Belle II Software development
XTCalibrationAlgorithm Class Reference

Class to perform xt calibration for drift chamber. More...

#include <XTCalibrationAlgorithm.h>

Inheritance diagram for XTCalibrationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 XTCalibrationAlgorithm ()
 Constructor.
 
 ~XTCalibrationAlgorithm ()
 Destructor.
 
void setBField (bool bfield)
 set to use BField
 
void setDebug (bool debug=false)
 Run in debug or silent.
 
void setMinimumNDF (double ndf)
 set minimum number of degree of freedom requirement
 
void setMinimumPval (double pval)
 set minimum Prob(Chi2) requirement
 
void setXtMode (unsigned short mode=c_Chebyshev)
 set xt mode, 0 is polynimial, 1 is Chebshev polynomial
 
void setStoreHisto (bool storeHist=false)
 set to store histogram or not.
 
void enableTextOutput (bool output=true)
 Enable text output of calibration result.
 
void setOutputFileName (std::string outputname)
 output file name
 
void setHistFileName (const std::string &name)
 Set name for histogram output.
 
void setLRSeparate (bool lr=true)
 Set LR separate mode (default is true).
 
void setThreshold (double th=0.6)
 Set threshold for the fraction of fitted results.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

EResult calibrate () override
 Run algo on data.
 
void createHisto ()
 Create histogram for calibration.
 
void write ()
 Store calibrated constand.
 
void storeHisto ()
 Store histogram to file.
 
void prepare ()
 Prepare the calibration of XT.
 
EResult checkConvergence ()
 Check the convergence of XT fit.
 
void sanitaryCheck ()
 Check if there are any wrong xt functions.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

double m_minNdf = 5
 minimum ndf required
 
double m_minPval = 0.
 minimum pvalue required
 
bool m_debug = false
 run in debug or silent
 
bool m_storeHisto = true
 Store histogram or not.
 
bool m_LRseparate = true
 Separate LR in calibration or mix.
 
bool m_bField = true
 with b field or none
 
double m_threshold = 0.6
 minimal requirement for the fraction of fitted results
 
TProfile * m_hProf [56][2][20][10]
 Profile xt histo.
 
TH2F * m_hist2d [56][2][20][10]
 2D histo of xt
 
TH2F * m_hist2dDraw [56][20][10]
 2d histo for draw
 
TH1F * m_hist2d_1 [56][2][20][10]
 1D xt histo, results of slice fit
 
TF1 * m_xtFunc [56][2][20][10]
 XTFunction.
 
double m_xtPrior [56][2][18][7][8]
 paremeters of XT before calibration
 
int m_fitStatus [56][2][20][10]
 Fit flag.
 
bool m_useSliceFit = false
 Use slice fit or profile.
 
int m_minEntriesRequired = 5000
 minimum number of hit per hitosgram.
 
int m_nAlphaBins
 number of alpha bins
 
int m_nThetaBins
 number of theta bins
 
int m_xtMode = c_Chebyshev
 Mode of xt; 0 is polynomial;1 is Chebyshev.
 
int m_xtModePrior
 Mode of xt before calibration; 0 is polynomial;1 is Chebyshev.
 
float m_lowerAlpha [18]
 Lower boundays of alpha bins.
 
float m_upperAlpha [18]
 Upper boundays of alpha bins.
 
float m_iAlpha [18]
 Represented alpha in alpha bins.
 
float m_lowerTheta [7]
 Lower boundays of theta bins.
 
float m_upperTheta [7]
 Upper boundays of theta bins.
 
float m_iTheta [7]
 Represented theta in theta bins.
 
double m_par6 [56]
 boundary parameter for fitting, semi-experiment number
 
bool m_textOutput = false
 output text file if true
 
std::string m_outputFileName = "xt_new.dat"
 Output xt filename.
 
std::string m_histName = "histXT.root"
 root file name
 
DBObjPtr< CDCGeometrym_cdcGeo
 Geometry of CDC.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class to perform xt calibration for drift chamber.

Definition at line 51 of file XTCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ XTCalibrationAlgorithm()

Constructor.

Definition at line 31 of file XTCalibrationAlgorithm.cc.

31 : CalibrationAlgorithm("CDCCalibrationCollector")
32{
34 " -------------------------- XT Calibration Algorithm -------------------------\n"
35 );
36}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~XTCalibrationAlgorithm()

Destructor.

Definition at line 57 of file XTCalibrationAlgorithm.h.

57{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Run algo on data.

Implements CalibrationAlgorithm.

Definition at line 129 of file XTCalibrationAlgorithm.cc.

130{
131 gROOT->SetBatch(1);
132 gPrintViaErrorHandler = true; // Suppress huge log output from TMinuit
133 gErrorIgnoreLevel = 3001;
134 B2INFO("Start calibration");
135
136
137 const auto exprun = getRunList()[0];
138 B2INFO("ExpRun used for DB Geometry : " << exprun.first << " " << exprun.second);
139 updateDBObjPtrs(1, exprun.second, exprun.first);
140 B2INFO("Creating CDCGeometryPar object");
142
143 prepare();
144 createHisto();
145
146 B2INFO("Start Fitting");
147 std::unique_ptr<XTFunction> xt;
148 for (int l = 0; l < 56; ++l) {
149 for (int lr = 0; lr < 2; ++lr) {
150 for (int al = 0; al < m_nAlphaBins; ++al) {
151 for (int th = 0; th < m_nThetaBins; ++th) {
152 if (m_hist2d[l][lr][al][th]->GetEntries() < m_minEntriesRequired) {
153 m_fitStatus[l][lr][al][th] = FitStatus::c_lowStat;
154 continue;
155 }
156 double p0, p1, tmin;
157 TF1* fpol1;
158 if (m_useSliceFit) {
159 m_hist2d[l][lr][al][th]->FitSlicesY(0, 0, -1, 5);
160 m_hist2d_1[l][lr][al][th] = (TH1F*)gDirectory->Get(Form("h%d_%d_%d_%d_1", l, lr, al, th));
161 if (!m_hist2d_1[l][lr][al][th]) {
162 m_fitStatus[l][lr][al][th] = FitStatus::c_lowStat;
163 B2WARNING("Error, not found results of slices fit");
164 continue;
165 }
166 m_hist2d_1[l][lr][al][th]->Fit("pol1", "Q", "", 30, 60);
167 fpol1 = (TF1*)m_hProf[l][lr][al][th]->GetFunction("pol1");
168 } else {
169 /*Set Error for low statistic bin*/
170 for (int n = 0; n < m_hProf[l][lr][al][th]->GetNbinsX(); ++n) {
171 if (m_hProf[l][lr][al][th]->GetBinEntries(n) < 5 && m_hProf[l][lr][al][th]->GetBinEntries(n) > 1) {
172 m_hProf[l][lr][al][th]->SetBinError(n, 0.3 / m_hProf[l][lr][al][th]->GetBinEntries(n));
173 }
174 }
175 m_hProf[l][lr][al][th]->Fit("pol1", "Q", "", 30, 60);
176 fpol1 = (TF1*)m_hProf[l][lr][al][th]->GetFunction("pol1");
177 }
178
179 if (fpol1) {
180 //determine tmin in fitting
181 p0 = fpol1->GetParameter(0);
182 p1 = fpol1->GetParameter(1);
183 tmin = -1 * p0 / p1 + 15;
184 } else {
185 p0 = 0;
186 p1 = 0.005;
187 tmin = 12;
188 }
189
190 // B2INFO("layer " << l << ", lr " << lr << ", alpha " << m_iAlpha[al] << ", theta " << m_iTheta[th]);
191 if (m_useSliceFit) { // if slice fit results exist.
192 xt.reset(new XTFunction(m_hist2d_1[l][lr][al][th], m_xtMode));
193 } else { // from TProfile.
194 xt.reset(new XTFunction(m_hProf[l][lr][al][th], m_xtMode));
195 }
196
197 if (m_bField) {
198 int ial_old = 0;
199 int ith_old = 0;
200 for (int k = 0; k < m_nAlphaBins; ++k) {
201 if (m_iAlpha[al] < m_upperAlpha[k]) {
202 ial_old = k;
203 break;
204 }
205 }
206 for (int j = 0; j < m_nThetaBins; ++j) {
207 if (m_iTheta[th] < m_upperTheta[j]) {
208 ith_old = j;
209 break;
210 }
211 }
212
213 double p6 = m_xtPrior[l][lr][ial_old][ith_old][6];
214 if (p6 > 400) {
215 p6 = 400;
216 }
217
218 if (m_xtMode == m_xtModePrior) {
219 xt->setXTParams(m_xtPrior[l][lr][ial_old][ith_old]);
220 xt->setP6(p6);
221 } else {
222 xt->setXTParams(p0, p1, 0., 0., 0., 0., p6, m_xtPrior[l][lr][ial_old][ith_old][7]);
223 }
224 xt->setFitRange(tmin, p6 + 100);
225 } else {
226 xt->setXTParams(p0, p1, 0., 0., 0., 0., m_par6[l], 0.0001);
227 xt->setFitRange(tmin, m_par6[l] + 100);
228 }
229 xt->setDebug(m_debug);
230 xt->setBField(m_bField);
231 xt->fitXT();
232 if (xt->isValid() == false) {
233 B2WARNING("Empty xt");
234 m_fitStatus[l][lr][al][th] = c_fitFailure;
235 continue;
236 }
237 if (xt->getFitStatus() != 1) {
238 B2WARNING("Fit failed");
239 m_fitStatus[l][lr][al][th] = c_fitFailure;
240 continue;
241 }
242 if (xt->validate() == true) {
243 m_fitStatus[l][lr][al][th] = xt->getFitStatus();
244 m_xtFunc[l][lr][al][th] = (TF1*)xt->getXTFunction();
245
246 if (m_useSliceFit) {
247 m_hist2d_1[l][lr][al][th] = (TH1F*)xt->getFittedHisto();
248 } else {
249 m_hProf[l][lr][al][th] = (TProfile*)xt->getFittedHisto();
250 }
251 } else {
252 m_fitStatus[l][lr][al][th] = c_fitFailure;
253 }
254 }
255 }
256 }
257 }
259 write();
260 storeHisto();
261 return checkConvergence();
262}
static CDCGeometryPar & Instance(const CDCGeometry *=nullptr)
Static method to get a reference to the CDCGeometryPar instance.
void storeHisto()
Store histogram to file.
void prepare()
Prepare the calibration of XT.
void sanitaryCheck()
Check if there are any wrong xt functions.
double m_par6[56]
boundary parameter for fitting, semi-experiment number
double m_xtPrior[56][2][18][7][8]
paremeters of XT before calibration
TF1 * m_xtFunc[56][2][20][10]
XTFunction.
void createHisto()
Create histogram for calibration.
int m_minEntriesRequired
minimum number of hit per hitosgram.
int m_fitStatus[56][2][20][10]
Fit flag.
TH2F * m_hist2d[56][2][20][10]
2D histo of xt
TProfile * m_hProf[56][2][20][10]
Profile xt histo.
float m_iAlpha[18]
Represented alpha in alpha bins.
DBObjPtr< CDCGeometry > m_cdcGeo
Geometry of CDC.
bool m_useSliceFit
Use slice fit or profile.
void write()
Store calibrated constand.
float m_upperAlpha[18]
Upper boundays of alpha bins.
EResult checkConvergence()
Check the convergence of XT fit.
int m_xtModePrior
Mode of xt before calibration; 0 is polynomial;1 is Chebyshev.
float m_upperTheta[7]
Upper boundays of theta bins.
int m_xtMode
Mode of xt; 0 is polynomial;1 is Chebyshev.
TH1F * m_hist2d_1[56][2][20][10]
1D xt histo, results of slice fit
float m_iTheta[7]
Represented theta in theta bins.
Class to perform fitting for each xt function.
Definition: XTFunction.h:69
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.

◆ checkConvergence()

CalibrationAlgorithm::EResult checkConvergence ( )
protected

Check the convergence of XT fit.

Definition at line 285 of file XTCalibrationAlgorithm.cc.

286{
287
288 const int nTotal = 56 * 2 * m_nAlphaBins * m_nThetaBins;
289 int nFitCompleted = 0;
290 for (int l = 0; l < 56; ++l) {
291 for (int lr = 0; lr < 2; ++lr) {
292 for (int al = 0; al < m_nAlphaBins; ++al) {
293 for (int th = 0; th < m_nThetaBins; ++th) {
294 if (m_fitStatus[l][lr][al][th] == FitStatus::c_OK) {
295 nFitCompleted++;
296 }
297 }
298 }
299 }
300 }
301
302 if (static_cast<double>(nFitCompleted) / nTotal < m_threshold) {
303 B2WARNING("Less than " << m_threshold * 100 << " % of XTs were fitted.");
304 return c_NotEnoughData;
305 }
306 return c_OK;
307}
double m_threshold
minimal requirement for the fraction of fitted results

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ createHisto()

void createHisto ( )
protected

Create histogram for calibration.

Definition at line 38 of file XTCalibrationAlgorithm.cc.

39{
40
41 B2INFO("create and fill histo");
42 /*Create histogram*/
43 for (int i = 0; i < 56; ++i) {
44 for (int lr = 0; lr < 2; ++lr) {
45 for (int al = 0; al < m_nAlphaBins; ++al) {
46 for (int th = 0; th < m_nThetaBins; ++th) {
47 m_hProf[i][lr][al][th] = new TProfile(Form("m_hProf%d_%d_%d_%d", i, lr, al, th),
48 Form("(L=%d)-(lr=%d)-(#alpha=%3.0f)-(#theta=%3.0f); Drift time (ns);Drift Length (cm)",
49 i, lr, m_iAlpha[al], m_iTheta[th]), 210, -20, 600, 0, 1.2, "i");
50 m_hist2d[i][lr][al][th] = new TH2F(Form("h%d_%d_%d_%d", i, lr, al, th),
51 Form("(L=%d)-(lr=%d)-(#alpha=%3.0f)-(#theta=%3.0f); Drift time (ns);Drift Length (cm)",
52 i, lr, m_iAlpha[al], m_iTheta[th]), 210, -20, 600, 110, 0, 1.2);
53 if (lr == 1)
54 m_hist2dDraw[i][al][th] = new TH2F(Form("h_draw%d_%d_%d", i, al, th),
55 Form("(L=%d)-(#alpha=%3.0f)-(#theta=%3.0f); Drift time (ns);Drift Length (cm)",
56 i, m_iAlpha[al], m_iTheta[th]), 210, -20, 600, 220, -1.2, 1.2);
57 }
58 }
59 }
60 }
61
62 /* Read data and make histo*/
63
64 auto tree = getObjectPtr<TTree>("tree");
65
66 UChar_t lay;
67 Float_t dt;
68 Float_t dx;
69 Float_t Pval, alpha, theta;
70 Float_t ndf;
71
72 tree->SetBranchAddress("lay", &lay);
73 tree->SetBranchAddress("t", &dt);
74 tree->SetBranchAddress("x_u", &dx);
75 tree->SetBranchAddress("alpha", &alpha);
76 tree->SetBranchAddress("theta", &theta);
77 tree->SetBranchAddress("Pval", &Pval);
78 tree->SetBranchAddress("ndf", &ndf);
79
80 /* Disable unused branch */
81 std::vector<TString> list_vars = {"lay", "t", "x_u", "alpha", "theta", "Pval", "ndf"};
82 tree->SetBranchStatus("*", 0);
83
84 for (TString brname : list_vars) {
85 tree->SetBranchStatus(brname, 1);
86 }
87
88
89 int al = 0;
90 int th = 0;
91 TStopwatch time;
92 time.Start();
93 const Long64_t nEntries = tree->GetEntries();
94 B2INFO("Number of entries " << nEntries);
95 for (Long64_t i = 0; i < nEntries; ++i) {
96 tree->GetEntry(i);
97
98 if (Pval < m_minPval || ndf < m_minNdf) continue;
99
100 for (int k = 0; k < m_nAlphaBins; ++k) {
101 if (alpha < m_upperAlpha[k]) {
102 al = k;
103 break;
104 }
105 }
106 for (int j = 0; j < m_nThetaBins; ++j) {
107 if (theta < m_upperTheta[j]) {
108 th = j;
109 break;
110 }
111 }
112 int lr = dx > 0 ? c_Right : c_Left;
113 if (m_LRseparate) {
114 m_hProf[lay][lr][al][th]->Fill(dt, abs(dx));
115 m_hist2d[lay][lr][al][th]->Fill(dt, abs(dx));
116 } else {
117 m_hProf[lay][0][al][th]->Fill(dt, abs(dx));
118 m_hist2d[lay][0][al][th]->Fill(dt, abs(dx));
119 m_hProf[lay][1][al][th]->Fill(dt, abs(dx));
120 m_hist2d[lay][1][al][th]->Fill(dt, abs(dx));
121 }
122 m_hist2dDraw[lay][al][th]->Fill(dt, dx);
123 }
124 time.Stop();
125 B2INFO("Time to fill histograms: " << time.RealTime() << "s");
126 // time.Print();
127}
bool m_LRseparate
Separate LR in calibration or mix.
double m_minPval
minimum pvalue required
TH2F * m_hist2dDraw[56][20][10]
2d histo for draw

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ enableTextOutput()

void enableTextOutput ( bool  output = true)
inline

Enable text output of calibration result.

Definition at line 78 of file XTCalibrationAlgorithm.h.

78{m_textOutput = output;}
bool m_textOutput
output text file if true

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ prepare()

void prepare ( )
protected

Prepare the calibration of XT.

Definition at line 309 of file XTCalibrationAlgorithm.cc.

310{
311 B2INFO("Prepare calibration of XT");
312 const double rad2deg = 180 / M_PI;
313
315 m_nAlphaBins = dbXT->getNoOfAlphaBins();
316 m_nThetaBins = dbXT->getNoOfThetaBins();
317 for (unsigned short i = 0; i < m_nAlphaBins; ++i) {
318 array3 alpha = dbXT->getAlphaBin(i);
319 m_lowerAlpha[i] = alpha[0] * rad2deg;
320 m_upperAlpha[i] = alpha[1] * rad2deg;
321 m_iAlpha[i] = alpha[2] * rad2deg;
322 }
323
324 for (unsigned short i = 0; i < m_nThetaBins; ++i) {
325 array3 theta = dbXT->getThetaBin(i);
326 m_lowerTheta[i] = theta[0] * rad2deg;
327 m_upperTheta[i] = theta[1] * rad2deg;
328 m_iTheta[i] = theta[2] * rad2deg;
329 }
330
331 m_xtModePrior = dbXT->getXtParamMode();
332 if (!(m_xtModePrior == c_Chebyshev || m_xtModePrior == c_Polynomial)) {
333 B2FATAL("Function type before calibration is wrong " << m_xtModePrior);
334 }
335
336 B2INFO("Number of alpha bins " << m_nAlphaBins);
337 B2INFO("Number of theta bins " << m_nThetaBins);
338 B2INFO("Function type " << m_xtMode);
339
340 for (unsigned short iCL = 0; iCL < 56; ++iCL) {
341 for (unsigned short iLR = 0; iLR < 2; ++iLR) {
342 for (unsigned short iA = 0; iA < m_nAlphaBins; ++iA) {
343 for (unsigned short iT = 0; iT < m_nThetaBins; ++iT) {
344 const std::vector<float> params = dbXT->getXtParams(iCL, iLR, iA, iT);
345 unsigned short np = params.size();
346 for (unsigned short i = 0; i < np; ++i) {
347 m_xtPrior[iCL][iLR][iA][iT][i] = params[i];
348 }
349 }
350 }
351 }
352 }
353}
float m_lowerTheta[7]
Lower boundays of theta bins.
float m_lowerAlpha[18]
Lower boundays of alpha bins.
Class for accessing objects in the database.
Definition: DBObjPtr.h:21

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ sanitaryCheck()

void sanitaryCheck ( )
protected

Check if there are any wrong xt functions.

Definition at line 264 of file XTCalibrationAlgorithm.cc.

265{
266 const double tMax = 500; // max drift time (nsec)
267 for (int l = 0; l < 56; ++l) {
268 for (int lr = 0; lr < 2; ++lr) {
269 for (int al = 0; al < m_nAlphaBins; ++al) {
270 for (int th = 0; th < m_nThetaBins; ++th) {
271 if (m_fitStatus[l][lr][al][th] == FitStatus::c_OK) {
272 TF1* fun = m_xtFunc[l][lr][al][th];
273 double y = fun->Eval(tMax);
274 if (y < 0) {
275 B2INFO("Strange XT function l " << l << " lr " << lr << " alpha " << al << " theta " << th
276 << ", replaced by initial one");
277 fun->SetParameters(m_xtPrior[l][lr][al][th]);
278 }
279 }
280 }
281 }
282 }
283 }
284}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setBField()

void setBField ( bool  bfield)
inline

set to use BField

Definition at line 60 of file XTCalibrationAlgorithm.h.

60{m_bField = bfield;}

◆ setDebug()

void setDebug ( bool  debug = false)
inline

Run in debug or silent.

Definition at line 63 of file XTCalibrationAlgorithm.h.

63{m_debug = debug; }

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setHistFileName()

void setHistFileName ( const std::string &  name)
inline

Set name for histogram output.

Definition at line 84 of file XTCalibrationAlgorithm.h.

84{m_histName = "histXT_" + name + ".root";}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setLRSeparate()

void setLRSeparate ( bool  lr = true)
inline

Set LR separate mode (default is true).

Definition at line 87 of file XTCalibrationAlgorithm.h.

87{m_LRseparate = lr;}

◆ setMinimumNDF()

void setMinimumNDF ( double  ndf)
inline

set minimum number of degree of freedom requirement

Definition at line 66 of file XTCalibrationAlgorithm.h.

66{m_minNdf = ndf;}

◆ setMinimumPval()

void setMinimumPval ( double  pval)
inline

set minimum Prob(Chi2) requirement

Definition at line 69 of file XTCalibrationAlgorithm.h.

69{m_minPval = pval;}

◆ setOutputFileName()

void setOutputFileName ( std::string  outputname)
inline

output file name

Definition at line 81 of file XTCalibrationAlgorithm.h.

81{m_outputFileName.assign(outputname);}
std::string m_outputFileName
Output xt filename.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setStoreHisto()

void setStoreHisto ( bool  storeHist = false)
inline

set to store histogram or not.

Definition at line 75 of file XTCalibrationAlgorithm.h.

75{m_storeHisto = storeHist;}
bool m_storeHisto
Store histogram or not.

◆ setThreshold()

void setThreshold ( double  th = 0.6)
inline

Set threshold for the fraction of fitted results.

Definition at line 90 of file XTCalibrationAlgorithm.h.

90{m_threshold = th;}

◆ setXtMode()

void setXtMode ( unsigned short  mode = c_Chebyshev)
inline

set xt mode, 0 is polynimial, 1 is Chebshev polynomial

Definition at line 72 of file XTCalibrationAlgorithm.h.

72{m_xtMode = mode;}

◆ storeHisto()

void storeHisto ( )
protected

Store histogram to file.

Definition at line 445 of file XTCalibrationAlgorithm.cc.

446{
447
448 auto hNDF = getObjectPtr<TH1F>("hNDF");
449 auto hPval = getObjectPtr<TH1F>("hPval");
450 auto hEvtT0 = getObjectPtr<TH1F>("hEventT0");
451 B2INFO("saving histograms");
452 TFile* fout = new TFile(m_histName.c_str(), "RECREATE");
453 TDirectory* top = gDirectory;
454 //store NDF, P-val. EventT0 histogram for monitoring during calibration
455 if (hNDF && hPval && hEvtT0) {
456 hEvtT0->Write();
457 hPval->Write();
458 hNDF->Write();
459 }
460 // for each layer
461
462 TDirectory* Direct[56];
463 int nhisto = 0;
464 for (int l = 0; l < 56; ++l) {
465 top->cd();
466 Direct[l] = gDirectory->mkdir(Form("lay_%d", l));
467 Direct[l]->cd();
468 for (int th = 0; th < m_nThetaBins; ++th) {
469 for (int al = 0; al < m_nAlphaBins; ++al) {
470 m_hist2dDraw[l][al][th]->Write();
471 for (int lr = 0; lr < 2; ++lr) {
472 m_hist2d[l][lr][al][th]->Write();
473 if (m_fitStatus[l][lr][al][th] != 1) continue;
474 if (m_useSliceFit) {
475 if (m_hist2d_1[l][lr][al][th]) {
476 m_hist2d_1[l][lr][al][th]->Write();
477 nhisto += 1;
478 }
479 } else {
480 m_hProf[l][lr][al][th]->Write();
481 nhisto += 1;
482 }
483 }
484 }
485 }
486 }
487 top->cd();
488
489 fout->Close();
490 B2RESULT(" " << nhisto << " histograms was stored.");
491}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

◆ write()

void write ( )
protected

Store calibrated constand.

Definition at line 355 of file XTCalibrationAlgorithm.cc.

356{
357 B2INFO("write calibrated XT");
358 double par[8];
359
360
361 int nfitted = 0;
362 int nfailure = 0;
363
364 //
365 // Save to the localDB
366 //
367
368 CDCXtRelations* xtRel = new CDCXtRelations();
369 const float deg2rad = static_cast<float>(Unit::deg);
370
371 for (int i = 0; i < m_nAlphaBins; ++i) {
372 std::array<float, 3> alpha3 = {m_lowerAlpha[i]* deg2rad,
373 m_upperAlpha[i]* deg2rad,
374 m_iAlpha[i]* deg2rad
375 };
376 xtRel->setAlphaBin(alpha3);
377 }
378
379 for (int i = 0; i < m_nThetaBins; ++i) {
380 std::array<float, 3> theta3 = {m_lowerTheta[i]* deg2rad,
381 m_upperTheta[i]* deg2rad,
382 m_iTheta[i]* deg2rad
383 };
384 xtRel->setThetaBin(theta3);
385 }
386
387 xtRel->setXtParamMode(m_xtMode);
388
389 for (int th = 0; th < m_nThetaBins; ++th) {
390 for (int al = 0; al < m_nAlphaBins; ++al) {
391 for (int l = 0; l < 56; ++l) {
392 for (int lr = 0; lr < 2; ++lr) {
393 if (m_fitStatus[l][lr][al][th] != FitStatus::c_OK) {
394 nfailure += 1;
395 B2DEBUG(21, "fit failure status = " << m_fitStatus[l][lr][al][th]);
396 B2DEBUG(21, "layer " << l << ", r " << lr << ", alpha " << m_iAlpha[al] << ", theta " << m_iTheta[th]);
397 B2DEBUG(21, "number of event: " << m_hProf[l][lr][al][th]->GetEntries());
398 if (m_fitStatus[l][lr][al][th] != FitStatus::c_lowStat) {
399 if (m_xtFunc[l][lr][al][th]) {
400 B2DEBUG(21, "Probability of fit: " << m_xtFunc[l][lr][al][th]->GetProb());
401 }
402 }
403 // If fit is failed
404 // and mode of input xt (prior) is same as output, previous xt is used.
405 if (m_xtMode == m_xtModePrior) {
406 for (int i = 0; i < 8; ++i) {
407 par[i] = m_xtPrior[l][lr][al][th][i];
408 }
409 } else {
410 B2FATAL("XT mode before/after calibration is different!");
411 }
412
413 } else {
414 if (par[1] < 0) { // if negative c1, privious xt is kept.
415 for (int i = 0; i < 8; ++i) {
416 par[i] = m_xtPrior[l][lr][al][th][i];
417 }
418 } else {
419 m_xtFunc[l][lr][al][th]->GetParameters(par);
420 nfitted += 1;
421 }
422 }
423 std::vector<float> xtbuff;
424 for (int i = 0; i < 8; ++i) {
425 xtbuff.push_back(par[i]);
426 }
427 xtRel->setXtParams(l, lr, al, th, xtbuff);
428 }//lr
429 }//layer
430 }//alpha
431 }//theta
432
433 if (m_textOutput == true) {
435 }
436
437 saveCalibration(xtRel, "CDCXtRelations");
438
439 B2RESULT("Total number of xt fit: " << m_nAlphaBins * m_nThetaBins * 2 * 56);
440 B2RESULT("Successfully Fitted: " << nfitted);
441 B2RESULT("Failure Fit: " << nfailure);
442
443}
Database object for xt-relations.
void setThetaBin(const array3 &theta)
Set theta-angle bin (rad)
void outputToFile(std::string fileName) const
Output the contents in test file format.
void setXtParamMode(unsigned short mode)
Set xt parameterization mode.
void setXtParams(const XtID xtID, const std::vector< float > &params)
Set xt parameters for the specified id.
void setAlphaBin(const array3 &alpha)
Set alpha-angle bin (rad)
static const double deg
degree to radians
Definition: Unit.h:109

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_bField

bool m_bField = true
private

with b field or none

Definition at line 121 of file XTCalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_cdcGeo

DBObjPtr<CDCGeometry> m_cdcGeo
private

Geometry of CDC.

Definition at line 160 of file XTCalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_debug

bool m_debug = false
private

run in debug or silent

Definition at line 118 of file XTCalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_fitStatus

int m_fitStatus[56][2][20][10]
private

Fit flag.

Definition at line 132 of file XTCalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_hist2d

TH2F* m_hist2d[56][2][20][10]
private

2D histo of xt

Definition at line 125 of file XTCalibrationAlgorithm.h.

◆ m_hist2d_1

TH1F* m_hist2d_1[56][2][20][10]
private

1D xt histo, results of slice fit

Definition at line 127 of file XTCalibrationAlgorithm.h.

◆ m_hist2dDraw

TH2F* m_hist2dDraw[56][20][10]
private

2d histo for draw

Definition at line 126 of file XTCalibrationAlgorithm.h.

◆ m_histName

std::string m_histName = "histXT.root"
private

root file name

Definition at line 159 of file XTCalibrationAlgorithm.h.

◆ m_hProf

TProfile* m_hProf[56][2][20][10]
private

Profile xt histo.

Definition at line 124 of file XTCalibrationAlgorithm.h.

◆ m_iAlpha

float m_iAlpha[18]
private

Represented alpha in alpha bins.

Definition at line 141 of file XTCalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_iTheta

float m_iTheta[7]
private

Represented theta in theta bins.

Definition at line 144 of file XTCalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_lowerAlpha

float m_lowerAlpha[18]
private

Lower boundays of alpha bins.

Definition at line 139 of file XTCalibrationAlgorithm.h.

◆ m_lowerTheta

float m_lowerTheta[7]
private

Lower boundays of theta bins.

Definition at line 142 of file XTCalibrationAlgorithm.h.

◆ m_LRseparate

bool m_LRseparate = true
private

Separate LR in calibration or mix.

Definition at line 120 of file XTCalibrationAlgorithm.h.

◆ m_minEntriesRequired

int m_minEntriesRequired = 5000
private

minimum number of hit per hitosgram.

Definition at line 134 of file XTCalibrationAlgorithm.h.

◆ m_minNdf

double m_minNdf = 5
private

minimum ndf required

Definition at line 116 of file XTCalibrationAlgorithm.h.

◆ m_minPval

double m_minPval = 0.
private

minimum pvalue required

Definition at line 117 of file XTCalibrationAlgorithm.h.

◆ m_nAlphaBins

int m_nAlphaBins
private

number of alpha bins

Definition at line 135 of file XTCalibrationAlgorithm.h.

◆ m_nThetaBins

int m_nThetaBins
private

number of theta bins

Definition at line 136 of file XTCalibrationAlgorithm.h.

◆ m_outputFileName

std::string m_outputFileName = "xt_new.dat"
private

Output xt filename.

Definition at line 158 of file XTCalibrationAlgorithm.h.

◆ m_par6

double m_par6[56]
private
Initial value:
= {89, 91, 94, 99, 104, 107, 110, 117,
126, 144, 150, 157, 170, 180,
160, 167, 183, 205, 200, 194,
177, 189, 192, 206, 224, 234,
193, 206, 209, 215, 222, 239,
204, 212, 217, 227, 235, 240,
215, 222, 230, 239, 246, 253,
227, 232, 239, 243, 253, 258,
231, 243, 246, 256, 263, 300
}

boundary parameter for fitting, semi-experiment number

Definition at line 146 of file XTCalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_storeHisto

bool m_storeHisto = true
private

Store histogram or not.

Definition at line 119 of file XTCalibrationAlgorithm.h.

◆ m_textOutput

bool m_textOutput = false
private

output text file if true

Definition at line 157 of file XTCalibrationAlgorithm.h.

◆ m_threshold

double m_threshold = 0.6
private

minimal requirement for the fraction of fitted results

Definition at line 122 of file XTCalibrationAlgorithm.h.

◆ m_upperAlpha

float m_upperAlpha[18]
private

Upper boundays of alpha bins.

Definition at line 140 of file XTCalibrationAlgorithm.h.

◆ m_upperTheta

float m_upperTheta[7]
private

Upper boundays of theta bins.

Definition at line 143 of file XTCalibrationAlgorithm.h.

◆ m_useSliceFit

bool m_useSliceFit = false
private

Use slice fit or profile.

Definition at line 133 of file XTCalibrationAlgorithm.h.

◆ m_xtFunc

TF1* m_xtFunc[56][2][20][10]
private

XTFunction.

Definition at line 128 of file XTCalibrationAlgorithm.h.

◆ m_xtMode

int m_xtMode = c_Chebyshev
private

Mode of xt; 0 is polynomial;1 is Chebyshev.

Definition at line 137 of file XTCalibrationAlgorithm.h.

◆ m_xtModePrior

int m_xtModePrior
private

Mode of xt before calibration; 0 is polynomial;1 is Chebyshev.

Definition at line 138 of file XTCalibrationAlgorithm.h.

◆ m_xtPrior

double m_xtPrior[56][2][18][7][8]
private

paremeters of XT before calibration

Definition at line 130 of file XTCalibrationAlgorithm.h.


The documentation for this class was generated from the following files: