Belle II Software development
ECLShowerShapeModule Class Reference

Class to perform the shower correction. More...

#include <ECLShowerShapeModule.h>

Inheritance diagram for ECLShowerShapeModule:
Module PathElement ECLShowerShapePureCsIModule

Classes

struct  ProjectedECLDigit
 Struct used to hold information of the digits projected to a plane perpendicular to the shower direction. More...
 

Public Types

enum  {
  c_thetaType = 0 ,
  c_phiType = 1
}
 Enumeration of type for second moment corrections. More...
 
enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLShowerShapeModule ()
 Constructor.
 
 ~ECLShowerShapeModule ()
 Destructor.
 
virtual void initialize () override
 Initialize.
 
virtual void beginRun () override
 Begin run.
 
virtual void event () override
 Event.
 
virtual void endRun () override
 End run.
 
virtual void terminate () override
 Terminate.
 
virtual const char * eclShowerArrayName () const
 We need names for the data objects to differentiate between PureCsI and default.
 
virtual const char * eclCalDigitArrayName () const
 Default name ECLCalDigits.
 
virtual const char * eclConnectedRegionArrayName () const
 Default name ECLConnectedRegions.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void initializeMVAweightFiles (const std::string &identifier, std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &weightFileRepresentation)
 initialize MVA weight files from DB
 
void initializeMVA (const std::string &identifier, std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &weightFileRepresentation, std::unique_ptr< MVA::Expert > &expert)
 Load MVA weight file and set pointer of expert.
 
void setShowerShapeVariables (ECLShower *eclShower, const bool calculateZernikeMVA) const
 Set showr shape variables.
 
double computeLateralEnergy (const std::vector< ProjectedECLDigit > &projectedDigits, const double avgCrystalDimension) const
 Shower shape variable: Lateral energy.
 
double computeAbsZernikeMoment (const std::vector< ProjectedECLDigit > &projectedDigits, const double totalEnergy, const int n, const int m, const double rho) const
 Compute the absolute value of the complex Zernike moment Znm.
 
double computeSecondMoment (const std::vector< ProjectedECLDigit > &shower, const double totalEnergy) const
 Compute the second moment in the plane perpendicular to the direction of the shower.
 
std::vector< ProjectedECLDigitprojectECLDigits (const ECLShower &shower) const
 Compute projections of the ECLCalDigits to the perpendicular plane.
 
double Rnm (const int n, const int m, const double rho) const
 The radial part of the Zernike polynomial n,m - Zernike polynomial rank rho - radial distance

 
std::complex< double > zernikeValue (const double rho, const double alpha, const int n, const int m) const
 Return the complex value of the Zernike polynomial of rank n,m.
 
double computeE9oE21 (const ECLShower &) const
 Shower shape variable: E9oE21 The energy ratio is calculated taking the weighted 3x3 (=9) and the weighted 5x5-corners (=21) crystals around the central crystal.
 
double computeE1oE9 (const ECLShower &) const
 Shower shape variable: E1oE9 The energy ratio is calculated taking the weighted central (=1) and the weighted 3x3 (=9) crystals around the central crystal.
 
void prepareSecondMomentCorrectionsCallback ()
 Prepare corrections for second moment Will be called whenever the m_secondMomentCorrectionArray get updated Clears m_secondMomentCorrections and fills it from the updated m_secondMomentCorrectionArray.
 
double getSecondMomentCorrection (const double theta, const double phi, const int hypothesis) const
 Get corrections for second moment.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

StoreArray< ECLConnectedRegionm_eclConnectedRegions
 StoreArray ECLConnectedRegion.
 
double m_zernike_n1_rho0
 Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N1 showers.
 
double m_zernike_n2_rho0
 Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N2 showers.
 
bool m_zernike_useFarCrystals
 Determines if to include or ignore crystals with rho > rho0 in perpendicular plane, used in Zernike moment calculation.
 
double m_avgCrystalDimension
 Average crystal dimension [cm].
 
const double m_BRLthetaMin = 32.2 * Unit::deg
 Minimum theta of barrel used for choosing which Zernike MVA to apply.
 
const double m_BRLthetaMax = 128.7 * Unit::deg
 Maximum theta of barrel used for choosing which Zernike MVA to apply.
 
const unsigned int m_numZernikeMVAvariables = 22
 number of variables expected in the Zernike MVA weightfile
 
std::string m_zernike_MVAidentifier_FWD
 Zernike moment MVA - FWD endcap weight-file.
 
std::string m_zernike_MVAidentifier_BRL
 Zernike moment MVA - Barrel weight-file.
 
std::string m_zernike_MVAidentifier_BWD
 Zernike moment MVA - BWD endcap weight-file.
 
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_FWD
 Database pointer to the Database representation of the Zernike moment MVA weightfile for FWD.
 
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_BRL
 Database pointer to the Database representation of the Zernike moment MVA weightfile for BRL.
 
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_BWD
 Database pointer to the Database representation of the Zernike moment MVA weightfile for BWD.
 
std::unique_ptr< MVA::Expertm_expert_FWD
 Pointer to the current MVA Expert for FWD.
 
std::unique_ptr< MVA::Expertm_expert_BRL
 Pointer to the current MVA Expert for BRL.
 
std::unique_ptr< MVA::Expertm_expert_BWD
 Pointer to the current MVA Expert for BWD.
 
std::unique_ptr< MVA::SingleDatasetm_dataset
 Pointer to the current dataset.
 
std::unique_ptr< ECL::ECLNeighboursm_neighbourMap9
 Neighbour map 9 neighbours, for E9oE21 and E1oE9.
 
std::unique_ptr< ECL::ECLNeighboursm_neighbourMap21
 Neighbour map 21 neighbours, for E9oE21.
 
DBArray< ECLShowerShapeSecondMomentCorrectionm_secondMomentCorrectionArray
 Shower shape corrections from DB.
 
TGraph m_secondMomentCorrections [2][10]
 TGraphs that hold the corrections.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Class to perform the shower correction.

Definition at line 44 of file ECLShowerShapeModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ anonymous enum

anonymous enum

Enumeration of type for second moment corrections.

Enumerator
c_thetaType 

type of theta identifier

c_phiType 

type of phi identifier

Definition at line 49 of file ECLShowerShapeModule.h.

49 {
50 c_thetaType = 0,
51 c_phiType = 1,
52 };
@ c_phiType
type of phi identifier
@ c_thetaType
type of theta identifier

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLShowerShapeModule()

Constructor.

Definition at line 50 of file ECLShowerShapeModule.cc.

50 : Module(),
52 m_secondMomentCorrectionArray("ecl_shower_shape_second_moment_corrections")
53{
54 // Set description
55 setDescription("ECLShowerShapeModule: Calculate ECL shower shape variables (e.g. E9oE21)");
57
58 addParam("zernike_n1_rho0", m_zernike_n1_rho0,
59 "Scaling factor for radial distances in a plane perpendicular to direction to shower for the n photon hypothesis in Zernike moment calculation.",
60 10.0 * Unit::cm);
61
62 addParam("zernike_n2_rho0", m_zernike_n2_rho0,
63 "Scaling factor for radial distances in a plane perpendicular to direction to shower for the neutral hadron hypothesis in Zernike moment calculation. ",
64 20.0 * Unit::cm);
65
66 addParam("zernike_useFarCrystals", m_zernike_useFarCrystals,
67 "Determines if Digits with rho > rho0 are used for the zernike moment calculation. If they are, their radial distance will be set to rho0.",
68 true);
69
70 addParam("zernike_MVAidentifier_FWD", m_zernike_MVAidentifier_FWD, "The Zernike moment MVA database identifier for forward endcap.",
71 std::string{"ecl_showershape_zernike_mva_fwd"});
72 addParam("zernike_MVAidentifier_BRL", m_zernike_MVAidentifier_BRL, "The Zernike moment MVA database identifier for barrel.",
73 std::string{"ecl_showershape_zernike_mva_brl"});
74 addParam("zernike_MVAidentifier_BWD", m_zernike_MVAidentifier_BWD,
75 "The Zernike moment MVA database identifier for backward endcap.", std::string{"ecl_showershape_zernike_mva_bwd"});
76
77 addParam("avgCrystalDimension", m_avgCrystalDimension,
78 "Average crystal dimension used in lateral energy calculation.",
79 5.0 * Unit::cm);
80
81}
DBArray< ECLShowerShapeSecondMomentCorrection > m_secondMomentCorrectionArray
Shower shape corrections from DB.
std::string m_zernike_MVAidentifier_FWD
Zernike moment MVA - FWD endcap weight-file.
StoreArray< ECLConnectedRegion > m_eclConnectedRegions
StoreArray ECLConnectedRegion.
bool m_zernike_useFarCrystals
Determines if to include or ignore crystals with rho > rho0 in perpendicular plane,...
double m_zernike_n1_rho0
Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N1...
virtual const char * eclConnectedRegionArrayName() const
Default name ECLConnectedRegions.
double m_zernike_n2_rho0
Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N2...
std::string m_zernike_MVAidentifier_BRL
Zernike moment MVA - Barrel weight-file.
double m_avgCrystalDimension
Average crystal dimension [cm].
std::string m_zernike_MVAidentifier_BWD
Zernike moment MVA - BWD endcap weight-file.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
Module()
Constructor.
Definition: Module.cc:30
static const double cm
Standard units with the value = 1.
Definition: Unit.h:47
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~ECLShowerShapeModule()

Destructor.

Definition at line 83 of file ECLShowerShapeModule.cc.

84{
85}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Begin run.

Reimplemented from Module.

Definition at line 163 of file ECLShowerShapeModule.cc.

164{
168
169 //This is a hack because the callback doesn't seem to be called at the begining of the run
170 if (m_secondMomentCorrectionArray.hasChanged()) {
172 else B2ERROR("ECLShowerShapeModule::beginRun - Couldn't find second moment correction for current run");
173 }
174}
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_BWD
Database pointer to the Database representation of the Zernike moment MVA weightfile for BWD.
std::unique_ptr< MVA::Expert > m_expert_BRL
Pointer to the current MVA Expert for BRL.
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_BRL
Database pointer to the Database representation of the Zernike moment MVA weightfile for BRL.
std::unique_ptr< MVA::Expert > m_expert_FWD
Pointer to the current MVA Expert for FWD.
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > m_weightfile_representation_FWD
Database pointer to the Database representation of the Zernike moment MVA weightfile for FWD.
void prepareSecondMomentCorrectionsCallback()
Prepare corrections for second moment Will be called whenever the m_secondMomentCorrectionArray get u...
std::unique_ptr< MVA::Expert > m_expert_BWD
Pointer to the current MVA Expert for BWD.
void initializeMVA(const std::string &identifier, std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &weightFileRepresentation, std::unique_ptr< MVA::Expert > &expert)
Load MVA weight file and set pointer of expert.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ computeAbsZernikeMoment()

double computeAbsZernikeMoment ( const std::vector< ProjectedECLDigit > &  projectedDigits,
const double  totalEnergy,
const int  n,
const int  m,
const double  rho 
) const
private

Compute the absolute value of the complex Zernike moment Znm.

The moments are computed in a plane perpendicular to the direction of the shower. The plane's origin is at the intersection of the shower direction with the plane. The origin is at a distance from the interaction point equal to the shower distance from the interaction point.

n, m - are the Zernike polynomial rank R0 - is a scaling factor used to normalize the distances in the described plane. It also sets the maximum distance from the origin (the Zernike polynomials are defined only on the unit circle). All points in the plane with a distance larger than R0 from the origin are ignored.

Valid values of n,m are n,m >= 0, m <= n. If n or m are invalid the function returns 0.0.

Definition at line 443 of file ECLShowerShapeModule.cc.

445{
446 if (totalEnergy <= 0.0) return 0.0;
447
448 // Make sure n,m are valid
449 if (n < 0 || m < 0) return 0.0;
450 if (m > n) return 0.0;
451
452 std::complex<double> sum(0.0, 0.0);
453
454 for (const auto projectedDigit : projectedDigits) {
455 double normalizedRho = projectedDigit.rho / rho0; // Normalize radial distance according to rho0.
456 //Ignore crystals with rho > rho0, if requested
457 if (normalizedRho > 1.0) {
458 if (!m_zernike_useFarCrystals) continue;
459 else normalizedRho = 1.0; //crystals with rho > rho0 are scaled to rho0 instead of discarded
460 }
461
462 sum += projectedDigit.energy * std::conj(zernikeValue(normalizedRho, projectedDigit.alpha, n, m));
463 }
464 return (n + 1.0) / TMath::Pi() * std::abs(sum) / totalEnergy;
465}
std::complex< double > zernikeValue(const double rho, const double alpha, const int n, const int m) const
Return the complex value of the Zernike polynomial of rank n,m.

◆ computeE1oE9()

double computeE1oE9 ( const ECLShower shower) const
private

Shower shape variable: E1oE9 The energy ratio is calculated taking the weighted central (=1) and the weighted 3x3 (=9) crystals around the central crystal.

If the shower is smaller than this, the reduced number is used for this.

Definition at line 480 of file ECLShowerShapeModule.cc.

481{
482
483 // get central id
484 const int centralCellId = shower.getCentralCellId();
485 if (centralCellId == 0) return 0.0; //cell id starts at 1
486
487 // get list of 9 neighbour ids
488 const std::vector< short int > n9 = m_neighbourMap9->getNeighbours(centralCellId);
489
490 double energy1 = 0.0; // to check: 'highest energy' data member may not always be the right one
491 double energy9 = 0.0;
492
493 auto relatedDigitsPairs = shower.getRelationsTo<ECLCalDigit>(eclCalDigitArrayName());
494
495 for (unsigned int iRel = 0; iRel < relatedDigitsPairs.size(); iRel++) {
496 const auto caldigit = relatedDigitsPairs.object(iRel);
497 const auto weight = relatedDigitsPairs.weight(iRel);
498 const auto energy = caldigit->getEnergy();
499 const int cellid = caldigit->getCellId();
500
501 // get central cell id energy
502 if (cellid == centralCellId) {
503 energy1 = weight * energy;
504 }
505
506 // check if this is contained in the 9 neighbours
507 const auto it9 = std::find(n9.begin(), n9.end(), cellid);
508 if (it9 != n9.end()) {
509 energy9 += weight * energy;
510 }
511
512 }
513
514 if (energy9 > 1e-9) return energy1 / energy9;
515 else return 0.0;
516}
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
std::unique_ptr< ECL::ECLNeighbours > m_neighbourMap9
Neighbour map 9 neighbours, for E9oE21 and E1oE9.
virtual const char * eclCalDigitArrayName() const
Default name ECLCalDigits.
int getCentralCellId() const
Get central cell Id.
Definition: ECLShower.h:282
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.

◆ computeE9oE21()

double computeE9oE21 ( const ECLShower shower) const
private

Shower shape variable: E9oE21 The energy ratio is calculated taking the weighted 3x3 (=9) and the weighted 5x5-corners (=21) crystals around the central crystal.

If the shower is smaller than this, the reduced number is used for this.

Definition at line 518 of file ECLShowerShapeModule.cc.

519{
520 // get central id
521 const int centralCellId = shower.getCentralCellId();
522 if (centralCellId == 0) return 0.0; //cell id starts at 1
523
524 // get list of 9 and 21 neighbour ids
525 const std::vector< short int > n9 = m_neighbourMap9->getNeighbours(centralCellId);
526 const std::vector< short int > n21 = m_neighbourMap21->getNeighbours(centralCellId);
527
528 double energy9 = 0.0;
529 double energy21 = 0.0;
530
531 auto relatedDigitsPairs = shower.getRelationsTo<ECLCalDigit>(eclCalDigitArrayName());
532
533 for (unsigned int iRel = 0; iRel < relatedDigitsPairs.size(); iRel++) {
534 const auto caldigit = relatedDigitsPairs.object(iRel);
535 const auto weight = relatedDigitsPairs.weight(iRel);
536 const auto energy = caldigit->getEnergy();
537 const int cellid = caldigit->getCellId();
538
539 // check if this is contained in the 9 neighbours
540 const auto it9 = std::find(n9.begin(), n9.end(), cellid);
541 if (it9 != n9.end()) {
542 energy9 += weight * energy;
543 }
544
545 // check if this is contained in the 21 neighbours
546 const auto it21 = std::find(n21.begin(), n21.end(), cellid);
547 if (it21 != n21.end()) {
548 energy21 += weight * energy;
549 }
550
551 }
552
553 if (energy21 > 1e-9) return energy9 / energy21;
554 else return 0.0;
555
556}
std::unique_ptr< ECL::ECLNeighbours > m_neighbourMap21
Neighbour map 21 neighbours, for E9oE21.

◆ computeLateralEnergy()

double computeLateralEnergy ( const std::vector< ProjectedECLDigit > &  projectedDigits,
const double  avgCrystalDimension 
) const
private

Shower shape variable: Lateral energy.

Definition at line 367 of file ECLShowerShapeModule.cc.

369{
370
371// auto relatedDigitsPairs = shower.getRelationsTo<ECLCalDigit>();
372 if (projectedDigits.size() < 3.0) return 0;
373
374 // Find the two projected digits with the maximum energy.
375 double maxEnergy(0), secondMaxEnergy(0);
376 unsigned int iMax(0), iSecondMax(0);
377
378 for (unsigned int iProjecteDigit = 0; iProjecteDigit < projectedDigits.size(); iProjecteDigit++) {
379 if (projectedDigits[iProjecteDigit].energy > maxEnergy) {
380 secondMaxEnergy = maxEnergy;
381 iSecondMax = iMax;
382 maxEnergy = projectedDigits[iProjecteDigit].energy;
383 iMax = iProjecteDigit;
384 } else if (projectedDigits[iProjecteDigit].energy > secondMaxEnergy) {
385 secondMaxEnergy = projectedDigits[iProjecteDigit].energy;
386 iSecondMax = iProjecteDigit;
387 }
388 }
389
390 //Calculate lateral energy
391 double sumE = 0;
392 for (unsigned int iProjecteDigit = 0; iProjecteDigit < projectedDigits.size(); iProjecteDigit++) {
393
394 //2 highest energies are considered differently than the rest
395 if (iProjecteDigit == iMax || iProjecteDigit == iSecondMax) continue;
396
397 double rho = projectedDigits[iProjecteDigit].rho;
398 double rho2 = rho * rho;
399 double energy = projectedDigits[iProjecteDigit].energy;
400 sumE += energy * rho2;
401
402 }
403
404 const double r0sq = avgCrystalDimension * avgCrystalDimension; // average crystal dimension squared.
405 return sumE / (sumE + r0sq * (maxEnergy + secondMaxEnergy));
406}

◆ computeSecondMoment()

double computeSecondMoment ( const std::vector< ProjectedECLDigit > &  shower,
const double  totalEnergy 
) const
private

Compute the second moment in the plane perpendicular to the direction of the shower.

The plane's origin is at the intersection of the shower direction with the plane. The origin is at a distance from the interaction point equal to the shower distance from the interaction point.

Definition at line 467 of file ECLShowerShapeModule.cc.

469{
470 if (totalEnergy <= 0.0) return 0.0;
471
472 double sum = 0.0;
473
474 for (const auto projectedDigit : projectedDigits) sum += projectedDigit.energy * projectedDigit.rho * projectedDigit.rho;
475
476 return sum / totalEnergy;
477}

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ eclCalDigitArrayName()

virtual const char * eclCalDigitArrayName ( ) const
inlinevirtual

Default name ECLCalDigits.

Reimplemented in ECLShowerShapePureCsIModule.

Definition at line 219 of file ECLShowerShapeModule.h.

220 { return "ECLCalDigits" ; }

◆ eclConnectedRegionArrayName()

virtual const char * eclConnectedRegionArrayName ( ) const
inlinevirtual

Default name ECLConnectedRegions.

Reimplemented in ECLShowerShapePureCsIModule.

Definition at line 223 of file ECLShowerShapeModule.h.

224 { return "ECLConnectedRegions" ; }

◆ eclShowerArrayName()

virtual const char * eclShowerArrayName ( ) const
inlinevirtual

We need names for the data objects to differentiate between PureCsI and default.

Default name ECLShowers

Reimplemented in ECLShowerShapePureCsIModule.

Definition at line 215 of file ECLShowerShapeModule.h.

216 { return "ECLShowers" ; }

◆ endRun()

void endRun ( void  )
overridevirtual

End run.

Reimplemented from Module.

Definition at line 358 of file ECLShowerShapeModule.cc.

359{
360}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event.

Reimplemented from Module.

Definition at line 247 of file ECLShowerShapeModule.cc.

248{
249 for (auto& eclCR : m_eclConnectedRegions) {
250
251 //Start by finding the N2 shower and calculating it's shower shape variables
252 //Assumes that there is only 1 N2 Shower per CR!!!!!!
253 ECLShower* N2shower = nullptr;
254 for (auto& eclShower : eclCR.getRelationsWith<ECLShower>(eclShowerArrayName())) {
255 if (eclShower.getHypothesisId() == ECLShower::c_neutralHadron) {
256 N2shower = &eclShower;
257 setShowerShapeVariables(N2shower, true);
258 break;
259 }
260 }
261
262 //If couldn't find N2 shower, don't calculate zernikeMVA
263 bool found_N2shower = true;
264 if (N2shower == nullptr) found_N2shower = false;
265
266 double prodN1zernikeMVAs = 1.0;
267 //Calculate shower shape variables for the rest of the showers
268 for (auto& eclShower : eclCR.getRelationsWith<ECLShower>(eclShowerArrayName())) {
269 if (eclShower.getHypothesisId() == ECLShower::c_neutralHadron)
270 continue; //shower shape variables already calculated for neutral hadrons
271
272 bool calculateZernikeMVA = true;
273 if (!found_N2shower || eclShower.getHypothesisId() != ECLShower::c_nPhotons) calculateZernikeMVA = false;
274
275 setShowerShapeVariables(&eclShower, calculateZernikeMVA);
276
277 if (eclShower.getHypothesisId() == ECLShower::c_nPhotons) prodN1zernikeMVAs *= eclShower.getZernikeMVA();
278 }
279
280 //Set zernikeMVA for the N2 shower
281 if (N2shower) N2shower->setZernikeMVA(1.0 - prodN1zernikeMVAs);
282 }
283}
virtual const char * eclShowerArrayName() const
We need names for the data objects to differentiate between PureCsI and default.
void setShowerShapeVariables(ECLShower *eclShower, const bool calculateZernikeMVA) const
Set showr shape variables.
Class to store ECL Showers.
Definition: ECLShower.h:30
@ c_neutralHadron
CR is reconstructed as a neutral hadron (N2)
Definition: ECLShower.h:44
@ c_nPhotons
CR is split into n photons (N1)
Definition: ECLShower.h:42
void setZernikeMVA(double zernikeMVA)
SetZernike MVA value.
Definition: ECLShower.h:199

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getSecondMomentCorrection()

double getSecondMomentCorrection ( const double  theta,
const double  phi,
const int  hypothesis 
) const
private

Get corrections for second moment.

Definition at line 585 of file ECLShowerShapeModule.cc.

586{
587 // convert to deg.
588 double thetadeg = theta * TMath::RadToDeg();
589
590 // protect angular range.
591 if (thetadeg < 0.1) thetadeg = 0.1;
592 else if (thetadeg > 179.9) thetadeg = 179.9;
593
594 //Convert phi
595 double phideg = phi * TMath::RadToDeg();
596
597 //Protect phi
598 if (phideg < -179.9) phideg = -179.9;
599 else if (phideg > 179.9) phideg = 179.9;
600
601
602 // protect hypothesis.
603 if (hypothesis < 1 or hypothesis > 10) {
604 B2FATAL("Invalid hypothesis for second moment corrections.");
605 }
606
607 const double thetaCorrection = m_secondMomentCorrections[c_thetaType][hypothesis].Eval(thetadeg);
608 const double phiCorrection = m_secondMomentCorrections[c_phiType][hypothesis].Eval(phideg);
609
610 B2DEBUG(175, "Second momen theta crrection = " << thetaCorrection << ", phi correction = " << phiCorrection);
611
612 return thetaCorrection * phiCorrection;
613}
TGraph m_secondMomentCorrections[2][10]
TGraphs that hold the corrections.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize.

Reimplemented from Module.

Definition at line 97 of file ECLShowerShapeModule.cc.

98{
101 eclCalDigits.isRequired();
103 eclShowers.isRequired();
104 m_eclConnectedRegions.requireRelationTo(eclCalDigits);
105 eclShowers.requireRelationTo(eclCalDigits);
106
107 // Initialize neighbour maps.
108 m_neighbourMap9 = std::unique_ptr<ECL::ECLNeighbours>(new ECL::ECLNeighbours("N", 1));
109 m_neighbourMap21 = std::unique_ptr<ECL::ECLNeighbours>(new ECL::ECLNeighbours("NC", 2));
110
114
115
116 //Add callback to fill m_secondMomentCorrections when m_secondMomentCorrectionArray changes
117 //21-Oct-2016 - The callback doesn't seem to be called at the begining of the run so I commented it out and added a call to prepareSecondMomentCorrectionsCallback in the beginRun
118// m_secondMomentCorrectionArray.addCallback(this, &ECLShowerShapeModule::prepareSecondMomentCorrectionsCallback);
119// prepareSecondMomentCorrectionsCallback();
120
121}
void initializeMVAweightFiles(const std::string &identifier, std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &weightFileRepresentation)
initialize MVA weight files from DB
Class to get the neighbours for a given cell id.
Definition: ECLNeighbours.h:25
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113

◆ initializeMVA()

void initializeMVA ( const std::string &  identifier,
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &  weightFileRepresentation,
std::unique_ptr< MVA::Expert > &  expert 
)
private

Load MVA weight file and set pointer of expert.

If weightFileRepresentation is the BRL MVA, also set m_dataset size according to weightFileRepresentation MVA::GeneralOptions

Definition at line 123 of file ECLShowerShapeModule.cc.

125{
126 MVA::Weightfile weightfile;
127 //Load MVA weight file
128 if (weightFileRepresentation) {
129
130 //If multiple sources of conditions DB have been configured (the regular case), then the IOV of each payload will be "artificially" set to the current run only.
131 //This is so that in the next run, the payload can be taken from a different DB source.
132 //For example, payload of current run will be taken from central DB and payload of next run will be taken from local DB, if it appears there.
133 //In this case weightFileRepresentation->hasChanged() will be true at the beginning of each run, even though the IOV of the payload is greater than a single run.
134 //This is true as of 2017-06-01, functionality of hasChanged() might be changed in future.
135
136 if (weightFileRepresentation->hasChanged()) {
137 std::stringstream ss((*weightFileRepresentation)->m_data);
138 weightfile = MVA::Weightfile::loadFromStream(ss);
139 } else
140 return;
141 } else {
142 weightfile = MVA::Weightfile::loadFromFile(identifier);
143 }
144
145 auto supported_interfaces = MVA::AbstractInterface::getSupportedInterfaces();
146 MVA::GeneralOptions general_options;
147 weightfile.getOptions(general_options);
148
149 //Check number of variables in weight file
150 if (m_numZernikeMVAvariables != general_options.m_variables.size())
151 B2FATAL("Expecting " << m_numZernikeMVAvariables << " varibales, found " << general_options.m_variables.size());
152
153 expert = supported_interfaces[general_options.m_method]->getExpert();
154 expert->load(weightfile);
155
156 //create new dataset, if this is the barrel MVA (assumes FWD and BWD datasets are same size)
157 if (weightFileRepresentation == m_weightfile_representation_BRL) {
158 std::vector<float> dummy(general_options.m_variables.size(), 0);
159 m_dataset = std::unique_ptr<MVA::SingleDataset>(new MVA::SingleDataset(general_options, dummy, 0));
160 }
161}
std::unique_ptr< MVA::SingleDataset > m_dataset
Pointer to the current dataset.
const unsigned int m_numZernikeMVAvariables
number of variables expected in the Zernike MVA weightfile
static std::map< std::string, AbstractInterface * > getSupportedInterfaces()
Returns interfaces supported by the MVA Interface.
Definition: Interface.h:53
General options which are shared by all MVA trainings.
Definition: Options.h:62
Wraps the data of a single event into a Dataset.
Definition: Dataset.h:135
The Weightfile class serializes all information about a training into an xml tree.
Definition: Weightfile.h:38
static Weightfile loadFromStream(std::istream &stream)
Static function which deserializes a Weightfile from a stream.
Definition: Weightfile.cc:251
void getOptions(Options &options) const
Fills an Option object from the xml tree.
Definition: Weightfile.cc:67
static Weightfile loadFromFile(const std::string &filename)
Static function which loads a Weightfile from a file.
Definition: Weightfile.cc:206

◆ initializeMVAweightFiles()

void initializeMVAweightFiles ( const std::string &  identifier,
std::unique_ptr< DBObjPtr< DatabaseRepresentationOfWeightfile > > &  weightFileRepresentation 
)
private

initialize MVA weight files from DB

Definition at line 87 of file ECLShowerShapeModule.cc.

89{
90 if (not(boost::ends_with(identifier, ".root") or boost::ends_with(identifier, ".xml"))) {
91 weightFileRepresentation = std::unique_ptr<DBObjPtr<DatabaseRepresentationOfWeightfile>>(new
93 }
95}
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
static void initSupportedInterfaces()
Static function which initliazes all supported interfaces, has to be called once before getSupportedI...
Definition: Interface.cc:45

◆ prepareSecondMomentCorrectionsCallback()

void prepareSecondMomentCorrectionsCallback ( )
private

Prepare corrections for second moment Will be called whenever the m_secondMomentCorrectionArray get updated Clears m_secondMomentCorrections and fills it from the updated m_secondMomentCorrectionArray.

Definition at line 558 of file ECLShowerShapeModule.cc.

559{
560 //Clear m_secondMomentCorrections array
561 for (auto iType = 0; iType < 2; ++iType)
562 for (auto iHypothesis = 0; iHypothesis < 10; ++iHypothesis)
563 m_secondMomentCorrections[iType][iHypothesis] = TGraph();
564
565 // Read all corrections.
567 const int type = correction.getType();
568 const int hypothesis = correction.getHypothesisId();
569 if (type < 0 or type > 1 or hypothesis < 1 or hypothesis > 9) {
570 B2FATAL("Invalid type or hypothesis for second moment corrections.");
571 }
572
573 m_secondMomentCorrections[type][hypothesis] = correction.getCorrection();
574 }
575
576 // Check that all corrections are there
581 B2FATAL("Missing corrections for second moments..");
582 }
583}
Corrections to the second moment shower shape.

◆ projectECLDigits()

std::vector< ECLShowerShapeModule::ProjectedECLDigit > projectECLDigits ( const ECLShower shower) const
private

Compute projections of the ECLCalDigits to the perpendicular plane.

Definition at line 285 of file ECLShowerShapeModule.cc.

286{
287 std::vector<ProjectedECLDigit> tmpProjectedECLDigits; //Will be returned at the end of the function
288 auto showerDigitRelations = shower.getRelationsTo<ECLCalDigit>(eclCalDigitArrayName());
289// tmpProjectedECLDigits.resize( showerDigitRelations.size() );
290 //---------------------------------------------------------------------
291 // Get shower parameters.
292 //---------------------------------------------------------------------
293 const double showerR = shower.getR();
294 const double showerTheta = shower.getTheta();
295 const double showerPhi = shower.getPhi();
296
297 B2Vector3D showerPosition;
298 showerPosition.SetMagThetaPhi(showerR, showerTheta, showerPhi);
299
300 // Unit vector pointing in shower direction.
301 const B2Vector3D showerDirection = (1.0 / showerPosition.Mag()) * showerPosition;
302
303 //---------------------------------------------------------------------
304 // Calculate axes that span the perpendicular plane.
305 //---------------------------------------------------------------------
306 //xPrimeDirection = showerdirection.cross(zAxis)
307 B2Vector3D xPrimeDirection = B2Vector3D(showerPosition.Y(), -showerPosition.X(), 0.0);
308 xPrimeDirection *= 1.0 / xPrimeDirection.Mag();
309
310 B2Vector3D yPrimeDirection = xPrimeDirection.Cross(showerDirection);
311 yPrimeDirection *= 1.0 / yPrimeDirection.Mag();
312
313 //---------------------------------------------------------------------
314 // Loop on CalDigits in shower and calculate the projection.
315 //---------------------------------------------------------------------
316
318
319 for (unsigned int iRelation = 0; iRelation < showerDigitRelations.size(); ++iRelation) {
320 const auto calDigit = showerDigitRelations.object(iRelation);
321
322 ProjectedECLDigit tmpProjectedDigit;
323
324 //---------------------------------------------------------------------
325 // Projected digit energy.
326 //---------------------------------------------------------------------
327 const auto weight = showerDigitRelations.weight(iRelation);
328 tmpProjectedDigit.energy = weight * calDigit->getEnergy();
329
330 //---------------------------------------------------------------------
331 // Projected digit radial distance.
332 //---------------------------------------------------------------------
333 const int cellId = calDigit->getCellId();
334 B2Vector3D calDigitPosition = geometry->GetCrystalPos(cellId - 1);
335
336 // Angle between vector pointing to shower and vector pointing to CalDigit,
337 //where the orgin is the detector origin (implicitly assuming IP = detector origin)
338 const double angleDigitShower = calDigitPosition.Angle(showerPosition);
339 tmpProjectedDigit.rho = showerR * TMath::Tan(angleDigitShower);
340
341 //---------------------------------------------------------------------
342 // Projected digit polar angle
343 //---------------------------------------------------------------------
344 // Vector perpendicular to the vector pointing to the shower position, pointing to the CalDigit.
345 // It's length is not rho. Not normalized!!! We only care about the angle between in and xPrime.
346 B2Vector3D projectedDigitDirection = calDigitPosition - calDigitPosition.Dot(showerDirection) * showerDirection;
347 tmpProjectedDigit.alpha = projectedDigitDirection.Angle(xPrimeDirection);
348
349 // adjust so that alpha spans 0..2pi
350 if (projectedDigitDirection.Angle(yPrimeDirection) > TMath::Pi() / 2.0)
351 tmpProjectedDigit.alpha = 2.0 * TMath::Pi() - tmpProjectedDigit.alpha;
352 tmpProjectedECLDigits.push_back(tmpProjectedDigit);
353 }
354
355 return tmpProjectedECLDigits;
356}
B2Vector3< DataType > Cross(const B2Vector3< DataType > &p) const
Cross product.
Definition: B2Vector3.h:296
void SetMagThetaPhi(DataType mag, DataType theta, DataType phi)
setter with mag, theta, phi
Definition: B2Vector3.h:259
DataType X() const
access variable X (= .at(0) without boundary check)
Definition: B2Vector3.h:431
DataType Y() const
access variable Y (= .at(1) without boundary check)
Definition: B2Vector3.h:433
DataType Mag() const
The magnitude (rho in spherical coordinate system).
Definition: B2Vector3.h:159
DataType Dot(const B2Vector3< DataType > &p) const
Scalar product.
Definition: B2Vector3.h:290
DataType Angle(const B2Vector3< DataType > &q) const
The angle w.r.t.
Definition: B2Vector3.h:302
double getPhi() const
Get Phi.
Definition: ECLShower.h:302
double getR() const
Get R.
Definition: ECLShower.h:307
double getTheta() const
Get Theta.
Definition: ECLShower.h:297
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516

◆ Rnm()

double Rnm ( const int  n,
const int  m,
const double  rho 
) const
private

The radial part of the Zernike polynomial n,m - Zernike polynomial rank rho - radial distance

Definition at line 408 of file ECLShowerShapeModule.cc.

409{
410 // Some explicit polynomials.
411 if (n == 1 && m == 1) return rho;
412 if (n == 2 && m == 0) return 2.0 * rho * rho - 1.0;
413 if (n == 2 && m == 2) return rho * rho;
414 if (n == 3 && m == 1) return 3.0 * rho * rho * rho - 2.0 * rho;
415 if (n == 3 && m == 3) return rho * rho * rho;
416 if (n == 4 && m == 0) return 6.0 * rho * rho * rho * rho - 6.0 * rho * rho + 1.0;
417 if (n == 4 && m == 2) return 4.0 * rho * rho * rho * rho - 3.0 * rho * rho;
418 if (n == 4 && m == 4) return rho * rho * rho * rho;
419 if (n == 5 && m == 1) return 10.0 * rho * rho * rho * rho * rho - 12.0 * rho * rho * rho + 3.0 * rho;
420 if (n == 5 && m == 3) return 5.0 * rho * rho * rho * rho * rho - 4.0 * rho * rho * rho;
421 if (n == 5 && m == 5) return rho * rho * rho * rho * rho;
422
423 // Otherwise compute explicitely.
424 double returnVal = 0;
425 for (int idx = 0; idx <= (n - std::abs(m)) / 2; ++idx)
426 returnVal += std::pow(-1, idx) * TMath::Factorial(n - idx) / TMath::Factorial(idx)
427 / TMath::Factorial((n + std::abs(m)) / 2 - idx) / TMath::Factorial((n - std::abs(m)) / 2 - idx) * std::pow(rho, n - 2 * idx);
428
429 return returnVal;
430}

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setShowerShapeVariables()

void setShowerShapeVariables ( ECLShower eclShower,
const bool  calculateZernikeMVA 
) const
private

Set showr shape variables.

For correct zernike MVA calculation, must be run first on the N2 shower in each connected region, then on the N1 showers of the connected region. calculateZernikeMVA - determines if MVA calculation should be performed. Should be false, for example, if there was no N2 shower, so MVA can't be calculated. The function does not set the zernikeMVA variable for N2 showers, because it is calculated from zernikeMVAs of the N1 showers, so it has to be set elsewhere (unless calculateZernikeMVA is false, in which case it is set to 0.0).

Definition at line 177 of file ECLShowerShapeModule.cc.

178{
179 //Project the digits on the plane perpendicular to the shower direction
180 std::vector<ProjectedECLDigit> projectedECLDigits = projectECLDigits(*eclShower);
181
182 const double showerEnergy = eclShower->getEnergy();
183 const double showerTheta = eclShower->getTheta();
184 const double showerPhi = eclShower->getPhi();
185
186 //sum crystal energies
187 double sumEnergies = 0.0;
188 for (const auto& projectedECLDigit : projectedECLDigits) sumEnergies += projectedECLDigit.energy;
189
190 //Choose rho0 according to shower hypothesis
191 double rho0 = 0.0;
192 const int hypothesisID = eclShower->getHypothesisId();
193 if (hypothesisID == ECLShower::c_nPhotons) rho0 = m_zernike_n1_rho0;
194 else if (hypothesisID == ECLShower::c_neutralHadron) rho0 = m_zernike_n2_rho0;
195
196 const double secondMomentCorrection = getSecondMomentCorrection(showerTheta, showerPhi, hypothesisID);
197 B2DEBUG(175, "Second moment angular correction: " << secondMomentCorrection << " (theta(rad)=" << showerTheta << ", phi(rad)=" <<
198 showerPhi << ",hypothesisId=" << hypothesisID <<
199 ")");
200 const double secondMoment = computeSecondMoment(projectedECLDigits, showerEnergy) * secondMomentCorrection;
201 B2DEBUG(175, "Second moment after correction: " << secondMoment);
202
203 const double LATenergy = computeLateralEnergy(projectedECLDigits, m_avgCrystalDimension);
204
205 // Set shower shape variables.
206 eclShower->setSecondMoment(secondMoment);
207 eclShower->setLateralEnergy(LATenergy);
208 eclShower->setE1oE9(computeE1oE9(*eclShower));
209 if (eclShower->getE9oE21() < 1e-9) eclShower->setE9oE21(computeE9oE21(*eclShower));
210 for (unsigned int n = 1; n <= 5; n++) {
211 for (unsigned int m = 0; m <= n; m++) {
212 eclShower->setAbsZernikeMoment(n, m, computeAbsZernikeMoment(projectedECLDigits, sumEnergies, n, m, rho0));
213 }
214 }
215
216 if (calculateZernikeMVA) {
217 //Set Zernike moments that will be used in MVA calculation
218 // m_dataset holds 22 entries, 11 Zernike moments of N2 shower, followed by 11 Zernike moments of N1 shower
219 int indexOffset = 0;//Offset entries depending on hypothesis type
220 if (hypothesisID == ECLShower::c_nPhotons) indexOffset = (m_numZernikeMVAvariables / 2);
221 else if (hypothesisID == ECLShower::c_neutralHadron) indexOffset = 0;
222
223 m_dataset->m_input[0 + indexOffset] = eclShower->getAbsZernikeMoment(1, 1);
224 m_dataset->m_input[1 + indexOffset] = eclShower->getAbsZernikeMoment(2, 0);
225 m_dataset->m_input[2 + indexOffset] = eclShower->getAbsZernikeMoment(2, 2);
226 m_dataset->m_input[3 + indexOffset] = eclShower->getAbsZernikeMoment(3, 1);
227 m_dataset->m_input[4 + indexOffset] = eclShower->getAbsZernikeMoment(3, 3);
228 m_dataset->m_input[5 + indexOffset] = eclShower->getAbsZernikeMoment(4, 0);
229 m_dataset->m_input[6 + indexOffset] = eclShower->getAbsZernikeMoment(4, 2);
230 m_dataset->m_input[7 + indexOffset] = eclShower->getAbsZernikeMoment(4, 4);
231 m_dataset->m_input[8 + indexOffset] = eclShower->getAbsZernikeMoment(5, 1);
232 m_dataset->m_input[9 + indexOffset] = eclShower->getAbsZernikeMoment(5, 3);
233 m_dataset->m_input[10 + indexOffset] = eclShower->getAbsZernikeMoment(5, 5);
234 //Set zernikeMVA for N1 showers
235 //This assumes that the N2 zernike moments have already been set in m_dataset!!!!
236 if (hypothesisID == ECLShower::c_nPhotons) {
237 //FWD
238 if (eclShower->getTheta() < m_BRLthetaMin) eclShower->setZernikeMVA(m_expert_FWD->apply(*m_dataset)[0]);
239 //BWD
240 else if (eclShower->getTheta() > m_BRLthetaMax) eclShower->setZernikeMVA(m_expert_BWD->apply(*m_dataset)[0]);
241 //BRL
242 else eclShower->setZernikeMVA(m_expert_BRL->apply(*m_dataset)[0]);
243 }
244 } else eclShower->setZernikeMVA(0.0);
245}
double computeAbsZernikeMoment(const std::vector< ProjectedECLDigit > &projectedDigits, const double totalEnergy, const int n, const int m, const double rho) const
Compute the absolute value of the complex Zernike moment Znm.
const double m_BRLthetaMin
Minimum theta of barrel used for choosing which Zernike MVA to apply.
double computeE1oE9(const ECLShower &) const
Shower shape variable: E1oE9 The energy ratio is calculated taking the weighted central (=1) and the ...
double getSecondMomentCorrection(const double theta, const double phi, const int hypothesis) const
Get corrections for second moment.
std::vector< ProjectedECLDigit > projectECLDigits(const ECLShower &shower) const
Compute projections of the ECLCalDigits to the perpendicular plane.
const double m_BRLthetaMax
Maximum theta of barrel used for choosing which Zernike MVA to apply.
double computeSecondMoment(const std::vector< ProjectedECLDigit > &shower, const double totalEnergy) const
Compute the second moment in the plane perpendicular to the direction of the shower.
double computeLateralEnergy(const std::vector< ProjectedECLDigit > &projectedDigits, const double avgCrystalDimension) const
Shower shape variable: Lateral energy.
double computeE9oE21(const ECLShower &) const
Shower shape variable: E9oE21 The energy ratio is calculated taking the weighted 3x3 (=9) and the wei...
void setE9oE21(double E9oE21)
Set energy ration E9 over E21.
Definition: ECLShower.h:211
void setLateralEnergy(double lateralEnergy)
Set Lateral Energy.
Definition: ECLShower.h:175
double getAbsZernikeMoment(unsigned int n, unsigned int m) const
Get absolute value of Zernike Moment nm.
Definition: ECLShower.h:377
int getHypothesisId() const
Get Hypothesis Id.
Definition: ECLShower.h:277
double getEnergy() const
Get Energy.
Definition: ECLShower.h:287
void setSecondMoment(double secondMoment)
Set second moment.
Definition: ECLShower.h:203
double getE9oE21() const
Get energy ratio E9oE21.
Definition: ECLShower.h:397
void setAbsZernikeMoment(unsigned int n, unsigned int m, double absZernikeMoment)
Set absolute value of Zernike Moment nm, for nm between 10 and 55.
Definition: ECLShower.h:195
void setE1oE9(double E1oE9)
Set energy ration E1 over E9.
Definition: ECLShower.h:207

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Terminate.

Reimplemented from Module.

Definition at line 362 of file ECLShowerShapeModule.cc.

363{
364
365}

◆ zernikeValue()

std::complex< double > zernikeValue ( const double  rho,
const double  alpha,
const int  n,
const int  m 
) const
private

Return the complex value of the Zernike polynomial of rank n,m.

Znm(rho,alpha) = Rnm(rho) * exp(i*m*alpha) rho - radial distance alpha - polar angle

Definition at line 432 of file ECLShowerShapeModule.cc.

433{
434 // Zernike moment defined only on the unit cercile (rho < 1).
435 if (rho > 1.0) return std::complex<double>(0, 0);
436
437 std::complex<double> i(0, 1);
438 std::complex<double> exponent = std::exp(i * std::complex<double>(m * alpha, 0));
439 return std::complex<double>(Rnm(n, m, rho), 0) * exponent;
440}
double Rnm(const int n, const int m, const double rho) const
The radial part of the Zernike polynomial n,m - Zernike polynomial rank rho - radial distance

Member Data Documentation

◆ m_avgCrystalDimension

double m_avgCrystalDimension
private

Average crystal dimension [cm].

Definition at line 98 of file ECLShowerShapeModule.h.

◆ m_BRLthetaMax

const double m_BRLthetaMax = 128.7 * Unit::deg
private

Maximum theta of barrel used for choosing which Zernike MVA to apply.

Definition at line 101 of file ECLShowerShapeModule.h.

◆ m_BRLthetaMin

const double m_BRLthetaMin = 32.2 * Unit::deg
private

Minimum theta of barrel used for choosing which Zernike MVA to apply.

Definition at line 100 of file ECLShowerShapeModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_dataset

std::unique_ptr<MVA::SingleDataset> m_dataset
private

Pointer to the current dataset.

It is assumed it holds 22 entries, 11 Zernike moments of N2 shower, followed by 11 Zernike moments of N1 shower.

Definition at line 118 of file ECLShowerShapeModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eclConnectedRegions

StoreArray<ECLConnectedRegion> m_eclConnectedRegions
private

◆ m_expert_BRL

std::unique_ptr<MVA::Expert> m_expert_BRL
private

Pointer to the current MVA Expert for BRL.

Definition at line 115 of file ECLShowerShapeModule.h.

◆ m_expert_BWD

std::unique_ptr<MVA::Expert> m_expert_BWD
private

Pointer to the current MVA Expert for BWD.

Definition at line 116 of file ECLShowerShapeModule.h.

◆ m_expert_FWD

std::unique_ptr<MVA::Expert> m_expert_FWD
private

Pointer to the current MVA Expert for FWD.

Definition at line 114 of file ECLShowerShapeModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_neighbourMap21

std::unique_ptr<ECL::ECLNeighbours> m_neighbourMap21
private

Neighbour map 21 neighbours, for E9oE21.

Definition at line 124 of file ECLShowerShapeModule.h.

◆ m_neighbourMap9

std::unique_ptr<ECL::ECLNeighbours> m_neighbourMap9
private

Neighbour map 9 neighbours, for E9oE21 and E1oE9.

Definition at line 121 of file ECLShowerShapeModule.h.

◆ m_numZernikeMVAvariables

const unsigned int m_numZernikeMVAvariables = 22
private

number of variables expected in the Zernike MVA weightfile

Definition at line 103 of file ECLShowerShapeModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_secondMomentCorrectionArray

DBArray<ECLShowerShapeSecondMomentCorrection> m_secondMomentCorrectionArray
private

Shower shape corrections from DB.

Definition at line 195 of file ECLShowerShapeModule.h.

◆ m_secondMomentCorrections

TGraph m_secondMomentCorrections[2][10]
private

TGraphs that hold the corrections.

Definition at line 199 of file ECLShowerShapeModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_weightfile_representation_BRL

std::unique_ptr<DBObjPtr<DatabaseRepresentationOfWeightfile> > m_weightfile_representation_BRL
private

Database pointer to the Database representation of the Zernike moment MVA weightfile for BRL.

Definition at line 111 of file ECLShowerShapeModule.h.

◆ m_weightfile_representation_BWD

std::unique_ptr<DBObjPtr<DatabaseRepresentationOfWeightfile> > m_weightfile_representation_BWD
private

Database pointer to the Database representation of the Zernike moment MVA weightfile for BWD.

Definition at line 113 of file ECLShowerShapeModule.h.

◆ m_weightfile_representation_FWD

std::unique_ptr<DBObjPtr<DatabaseRepresentationOfWeightfile> > m_weightfile_representation_FWD
private

Database pointer to the Database representation of the Zernike moment MVA weightfile for FWD.

Definition at line 109 of file ECLShowerShapeModule.h.

◆ m_zernike_MVAidentifier_BRL

std::string m_zernike_MVAidentifier_BRL
private

Zernike moment MVA - Barrel weight-file.

Definition at line 106 of file ECLShowerShapeModule.h.

◆ m_zernike_MVAidentifier_BWD

std::string m_zernike_MVAidentifier_BWD
private

Zernike moment MVA - BWD endcap weight-file.

Definition at line 107 of file ECLShowerShapeModule.h.

◆ m_zernike_MVAidentifier_FWD

std::string m_zernike_MVAidentifier_FWD
private

Zernike moment MVA - FWD endcap weight-file.

Definition at line 105 of file ECLShowerShapeModule.h.

◆ m_zernike_n1_rho0

double m_zernike_n1_rho0
private

Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N1 showers.

Definition at line 95 of file ECLShowerShapeModule.h.

◆ m_zernike_n2_rho0

double m_zernike_n2_rho0
private

Scaling factor for radial distances in perpendicular plane, used in Zernike moment calculation for N2 showers.

Definition at line 96 of file ECLShowerShapeModule.h.

◆ m_zernike_useFarCrystals

bool m_zernike_useFarCrystals
private

Determines if to include or ignore crystals with rho > rho0 in perpendicular plane, used in Zernike moment calculation.

Definition at line 97 of file ECLShowerShapeModule.h.


The documentation for this class was generated from the following files: