: " << upFit);
342
343 func->SetParameters(5E-6, 0.007, 1E-4, 1E-5, 0.00008, -30, intp6);
344 func->SetParLimits(0, 1E-7, 1E-4);
345 func->SetParLimits(1, 0.0045, 0.02);
346 func->SetParLimits(2, 1E-6, 0.0005);
347 func->SetParLimits(3, 1E-8, 0.0005);
348 func->SetParLimits(4, 0., 0.001);
349 func->SetParLimits(5, -40, 0.);
350 func->SetParLimits(6, intp6 - 0.5, intp6 + 0.2);
351
352 B2DEBUG(21, "Fitting for layer: " << i << "lr: " << lr << " ial" << al << " ith:" << th);
353 B2DEBUG(21, "Fit status before fit:" << m_fitStatus[i][lr][al][th]);
354
355 for (int j = 0; j < 10; j++) {
356
357 B2DEBUG(21, "loop: " << j);
358 B2DEBUG(21, "Int p6: " << intp6);
359 B2DEBUG(21, "Number of Point: " << m_gFit[i][lr][al][th]->GetN());
360 Int_t stat = m_gFit[i][lr][al][th]->Fit("func", "MQE", "", 0.05, upFit);
361 B2DEBUG(21, "stat of fit" << stat);
362 std::string Fit_status = gMinuit->fCstatu.Data();
363 B2DEBUG(21, "FIT STATUS: " << Fit_status);
364 if (Fit_status == "OK" || Fit_status == "SUCCESSFUL" || Fit_status == "CALL LIMIT"
365 || Fit_status == "PROBLEMS") {//need to found better way
366 if (fabs(func->Eval(0.3)) > 0.00035 || func->Eval(0.3) < 0) {
367 func->SetParameters(5E-6, 0.007, 1E-4, 1E-7, 0.0007, -30, intp6 + 0.05 * j);
368 func->SetParLimits(6, intp6 + 0.05 * j - 0.5, intp6 + 0.05 * j + 0.2);
369 // func->SetParameters(defaultparsmall);
370 m_fitStatus[i][lr][al][th] = 0;
371 } else {
372 B2DEBUG(21, "Prob of fit: " << func->GetProb());
373 m_fitStatus[i][lr][al][th] = 1;
374 break;
375 }
376 } else {
377 m_fitStatus[i][lr][al][th] = 0;
378 func->SetParameters(5E-6, 0.007, 1E-4, 1E-7, 0.0007, -30, intp6 + 0.05 * j);
379 func->SetParLimits(6, intp6 + 0.05 * j - 0.5, intp6 + 0.05 * j + 0.2);
380 upFit += 0.025;
381 if (j == 9) {
382 // TCanvas* c1 = new TCanvas("c1", "", 600, 600);
383 // m_gFit[i][lr][al][th]->Draw();
384 // c1->SaveAs(Form("Sigma_Fit_Error_%s_%d_%d_%d_%d.png", Fit_status.c_str(), i, lr, al, th));
385 // B2WARNING("Fit error: " << i << " " << lr << " " << al << " " << th);
386 }
387 }
388 }
389 if (m_fitStatus[i][lr][al][th] == 1) {
390 B2DEBUG(21, "ProbFit: Lay_lr_al_th: " << i << " " << lr << " " << al << " " << th << func->GetProb());
391 hprob->Fill(func->GetProb());
392 func->GetParameters(m_sigma[i][lr][al][th]);
393 }
394 }
395 }
396 }
397 }
398 }
399
400 write();
401 storeHisto();
402
403 const int nTotal = 56 * 2 * m_nAlphaBins * m_nThetaBins;
404 int nFitCompleted = 0;
405 for (int l = 0; l < 56; ++l) {
406 for (int lr = 0; lr < 2; ++lr) {
407 for (int al = 0; al < m_nAlphaBins; ++al) {
408 for (int th = 0; th < m_nThetaBins; ++th) {
409 if (m_fitStatus[l][lr][al][th] == 1) {
410 nFitCompleted += 1;
411 }
412 }
413 }
414 }
415 }
416
417 if (static_cast<double>(nFitCompleted) / nTotal < m_threshold) {
418 B2WARNING("Less than " << m_threshold * 100 << " % of Sigmas were fitted.");
419 return c_NotEnoughData;
420 }
421
422 return c_OK;
423}
R E
internal precision of FFTW codelets
void prepare()
Prepare the calibration of space resolution.
double m_threshold
minimal requirement for the fraction of fitted results
double getUpperBoundaryForFit(TGraphErrors *graph)
search max point at boundary region
TGraphErrors * m_gFit[56][2][18][7]
sigma*sigma graph for fit
int m_fitStatus[56][2][Max_nalpha][Max_ntheta]
Fit flag; 1:OK ; 0:error.
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
@ c_OK
Finished successfully =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject * pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

324{m_data.clearCalibrationData();}

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition Database.cc:41
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition Database.cc:140

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery > payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject * pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}

◆ createHisto()

void createHisto ( )
protected

create histogram

Definition at line 35 of file SpaceResolutionCalibrationAlgorithm.cc.

36{
37 B2INFO("Creating histograms");
38 const int np = floor(1 / m_binWidth);
39
40 vector<double> yu;
41 vector <double> yb;
42 for (int i = 0; i < 50; ++i) {
43 yb.push_back(-0.07 + i * (0.14 / 50));
44 }
45 for (int i = 0; i < 50; ++i) {
46 yu.push_back(-0.08 + i * (0.16 / 50));
47 }
48
49 vector<double> xbin;
50 xbin.push_back(0.);
51 xbin.push_back(0.02);
52 for (int i = 1; i < np; ++i) {
53 xbin.push_back(i * m_binWidth);
54 }
55
56 for (int il = 0; il < 56; ++il) {
57 for (int lr = 0; lr < 2; ++lr) {
58 for (int al = 0; al < m_nAlphaBins; ++al) {
59 for (int th = 0; th < m_nThetaBins; ++th) {
60 m_hBiased[il][lr][al][th] = new TH2F(Form("hb_%d_%d_%d_%d", il, lr, al, th),
61 Form("lay_%d_lr%d_al_%3.0f_th_%3.0f;Drift Length [cm];#DeltaX", il, lr, m_iAlpha[al], m_iTheta[th]),
62 xbin.size() - 1, &xbin.at(0), yb.size() - 1, &yb.at(0));
63 m_hUnbiased[il][lr][al][th] = new TH2F(Form("hu_%d_%d_%d_%d", il, lr, al, th),
64 Form("lay_%d_lr%d_al_%3.0f_th_%3.0f;Drift Length [cm];#DeltaX", il, lr, m_iAlpha[al], m_iTheta[th]),
65 xbin.size() - 1, &xbin.at(0), yu.size() - 1, &yu.at(0));
66 }
67 }
68 }
69 }
70
71
72 auto tree = getObjectPtr<TTree>("tree");
73
74 UChar_t lay;
75 Float_t w;
76 Float_t x_u;
77 Float_t x_b;
78 Float_t x_mea;
79 Float_t Pval;
80 Float_t alpha;
81 Float_t theta;
82 Float_t ndf;
83 Float_t absRes_u;
84 Float_t absRes_b;
85 tree->SetBranchAddress("lay", &lay);
86 tree->SetBranchAddress("ndf", &ndf);
87 tree->SetBranchAddress("Pval", &Pval);
88 tree->SetBranchAddress("x_u", &x_u);
89 tree->SetBranchAddress("x_b", &x_b);
90 tree->SetBranchAddress("x_mea", &x_mea);
91 tree->SetBranchAddress("weight", &w);
92 tree->SetBranchAddress("alpha", &alpha);
93 tree->SetBranchAddress("theta", &theta);
94
95 /* Disable unused branch */
96 std::vector<TString> list_vars = {"lay", "ndf", "Pval", "x_u", "x_b", "x_mea", "weight", "alpha", "theta"};
97 tree->SetBranchStatus("*", 0);
98
99 for (TString brname : list_vars) {
100 tree->SetBranchStatus(brname, 1);
101 }
102
103
104 const Long64_t nEntries = tree->GetEntries();
105 B2INFO("Number of entries: " << nEntries);
106 int ith = -99;
107 int ial = -99;
108 TStopwatch timer;
109 timer.Start();
110 for (Long64_t i = 0; i < nEntries; ++i) {
111 tree->GetEntry(i);
112 if (std::fabs(x_b) < 0.02 || std::fabs(x_u) < 0.02) continue;
113 if (Pval < m_minPval || ndf < m_minNdf) continue;
114
115 for (int k = 0; k < m_nAlphaBins; ++k) {
116 if (alpha < m_upperAlpha[k]) {
117 ial = k;
118 break;
119 }
120 }
121
122 for (int j = 0; j < m_nThetaBins; ++j) {
123 if (theta < m_upperTheta[j]) {
124 ith = j;
125 break;
126 }
127 }
128
129 int ilr = x_u > 0 ? 1 : 0;
130
131 if (ial == -99 || ith == -99) {
132 TString command = Form("Error in alpha=%3.2f and theta = %3.2f>> error", alpha, theta);
133 B2FATAL("ERROR" << command);
134 }
135
136 absRes_u = fabs(x_mea) - fabs(x_u);
137 absRes_b = fabs(x_mea) - fabs(x_b);
138
139 int ilay = static_cast<int>(lay);
140 m_hUnbiased[ilay][ilr][ial][ith]->Fill(fabs(x_u), absRes_u, w);
141 m_hBiased[ilay][ilr][ial][ith]->Fill(fabs(x_b), absRes_b, w);
142 }
143
144 timer.Stop();
145 B2INFO("Time to fill histograms: " << timer.RealTime() << "s");
146
147 B2INFO("Start to obtain the biased and unbiased sigmas...");
148 TF1* gb = new TF1("gb", "gaus", -0.05, 0.05);
149 TF1* gu = new TF1("gu", "gaus", -0.06, 0.06);
150 TF1* g0b = new TF1("g0b", "gaus", -0.015, 0.07);
151 TF1* g0u = new TF1("g0u", "gaus", -0.015, 0.08);
152
153 std::vector<double> sigma;
154 std::vector<double> dsigma;
155 std::vector<double> s2;
156 std::vector<double> ds2;
157 std::vector<double> xl;
158 std::vector<double> dxl;
159 std::vector<double> dxl0;
160
161 ofstream ofss("IntReso.dat");
162 const int ib1 = int(0.1 / m_binWidth) + 1;
163 int firstbin = 1;
164 int minEntry = 10;
165 for (int il = 0; il < 56; ++il) {
166 for (int lr = 0; lr < 2; ++lr) {
167 for (int al = 0; al < m_nAlphaBins; ++al) {
168 for (int th = 0; th < m_nThetaBins; ++th) {
169
170 B2DEBUG(21, "layer-lr-al-th " << il << " - " << lr << " - " << al << " - " << th);
171 if (m_hBiased[il][lr][al][th]->GetEntries() < 5000) {
172 m_fitStatus[il][lr][al][th] = -1;
173 continue;
174 }
175
176 auto* proYb = m_hBiased[il][lr][al][th]->ProjectionY();
177 auto* proYu = m_hUnbiased[il][lr][al][th]->ProjectionY();
178
179 g0b->SetParLimits(0, 0, m_hBiased[il][lr][al][th]->GetEntries() * 5);
180 g0u->SetParLimits(0, 0, m_hUnbiased[il][lr][al][th]->GetEntries() * 5);
181 g0b->SetParLimits(1, -0.01, 0.004);
182 g0u->SetParLimits(1, -0.01, 0.004);
183 g0b->SetParLimits(2, 0.0, proYb->GetRMS() * 5);
184 g0u->SetParLimits(2, 0.0, proYu->GetRMS() * 5);
185
186 g0b->SetParameter(0, m_hBiased[il][lr][al][th]->GetEntries());
187 g0u->SetParameter(0, m_hUnbiased[il][lr][al][th]->GetEntries());
188 g0b->SetParameter(1, 0);
189 g0u->SetParameter(1, 0);
190 g0b->SetParameter(2, proYb->GetRMS());
191 g0u->SetParameter(2, proYu->GetRMS());
192
193 B2DEBUG(21, "Nentries: " << m_hBiased[il][lr][al][th]->GetEntries());
194 m_hBiased[il][lr][al][th]->SetDirectory(0);
195 m_hUnbiased[il][lr][al][th]->SetDirectory(0);
196
197 // With biased track fit result
198
199 // Apply slice fit for the region near sense wire
200 m_hBiased[il][lr][al][th]->FitSlicesY(g0b, firstbin, ib1, minEntry);
201
202 // mean
203 m_hMeanBiased[il][lr][al][th] = (TH1F*)gDirectory->Get(Form("hb_%d_%d_%d_%d_1", il, lr, al, th))->Clone(Form("hb_%d_%d_%d_%d_m", il,
204 lr, al,
205 th));
206 // sigma
207 m_hSigmaBiased[il][lr][al][th] = (TH1F*)gDirectory->Get(Form("hb_%d_%d_%d_%d_2", il, lr, al, th))->Clone(Form("hb_%d_%d_%d_%d_s",
208 il, lr, al,
209 th));
210 m_hMeanBiased[il][lr][al][th]->SetDirectory(0);
211 m_hSigmaBiased[il][lr][al][th]->SetDirectory(0);
212
213 //Apply slice fit for other regions
214 m_hBiased[il][lr][al][th]->FitSlicesY(gb, ib1 + 1, np, minEntry);
215 // mean
216 m_hMeanBiased[il][lr][al][th]->Add((TH1F*)gDirectory->Get(Form("hb_%d_%d_%d_%d_1", il, lr, al, th)));
217 //sigma
218 m_hSigmaBiased[il][lr][al][th]->Add((TH1F*)gDirectory->Get(Form("hb_%d_%d_%d_%d_2", il, lr, al, th)));
219 B2DEBUG(21, "entries (2nd): " << m_hSigmaBiased[il][lr][al][th]->GetEntries());
220
221 // With unbiased track fit result
222
223 // Apply slice fit for the region near sense wire
224 m_hUnbiased[il][lr][al][th]->FitSlicesY(g0u, firstbin, ib1, minEntry);
225 // mean
226 m_hMeanUnbiased[il][lr][al][th] = (TH1F*)gDirectory->Get(Form("hu_%d_%d_%d_%d_1", il, lr, al, th))->Clone(Form("hu_%d_%d_%d_%d_m",
227 il, lr, al,
228 th));
229 // sigma
230 m_hSigmaUnbiased[il][lr][al][th] = (TH1F*)gDirectory->Get(Form("hu_%d_%d_%d_%d_2", il, lr, al, th))->Clone(Form("hu_%d_%d_%d_%d_s",
231 il, lr, al,
232 th));
233 m_hMeanUnbiased[il][lr][al][th]->SetDirectory(0);
234 m_hSigmaUnbiased[il][lr][al][th]->SetDirectory(0);
235
236
237 //Apply slice fit for other regions
238 m_hUnbiased[il][lr][al][th]->FitSlicesY(gu, ib1 + 1, np, minEntry);
239 //mean
240 m_hMeanUnbiased[il][lr][al][th]->Add((TH1F*)gDirectory->Get(Form("hu_%d_%d_%d_%d_1", il, lr, al, th)));
241 //sigma
242 m_hSigmaUnbiased[il][lr][al][th]->Add((TH1F*)gDirectory->Get(Form("hu_%d_%d_%d_%d_2", il, lr, al, th)));
243 if (!m_hSigmaUnbiased[il][lr][al][th] || !m_hSigmaBiased[il][lr][al][th]) {
244 B2WARNING("sliced histo not found");
245 m_fitStatus[il][lr][al][th] = -1;
246 continue;
247 }
248 //clean up container before adding new values.
249 xl.clear();
250 dxl.clear();
251 dxl0.clear();
252 sigma.clear();
253 dsigma.clear();
254 s2.clear();
255 ds2.clear();
256
257
258 for (int j = 1; j < m_hSigmaUnbiased[il][lr][al][th]->GetNbinsX(); j++) {
259 if (m_hSigmaUnbiased[il][lr][al][th]->GetBinContent(j) == 0) continue;
260 if (m_hSigmaBiased[il][lr][al][th]->GetBinContent(j) == 0) continue;
261 double sb = m_hSigmaBiased[il][lr][al][th]->GetBinContent(j);
262 double su = m_hSigmaUnbiased[il][lr][al][th]->GetBinContent(j);
263
264 double dsb = m_hSigmaBiased[il][lr][al][th]->GetBinError(j);
265 double dsu = m_hSigmaUnbiased[il][lr][al][th]->GetBinError(j);
266 double XL = m_hSigmaBiased[il][lr][al][th]->GetXaxis()->GetBinCenter(j);
267 double dXL = (m_hSigmaBiased[il][lr][al][th]->GetXaxis()->GetBinWidth(j)) / 2;
268 double s_int = std::sqrt(sb * su);
269 double ds_int = 0.5 * s_int * (dsb / sb + dsu / su);
270 if (ds_int > 0.02) continue;
271 xl.push_back(XL);
272 dxl.push_back(dXL);
273 dxl0.push_back(0.);
274 sigma.push_back(s_int);
275 dsigma.push_back(ds_int);
276 s2.push_back(s_int * s_int);
277 ds2.push_back(2 * s_int * ds_int);
278 ofss << il << " " << lr << " " << al << " " << th << " " << j << " " << XL << " " << dXL << " " << s_int << " " <<
279 ds_int << endl;
280 }
281
282 if (xl.size() < 7 || xl.size() > Max_np) {
283 m_fitStatus[il][lr][al][th] = -1;
284 B2WARNING("number of element might out of range"); continue;
285 }
286
287 //Intrinsic resolution
288 B2DEBUG(21, "Create Histo for layer-lr: " << il << " " << lr);
289 m_graph[il][lr][al][th] = new TGraphErrors(xl.size(), &xl.at(0), &sigma.at(0), &dxl.at(0), &dsigma.at(0));
290 m_graph[il][lr][al][th]->SetMarkerSize(0.5);
291 m_graph[il][lr][al][th]->SetMarkerStyle(8);
292 m_graph[il][lr][al][th]->SetTitle(Form("Layer_%d lr%d #alpha = %3.0f #theta = %3.0f", il, lr, m_iAlpha[al], m_iTheta[th]));
293 m_graph[il][lr][al][th]->SetName(Form("lay%d_lr%d_al%d_th%d", il, lr, al, th));
294
295 //square of sigma for fitting
296 m_gFit[il][lr][al][th] = new TGraphErrors(xl.size(), &xl.at(0), &s2.at(0), &dxl0.at(0), &ds2.at(0));
297 m_gFit[il][lr][al][th]->SetMarkerSize(0.5);
298 m_gFit[il][lr][al][th]->SetMarkerStyle(8);
299 m_gFit[il][lr][al][th]->SetTitle(Form("L%d lr%d #alpha = %3.0f #theta = %3.0f ", il, lr, m_iAlpha[al], m_iTheta[th]));
300 m_gFit[il][lr][al][th]->SetName(Form("sigma2_lay%d_lr%d_al%d_th%d", il, lr, al, th));
301
302 gDirectory->Delete("hu_%d_%d_%d_%d_0");
303 }
304 }
305 }
306 }
307 ofss.close();
308
309}
TH1F * m_hSigmaBiased[56][2][Max_nalpha][Max_ntheta]
sigma histogram of biased residual
TH1F * m_hMeanBiased[56][2][Max_nalpha][Max_ntheta]
mean histogram biased residual
TH2F * m_hBiased[56][2][Max_nalpha][Max_ntheta]
2D histogram of biased residual
static const unsigned short Max_np
Maximum number of point =1/binwidth.
TH1F * m_hSigmaUnbiased[56][2][Max_nalpha][Max_ntheta]
sigma histogram of ubiased residual
TH1F * m_hMeanUnbiased[56][2][Max_nalpha][Max_ntheta]
mean histogram of unbiased residual
TH2F * m_hUnbiased[56][2][Max_nalpha][Max_ntheta]
2D histogram of unbiased residual
std::shared_ptr< T > getObjectPtr(const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
Get calibration data object by name and list of runs, the Merge function will be called to generate t...

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}

◆ enableTextOutput()

void enableTextOutput ( bool output = true)
inline

Enable text output of calibration result.

Definition at line 57 of file SpaceResolutionCalibrationAlgorithm.h.

57{m_textOutput = output;}

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject * runs,
int iteration = 0,
IntervalOfValidity iov = IntervalOfValidity() )
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
100 m_data.setResult(c_Failure);
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
108 m_data.setResult(c_Failure);
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun > runs = {},
int iteration = 0,
IntervalOfValidity iov = IntervalOfValidity() )
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
124 m_data.setResult(c_Failure);
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
144 m_data.setResult(c_Failure);
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
152 m_data.setRequestedRuns(runs);
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
157 m_data.setRequestedIov(iov);
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
@ c_Undefined
Not yet known (before execution) =4 in Python.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun > runs,
int iteration = 0 )
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
558 m_data.clearCalibrationData();
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun & expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string & name,
Calibration::ExpRun expRun ) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}

◆ getInputJsonValue()

template<class T>
const T getInputJsonValue ( const std::string & key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }

◆ getObjectPtr()

template<class T>
std::shared_ptr< T > getObjectPtr ( std::string name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
288 fillRunToInputFilesMap();
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }

◆ getOutputJsonValue()

template<class T>
const T getOutputJsonValue ( const std::string & key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition RunRange.h:52

◆ getUpperBoundaryForFit()

double getUpperBoundaryForFit ( TGraphErrors * graph)
inlineprotected

search max point at boundary region

Definition at line 81 of file SpaceResolutionCalibrationAlgorithm.h.

82 {
83 double ymax = 0;
84 double xmax = 0;
85 int imax = 0;
86 double x, y;
87 int unCount = floor(0.05 / m_binWidth);
88 int N = graph->GetN();
89 int Nstart = floor(0.5 * (N - unCount));
90 int Nend = N - unCount;
91 for (int i = Nstart; i < Nend; ++i) {
92 graph->GetPoint(i, x, y);
93 if (graph->GetErrorY(i) > 0.06E-3) continue;
94 if (y > ymax) {
95 xmax = x; ymax = y;
96 imax = i;
97 }
98 }
99 if (imax <= Nstart) {
100 graph->GetPoint(Nend, x, y);
101 xmax = x;
102 }
103 return xmax;
104 }

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string & key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun & )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, SVDCoGTimeCalibrationAlgorithm, TestBoundarySettingAlgorithm, and TestCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string & jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ prepare()

void prepare ( )
protected

Prepare the calibration of space resolution.

Definition at line 537 of file SpaceResolutionCalibrationAlgorithm.cc.

538{
539 B2INFO("Prepare calibration of space resolution");
540
541 const double rad2deg = 180 / M_PI;
542
543 DBObjPtr<CDCSpaceResols> dbSigma;
544
545 m_nAlphaBins = dbSigma->getNoOfAlphaBins();
546 m_nThetaBins = dbSigma->getNoOfThetaBins();
547
548 B2INFO("Number of alpha bins: " << m_nAlphaBins);
549 for (int i = 0; i < m_nAlphaBins; ++i) {
550 array3 alpha = dbSigma->getAlphaBin(i);
551 m_lowerAlpha[i] = alpha[0] * rad2deg;
552 m_upperAlpha[i] = alpha[1] * rad2deg;
553 m_iAlpha[i] = alpha[2] * rad2deg;
554 }
555
556 B2INFO("Number of theta bins: " << m_nThetaBins);
557 for (int i = 0; i < m_nThetaBins; ++i) {
558 array3 theta = dbSigma->getThetaBin(i);
559 m_lowerTheta[i] = theta[0] * rad2deg;
560 m_upperTheta[i] = theta[1] * rad2deg;
561 m_iTheta[i] = theta[2] * rad2deg;
562 }
563 m_sigmaParamModePost = dbSigma->getSigmaParamMode();
564
565 for (unsigned short iCL = 0; iCL < 56; ++iCL) {
566 for (unsigned short iLR = 0; iLR < 2; ++iLR) {
567 for (unsigned short iA = 0; iA < m_nAlphaBins; ++iA) {
568 for (unsigned short iT = 0; iT < m_nThetaBins; ++iT) {
569 const std::vector<float> params = dbSigma->getSigmaParams(iCL, iLR, iA, iT);
570 unsigned short np = params.size();
571 // std::cout <<"np4sigma= " << np << std::endl;
572 for (unsigned short i = 0; i < np; ++i) {
573 m_sigmaPost[iCL][iLR][iA][iT][i] = params[i];
574 }
575 }
576 }
577 }
578 }
579}
unsigned short m_sigmaParamModePost
sigma mode before this calibration.
double m_sigmaPost[56][2][18][7][8]
sigma parameters before calibration

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray * data,
const std::string & name )
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
299 saveCalibration(data, name, m_data.getRequestedIov());
300}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray * data,
const std::string & name,
const IntervalOfValidity & iov )
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject * data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition DataStore.cc:150

◆ saveCalibration() [4/6]

void saveCalibration ( TObject * data,
const IntervalOfValidity & iov )
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject * data,
const std::string & name )
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
294 saveCalibration(data, name, m_data.getRequestedIov());
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject * data,
const std::string & name,
const IntervalOfValidity & iov )
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setBField()

void setBField ( bool bfield)
inline

Work with B field or not;.

Definition at line 51 of file SpaceResolutionCalibrationAlgorithm.h.

51{m_bField = bfield;}

◆ setBinWidth()

void setBinWidth ( double bw)
inline

Bin width of each slide.

Definition at line 48 of file SpaceResolutionCalibrationAlgorithm.h.

48{m_binWidth = bw;}

◆ setDebug()

void setDebug ( bool debug = false)
inline

Set Debug mode.

Definition at line 39 of file SpaceResolutionCalibrationAlgorithm.h.

39{m_debug = debug; }

◆ setDescription()

void setDescription ( const std::string & description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setHistFileName()

void setHistFileName ( const std::string & name)
inline

Set name for histogram output.

Definition at line 63 of file SpaceResolutionCalibrationAlgorithm.h.

63{m_histName = "histSigma_" + name + ".root";}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject * inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string > inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMinimumNDF()

void setMinimumNDF ( double ndf)
inline

minimum NDF required for track

Definition at line 42 of file SpaceResolutionCalibrationAlgorithm.h.

42{m_minNdf = ndf;}

◆ setMinimumPval()

void setMinimumPval ( double pval)
inline

Minimum Pval required.

Definition at line 45 of file SpaceResolutionCalibrationAlgorithm.h.

45{m_minPval = pval;}

◆ setOutputFileName()

void setOutputFileName ( std::string outputname)
inline

output file name

Definition at line 60 of file SpaceResolutionCalibrationAlgorithm.h.

60{m_outputFileName.assign(outputname);}

◆ setOutputJsonValue()

template<class T>
void setOutputJsonValue ( const std::string & key,
const T & value )
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string & prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setStoreHisto()

void setStoreHisto ( bool storeHist = false)
inline

Store histograms during the calibration or not.

Definition at line 54 of file SpaceResolutionCalibrationAlgorithm.h.

54{m_storeHisto = storeHist;}

◆ setThreshold()

void setThreshold ( double th = 0.6)
inline

Set threshold for the fraction of fitted results.

Definition at line 66 of file SpaceResolutionCalibrationAlgorithm.h.

66{m_threshold = th;}

◆ storeHisto()

void storeHisto ( )
protected

store histogram

Definition at line 425 of file SpaceResolutionCalibrationAlgorithm.cc.

426{
427 B2INFO("saving histograms");
428
429 TFile* ff = new TFile(m_histName.c_str(), "RECREATE");
430 TDirectory* top = gDirectory;
431 TDirectory* Direct[56];
432
433 auto hNDF = getObjectPtr<TH1F>("hNDF");
434 auto hPval = getObjectPtr<TH1F>("hPval");
435 auto hEvtT0 = getObjectPtr<TH1F>("hEventT0");
436 //store NDF, P-val. EventT0 histogram for monitoring during calibration
437 if (hNDF && hPval && hEvtT0) {
438 hEvtT0->Write();
439 hPval->Write();
440 hNDF->Write();
441 }
442
443
444 for (int il = 0; il < 56; ++il) {
445 top->cd();
446 Direct[il] = gDirectory->mkdir(Form("lay_%d", il));
447 Direct[il]->cd();
448
449 for (int lr = 0; lr < 2; ++lr) {
450 for (int al = 0; al < m_nAlphaBins; ++al) {
451 for (int th = 0; th < m_nThetaBins; ++th) {
452 if (!m_graph[il][lr][al][th]) continue;
453 if (!m_gFit[il][lr][al][th]) continue;
454 if (m_fitStatus[il][lr][al][th] == 1) {
455 m_hBiased[il][lr][al][th]->Write();
456 m_hUnbiased[il][lr][al][th]->Write();
457 m_hMeanBiased[il][lr][al][th]->Write();
458 m_hSigmaBiased[il][lr][al][th]->Write();
459 m_hMeanUnbiased[il][lr][al][th]->Write();
460 m_hSigmaUnbiased[il][lr][al][th]->Write();
461 m_graph[il][lr][al][th]->Write();
462 m_gFit[il][lr][al][th]->Write();
463 }
464 }
465 }
466 }
467 }
468 ff->Close();
469 B2INFO("Finish store histogram");
470
471}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int event = 1,
const int run = 0,
const int experiment = 0 )
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
static DBStore & Instance()
Instance of a singleton DBStore.
Definition DBStore.cc:26
void updateEvent()
Updates all intra-run dependent objects.
Definition DBStore.cc:140
void update()
Updates all objects that are outside their interval of validity.
Definition DBStore.cc:77

◆ write()

void write ( )
protected

save calibration, in text file or db

Definition at line 472 of file SpaceResolutionCalibrationAlgorithm.cc.

473{
474 B2INFO("Writing calibrated sigma's");
475 int nfitted = 0;
476 int nfailure = 0;
477
478 CDCSpaceResols* dbSigma = new CDCSpaceResols();
479
480 const float deg2rad = M_PI / 180.0;
481
482 for (unsigned short i = 0; i < m_nAlphaBins; ++i) {
483 std::array<float, 3> alpha3 = {m_lowerAlpha[i]* deg2rad,
484 m_upperAlpha[i]* deg2rad,
485 m_iAlpha[i]* deg2rad
486 };
487 dbSigma->setAlphaBin(alpha3);
488 }
489
490
491 for (unsigned short i = 0; i < m_nThetaBins; ++i) {
492 std::array<float, 3> theta3 = {m_lowerTheta[i]* deg2rad,
493 m_upperTheta[i]* deg2rad,
494 m_iTheta[i]* deg2rad
495 };
496 dbSigma->setThetaBin(theta3);
497 }
498
500 for (int ialpha = 0; ialpha < m_nAlphaBins; ++ialpha) {
501 for (int itheta = 0; itheta < m_nThetaBins; ++itheta) {
502 for (int iCL = 0; iCL < 56; ++iCL) {
503 for (int iLR = 1; iLR >= 0; --iLR) {
504 std::vector<float> sgbuff;
505 if (m_fitStatus[iCL][iLR][ialpha][itheta] == 1) {
506 nfitted += 1; // inclement number of successfully fitted sigma's
507 for (int i = 0; i < 7; ++i) {
508 sgbuff.push_back(m_sigma[iCL][iLR][ialpha][itheta][i]);
509 }
510 } else {
511 //B2WARNING("Fitting error and old sigma will be used. (Layer " << iCL << ") (lr = " << iLR <<
512 // ") (al = " << ialpha << ") (th = " << itheta << ")");
513 nfailure += 1; // inclement number of fit failed sigma's
514 for (int i = 0; i < 7; ++i) {
515 sgbuff.push_back(m_sigmaPost[iCL][iLR][ialpha][itheta][i]);
516 }
517 }
518 dbSigma->setSigmaParams(iCL, iLR, ialpha, itheta, sgbuff);
519 }
520 }
521 }
522 }
523
524 if (m_textOutput == true) {
526 }
527
528 saveCalibration(dbSigma, "CDCSpaceResols");
529
530 B2RESULT("Number of histogram: " << 56 * 2 * m_nAlphaBins * m_nThetaBins);
531 B2RESULT("Histos successfully fitted: " << nfitted);
532 B2RESULT("Histos fit failure: " << nfailure);
533
534
535}
void setSigmaParams(const SigmaID sigmaID, const std::vector< float > &params)
Set sigma parameters for the specified id.
void setThetaBin(const array3 &theta)
Set theta-angle bin (rad)
void outputToFile(std::string fileName) const
Output the contents in text file format.
void setAlphaBin(const array3 &alpha)
Set alpha-angle bin (rad)
void setSigmaParamMode(unsigned short mode)
Set sigma parameterization mode.
unsigned short m_sigmaParamMode
sigma mode for this calibration.

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_bField

bool m_bField = true
private

Work with BField, fit range and initial parameters is different incase B and noB.

Definition at line 116 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_binWidth

double m_binWidth = 0.05
private

width of each bin, unit cm

Definition at line 113 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_cdcGeo

DBObjPtr<CDCGeometry> m_cdcGeo
private

Geometry of CDC.

Definition at line 145 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_debug

bool m_debug = false
private

Debug or not.

Definition at line 114 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

385{""};

◆ m_fitStatus

int m_fitStatus[56][2][Max_nalpha][Max_ntheta] = {{{{0}}}}
private

Fit flag; 1:OK ; 0:error.

Definition at line 127 of file SpaceResolutionCalibrationAlgorithm.h.

127{{{{0}}}} ;

◆ m_gFit

TGraphErrors* m_gFit[56][2][18][7]
private

sigma*sigma graph for fit

Definition at line 119 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_graph

TGraphErrors* m_graph[56][2][18][7]
private

sigma graph.

Definition at line 120 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hBiased

TH2F* m_hBiased[56][2][Max_nalpha][Max_ntheta]
private

2D histogram of biased residual

Definition at line 121 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_histName

std::string m_histName = "histSigma.root"
private

root file name

Definition at line 144 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hMeanBiased

TH1F* m_hMeanBiased[56][2][Max_nalpha][Max_ntheta]
private

mean histogram biased residual

Definition at line 123 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hMeanUnbiased

TH1F* m_hMeanUnbiased[56][2][Max_nalpha][Max_ntheta]
private

mean histogram of unbiased residual

Definition at line 125 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hSigmaBiased

TH1F* m_hSigmaBiased[56][2][Max_nalpha][Max_ntheta]
private

sigma histogram of biased residual

Definition at line 124 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hSigmaUnbiased

TH1F* m_hSigmaUnbiased[56][2][Max_nalpha][Max_ntheta]
private

sigma histogram of ubiased residual

Definition at line 126 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_hUnbiased

TH2F* m_hUnbiased[56][2][Max_nalpha][Max_ntheta]
private

2D histogram of unbiased residual

Definition at line 122 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_iAlpha

float m_iAlpha[18]
private

represented alphas of alpha bins.

Definition at line 133 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_iTheta

float m_iTheta[7]
private

represented alphas of theta bins.

Definition at line 136 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_lowerAlpha

float m_lowerAlpha[18]
private

Lower boundaries of alpha bins.

Definition at line 131 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_lowerTheta

float m_lowerTheta[7]
private

Lower boundaries of theta bins.

Definition at line 134 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_minNdf

double m_minNdf = 5
private

Minimum NDF.

Definition at line 111 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_minPval

double m_minPval = 0.
private

Minimum Prob(chi2) of track.

Definition at line 112 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_nAlphaBins

int m_nAlphaBins
private

number of alpha bins

Definition at line 129 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_nThetaBins

int m_nThetaBins
private

number of theta bins

Definition at line 130 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_outputFileName

std::string m_outputFileName = "sigma_new.dat"
private

Output sigma filename.

Definition at line 143 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

388{""};

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_sigma

double m_sigma[56][2][18][7][8]
private

new sigma parameters.

Definition at line 118 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_sigmaParamMode

unsigned short m_sigmaParamMode = 0
private

sigma mode for this calibration.

Definition at line 137 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_sigmaParamModePost

unsigned short m_sigmaParamModePost
private

sigma mode before this calibration.

Definition at line 140 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_sigmaPost

double m_sigmaPost[56][2][18][7][8]
private

sigma parameters before calibration

Definition at line 139 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_storeHisto

bool m_storeHisto = false
private

Store histogram or not.

Definition at line 115 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_textOutput

bool m_textOutput = false
private

output text file if true

Definition at line 142 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_threshold

double m_threshold = 0.6
private

minimal requirement for the fraction of fitted results

Definition at line 117 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_upperAlpha

float m_upperAlpha[18]
private

Upper boundaries of alpha bins.

Definition at line 132 of file SpaceResolutionCalibrationAlgorithm.h.

◆ m_upperTheta

float m_upperTheta[7]
private

Upper boundaries of theta bins.

Definition at line 135 of file SpaceResolutionCalibrationAlgorithm.h.

◆ Max_nalpha

const int Max_nalpha = 18
staticprivate

Maximum alpha bin.

Definition at line 107 of file SpaceResolutionCalibrationAlgorithm.h.

◆ Max_np

const unsigned short Max_np = 40
staticprivate

Maximum number of point =1/binwidth.

Definition at line 109 of file SpaceResolutionCalibrationAlgorithm.h.

◆ Max_ntheta

const int Max_ntheta = 7
staticprivate

maximum theta bin

Definition at line 108 of file SpaceResolutionCalibrationAlgorithm.h.


The documentation for this class was generated from the following files: