Belle II Software development
ECLWaveformFitModule Class Reference

Module performs offline fit for saved ECL waveforms. More...

#include <ECLWaveformFit.h>

Inheritance diagram for ECLWaveformFitModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLWaveformFitModule ()
 Constructor.
 
 ~ECLWaveformFitModule ()
 Destructor.
 
virtual void initialize () override
 Initialize variables.
 
virtual void beginRun () override
 begin run.
 
virtual void event () override
 event per event.
 
virtual void endRun () override
 end run.
 
virtual void terminate () override
 terminate.
 
virtual const char * eclDigitArrayName () const
 ECLDigits Array Name.
 
virtual const char * eclDspArrayName () const
 ECLDspsArray Name.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void loadTemplateParameterArray ()
 Loads waveform templates from database.
 
void fitPhotonHadron (double &pedestal, double &amplitudePhoton, double &signalTime, double &amplitudeHadron, double &chi2)
 Fit with photon and hadron.
 
void fitPhotonHadronBackgroundPhoton (double &pedestal, double &amplitudePhoton, double &signalTime, double &amplitudeHadron, double &amplitudeBackgroundPhoton, double &timeBackgroundPhoton, double &chi2)
 Fit with photon, hadron, and background photon.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

double m_EnergyThreshold {0.03}
 Energy threshold to fit pulse offline.
 
double m_Chi2Threshold25dof {57.1}
 chi2 threshold (25 dof) to classify offline fit as good fit.
 
double m_Chi2Threshold27dof {60.0}
 chi2 threshold (27 dof) to classify offline fit as good fit.
 
bool m_CovarianceMatrix {true}
 Option to use crystal dependent covariance matrices.
 
bool m_TemplatesLoaded {false}
 Flag to indicate if waveform templates are loaded from database.
 
std::vector< double > m_ADCtoEnergy
 Calibration vector from ADC to energy.
 
TMinuit * m_MinuitPhotonHadron = nullptr
 Minuit minimizer for fit with photon and hadron.
 
TMinuit * m_MinuitPhotonHadronBackgroundPhoton = nullptr
 Minuit minimizer for fit with photon, hadron, and background photon.
 
SignalInterpolation2 m_SignalInterpolation [ECLElementNumbers::c_NCrystals][3]
 ShaperDSP signal shapes.
 
CovariancePacked m_PackedCovariance [ECLElementNumbers::c_NCrystals] = {}
 Packed covariance matrices.
 
bool m_IsMCFlag {false}
 Flag to indicate if running over data or MC.
 
DBObjPtr< ECLCrystalCalibm_CrystalElectronics {"ECLCrystalElectronics"}
 Crystal electronics.
 
DBObjPtr< ECLCrystalCalibm_CrystalEnergy {"ECLCrystalEnergy"}
 Crystal energy.
 
DBObjPtr< ECLDigitWaveformParametersm_WaveformParameters
 Waveform parameters.
 
DBObjPtr< ECLDigitWaveformParametersForMCm_WaveformParametersForMC
 Waveform parameters for MC.
 
DBObjPtr< ECLAutoCovariancem_AutoCovariance
 Autocovariance.
 
StoreArray< ECLDspm_eclDSPs
 StoreArray ECLDsp.
 
StoreArray< ECLDigitm_eclDigits
 StoreArray ECLDigit.
 
double m_u1
 u1 parameter for regularization function.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Module performs offline fit for saved ECL waveforms.

Definition at line 127 of file ECLWaveformFit.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLWaveformFitModule()

Constructor.

Definition at line 190 of file ECLWaveformFit.cc.

191{
192 /* Set module properties. */
193 setDescription("Module to fit offline waveforms and measure hadron scintillation component light output.");
195 addParam("EnergyThreshold", m_EnergyThreshold,
196 "Energy threshold of online fit result for Fitting Waveforms (GeV).",
197 0.03);
198 addParam("Chi2Threshold25dof", m_Chi2Threshold25dof,
199 "Chi2 threshold (25 dof) to classify offline fit as good fit.",
200 57.1);
201 addParam("Chi2Threshold27dof", m_Chi2Threshold27dof,
202 "Chi2 threshold (27 dof) to classify offline fit as good fit.",
203 60.0);
204 addParam("CovarianceMatrix", m_CovarianceMatrix,
205 "Option to use crystal-dependent covariance matrices (false uses identity matrix).",
206 true);
207 addParam("RegParam1", m_u1, "u1 parameter for regularization function).", 1.0);
208}
bool m_CovarianceMatrix
Option to use crystal dependent covariance matrices.
double m_u1
u1 parameter for regularization function.
double m_EnergyThreshold
Energy threshold to fit pulse offline.
double m_Chi2Threshold25dof
chi2 threshold (25 dof) to classify offline fit as good fit.
double m_Chi2Threshold27dof
chi2 threshold (27 dof) to classify offline fit as good fit.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:559

◆ ~ECLWaveformFitModule()

Destructor.

Definition at line 210 of file ECLWaveformFit.cc.

211{
212}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

begin run.

Reimplemented from Module.

Definition at line 246 of file ECLWaveformFit.cc.

247{
248
250 m_TemplatesLoaded = false;
251
253 if (m_CrystalElectronics.isValid()) {
254 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
255 m_ADCtoEnergy[i] = m_CrystalElectronics->getCalibVector()[i];
256 }
257 if (m_CrystalEnergy.isValid()) {
258 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
259 m_ADCtoEnergy[i] *= m_CrystalEnergy->getCalibVector()[i];
260 }
261
262 /* Load covariance matrices from database. */
263 if (m_CovarianceMatrix) {
264 for (int id = 1; id <= ECLElementNumbers::c_NCrystals; id++) {
265 double buf[c_NFitPoints];
266 double reg[c_NFitPoints];
267 m_AutoCovariance->getAutoCovariance(id, buf);
268 double x0 = c_NFitPoints;
269 std::memcpy(reg, buf, c_NFitPoints * sizeof(double));
270 bool invertSuccess = makecovariance(m_PackedCovariance[id - 1], c_NFitPoints, reg);
271 double param_u2 = 1.0;
272 int idToLoad = id;
273 while (invertSuccess == false) {
274
275 /* as x0-=1 iterates off-diagonal are suppressed. */
276 regularize(buf, reg, c_NFitPoints, x0 -= 1, m_u1, param_u2);
277 invertSuccess = makecovariance(m_PackedCovariance[id - 1], c_NFitPoints, reg);
278
279 /* set off-diagonals to zero for final attempt*/
280 if (x0 == 1) param_u2 = 0.0;
281
282 /* Indicates problem with matrix as identity should be invertible*/
283 if (x0 == 0) {
284 B2WARNING("Could not invert matrix for id " << id);
285 B2WARNING("Loading neighbour matrix for id " << id);
286 if (idToLoad > 1) {
287 m_AutoCovariance->getAutoCovariance(idToLoad = -1, buf);
288 } else {
289 m_AutoCovariance->getAutoCovariance(idToLoad += 1, buf);
290 }
291 std::memcpy(reg, buf, c_NFitPoints * sizeof(double));
292 }
293
294 }
295 }
296 } else {
297 /* Default covariance matrix is identity for all crystals. */
298 double defaultCovariance[c_NFitPoints][c_NFitPoints];
299 CovariancePacked packedDefaultCovariance;
300 const double isigma = 1 / 7.5;
301 for (int i = 0; i < c_NFitPoints; ++i) {
302 for (int j = 0; j < c_NFitPoints; ++j) {
303 defaultCovariance[i][j] = (i == j) * isigma * isigma;
304 }
305 }
306 int k = 0;
307 for (int i = 0; i < c_NFitPoints; i++) {
308 for (int j = 0; j < i + 1; j++) {
309 packedDefaultCovariance.m_covMatPacked[k] = defaultCovariance[i][j];
310 k++;
311 }
312 }
313 ecl_waveform_fit_load_inverse_covariance(
314 packedDefaultCovariance.m_covMatPacked);
315 }
316
317}
CovariancePacked m_PackedCovariance[ECLElementNumbers::c_NCrystals]
Packed covariance matrices.
DBObjPtr< ECLAutoCovariance > m_AutoCovariance
Autocovariance.
bool m_IsMCFlag
Flag to indicate if running over data or MC.
std::vector< double > m_ADCtoEnergy
Calibration vector from ADC to energy.
DBObjPtr< ECLCrystalCalib > m_CrystalElectronics
Crystal electronics.
DBObjPtr< ECLCrystalCalib > m_CrystalEnergy
Crystal energy.
bool m_TemplatesLoaded
Flag to indicate if waveform templates are loaded from database.
bool isMC() const
Do we have generated, not real data?
Definition: Environment.cc:54
static Environment & Instance()
Static method to get a reference to the Environment instance.
Definition: Environment.cc:28
const int c_NCrystals
Number of crystals.
Struct to keep upper triangle of the covariance matrix.
float m_covMatPacked[31 *(31+1)/2]
Packed matrix.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:362
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:186
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:511
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:513
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:520
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:509
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 425 of file Module.h.

425{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:146

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 438 of file Module.h.

438{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:165

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 431 of file Module.h.

431{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:156

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 419 of file Module.h.

419{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 444 of file Module.h.

444{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:175

◆ eclDigitArrayName()

virtual const char * eclDigitArrayName ( ) const
inlinevirtual

ECLDigits Array Name.

Definition at line 156 of file ECLWaveformFit.h.

157 { return "ECLDigits" ; }

◆ eclDspArrayName()

virtual const char * eclDspArrayName ( ) const
inlinevirtual

ECLDspsArray Name.

Definition at line 160 of file ECLWaveformFit.h.

161 { return "ECLDsps" ; }

◆ endRun()

void endRun ( void  )
overridevirtual

end run.

Reimplemented from Module.

Definition at line 484 of file ECLWaveformFit.cc.

485{
486}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:518
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:517

◆ event()

void event ( void  )
overridevirtual

event per event.

Reimplemented from Module.

Definition at line 364 of file ECLWaveformFit.cc.

365{
367
368 if (!m_TemplatesLoaded) {
369 /* Load templates once per run in first event that has saved waveforms. */
370 if (m_eclDSPs.getEntries() > 0)
372 }
373
374 for (ECLDsp& aECLDsp : m_eclDSPs) {
375
376 aECLDsp.setTwoComponentTotalAmp(-1);
377 aECLDsp.setTwoComponentHadronAmp(-1);
378 aECLDsp.setTwoComponentDiodeAmp(-1);
379 aECLDsp.setTwoComponentChi2(-1);
380 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonHadron, -1);
381 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonHadronBackgroundPhoton, -1);
382 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonDiodeCrossing, -1);
383 aECLDsp.setTwoComponentTime(-1);
384 aECLDsp.setTwoComponentBaseline(-1);
385 aECLDsp.setTwoComponentFitType(ECLDsp::poorChi2);
386
387 const int id = aECLDsp.getCellId() - 1;
388
389 // Filling array with ADC values.
390 for (int j = 0; j < ec.m_nsmp; j++)
391 fitA[j] = aECLDsp.getDspA()[j];
392
393 //setting relation of eclDSP to aECLDigit
394 const ECLDigit* d = nullptr;
395 for (const ECLDigit& aECLDigit : m_eclDigits) {
396 if (aECLDigit.getCellId() - 1 == id) {
397 d = &aECLDigit;
398 aECLDsp.addRelationTo(&aECLDigit);
399 break;
400 }
401 }
402 if (d == nullptr)
403 continue;
404
405 //Skipping low amplitude waveforms
406 if (d->getAmp() * m_ADCtoEnergy[id] < m_EnergyThreshold)
407 continue;
408
409 //loading template for waveform
410 if (m_IsMCFlag == 0) {
411 //data cell id dependent
412 g_PhotonSignal = &m_SignalInterpolation[id][0];
413 g_HadronSignal = &m_SignalInterpolation[id][1];
414 } else {
415 // mc uses same waveform
416 g_PhotonSignal = &m_SignalInterpolation[0][0];
417 g_HadronSignal = &m_SignalInterpolation[0][1];
418 }
419
420 //get covariance matrix for cell id
421 if (m_CovarianceMatrix) {
422 ecl_waveform_fit_load_inverse_covariance(
423 m_PackedCovariance[id].m_covMatPacked);
424 aNoise = m_PackedCovariance[id].sigma;
425 }
426
427 /* Fit with photon and hadron templates (fit type = 0). */
428 double pedestal, amplitudePhoton, signalTime, amplitudeHadron,
429 amplitudeBackgroundPhoton, timeBackgroundPhoton, chi2;
431 chi2 = -1;
432 fitPhotonHadron(pedestal, amplitudePhoton, signalTime, amplitudeHadron,
433 chi2);
434 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonHadron, chi2);
435
436 /* If failed, try photon, hadron, and background photon (fit type = 1). */
437 if (chi2 >= m_Chi2Threshold27dof) {
438
440 chi2 = -1;
442 pedestal, amplitudePhoton, signalTime, amplitudeHadron,
443 amplitudeBackgroundPhoton, timeBackgroundPhoton, chi2);
444 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonHadronBackgroundPhoton,
445 chi2);
446
447 /* If failed, try diode fit (fit type = 2). */
448 if (chi2 >= m_Chi2Threshold25dof) {
449 /* Set second component to diode. */
450 g_HadronSignal = &m_SignalInterpolation[0][2];
452 chi2 = -1;
453 fitPhotonHadron(pedestal, amplitudePhoton, signalTime, amplitudeHadron,
454 chi2);
455 aECLDsp.setTwoComponentSavedChi2(ECLDsp::photonDiodeCrossing, chi2);
456
457 /* Indicates that all fits tried had bad chi^2. */
458 if (chi2 >= m_Chi2Threshold27dof)
459 fitType = ECLDsp::poorChi2;
460 }
461
462 }
463
464 /* Storing fit results. */
465 aECLDsp.setTwoComponentTotalAmp(amplitudePhoton + amplitudeHadron);
466 if (fitType == ECLDsp::photonDiodeCrossing) {
467 aECLDsp.setTwoComponentHadronAmp(0.0);
468 aECLDsp.setTwoComponentDiodeAmp(amplitudeHadron);
469 } else {
470 aECLDsp.setTwoComponentHadronAmp(amplitudeHadron);
471 aECLDsp.setTwoComponentDiodeAmp(0.0);
472 }
473 aECLDsp.setTwoComponentChi2(chi2);
474 aECLDsp.setTwoComponentTime(signalTime);
475 aECLDsp.setTwoComponentBaseline(pedestal);
476 aECLDsp.setTwoComponentFitType(fitType);
478 aECLDsp.setBackgroundPhotonEnergy(amplitudeBackgroundPhoton);
479 aECLDsp.setBackgroundPhotonTime(timeBackgroundPhoton);
480 }
481 }
482}
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
Class to store ECL ShaperDSP waveform ADC data.
Definition: ECLDsp.h:25
TwoComponentFitType
Offline two component fit type.
Definition: ECLDsp.h:29
@ photonHadronBackgroundPhoton
photon + hadron template + pile-up photon fit
Definition: ECLDsp.h:32
@ poorChi2
All offline fit attempts were greater than chi2 threshold.
Definition: ECLDsp.h:30
@ photonDiodeCrossing
photon + diode template fit
Definition: ECLDsp.h:33
@ photonHadron
photon + hadron template fit
Definition: ECLDsp.h:31
void fitPhotonHadronBackgroundPhoton(double &pedestal, double &amplitudePhoton, double &signalTime, double &amplitudeHadron, double &amplitudeBackgroundPhoton, double &timeBackgroundPhoton, double &chi2)
Fit with photon, hadron, and background photon.
StoreArray< ECLDsp > m_eclDSPs
StoreArray ECLDsp.
SignalInterpolation2 m_SignalInterpolation[ECLElementNumbers::c_NCrystals][3]
ShaperDSP signal shapes.
StoreArray< ECLDigit > m_eclDigits
StoreArray ECLDigit.
void loadTemplateParameterArray()
Loads waveform templates from database.
void fitPhotonHadron(double &pedestal, double &amplitudePhoton, double &signalTime, double &amplitudeHadron, double &chi2)
Fit with photon and hadron.
Singleton class to hold the ECL configuration.
static EclConfiguration & get()
return this instance
static constexpr int m_nsmp
number of ADC measurements for signal fitting
float sigma
Sigma noise.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional paths */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:224
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:229
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:201
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:310
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:196
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:213
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ fitPhotonHadron()

void fitPhotonHadron ( double &  pedestal,
double &  amplitudePhoton,
double &  signalTime,
double &  amplitudeHadron,
double &  chi2 
)
private

Fit with photon and hadron.

Parameters
[out]pedestalPedestal.
[out]amplitudePhotonPhoton amplitude.
[out]signalTimeSignal time.
[out]amplitudeHadronHadron amplitude.
[out]chi2Chi-squared.

Definition at line 492 of file ECLWaveformFit.cc.

495{
496 //minuit parameters
497 double arglist[10] = {0};
498 int ierflg = 0;
499
500 /* Setting initial fit parameters. */
501 double dt = 0.5;
502 double amax = 0;
503 int jmax = 6;
504 for (int j = 0; j < c_NFitPoints; j++) {
505 if (amax < fitA[j]) {
506 amax = fitA[j];
507 jmax = j;
508 }
509 }
510 double sumB0 = 0;
511 int jsum = 0;
512 for (int j = 0; j < c_NFitPoints; j++) {
513 if (j < jmax - 3 || jmax + 4 < j) {
514 sumB0 += fitA[j];
515 ++jsum;
516 }
517 }
518 double B0 = sumB0 / jsum;
519 amax -= B0;
520 if (amax < 0)
521 amax = 10;
522 double T0 = dt * (4.5 - jmax);
523 double A0 = amax;
524
525 //initialize minimizer
526 m_MinuitPhotonHadron->mnparm(0, "B", B0, 10, B0 / 1.5, B0 * 1.5, ierflg);
527 m_MinuitPhotonHadron->mnparm(1, "Ag", A0, A0 / 20, 0, 2 * A0, ierflg);
528 m_MinuitPhotonHadron->mnparm(2, "T", T0, 0.5, T0 - 2.5, T0 + 2.5, ierflg);
529 m_MinuitPhotonHadron->mnparm(3, "Ah", 0., A0 / 20, -A0, 2 * A0, ierflg);
530
531 //perform fit
532 arglist[0] = 50000;
533 arglist[1] = 1.;
534 m_MinuitPhotonHadron->mnexcm("MIGRAD", arglist, 2, ierflg);
535
536 double edm, errdef;
537 int nvpar, nparx, icstat;
538 m_MinuitPhotonHadron->mnstat(chi2, edm, errdef, nvpar, nparx, icstat);
539
540 //get fit results
541 double error;
542 m_MinuitPhotonHadron->GetParameter(0, pedestal, error);
543 m_MinuitPhotonHadron->GetParameter(1, amplitudePhoton, error);
544 m_MinuitPhotonHadron->GetParameter(2, signalTime, error);
545 m_MinuitPhotonHadron->GetParameter(3, amplitudeHadron, error);
546}
TMinuit * m_MinuitPhotonHadron
Minuit minimizer for fit with photon and hadron.

◆ fitPhotonHadronBackgroundPhoton()

void fitPhotonHadronBackgroundPhoton ( double &  pedestal,
double &  amplitudePhoton,
double &  signalTime,
double &  amplitudeHadron,
double &  amplitudeBackgroundPhoton,
double &  timeBackgroundPhoton,
double &  chi2 
)
private

Fit with photon, hadron, and background photon.

Parameters
[out]pedestalPedestal.
[out]amplitudePhotonPhoton amplitude.
[out]signalTimeSignal time.
[out]amplitudeHadronHadron amplitude.
[out]amplitudeBackgroundPhotonBackground-photon amplitude.
[out]timeBackgroundPhotonBackground-photon time.
[out]chi2Chi-squared.

Definition at line 548 of file ECLWaveformFit.cc.

552{
553 double arglist[10] = {0};
554 int ierflg = 0;
555 double dt = 0.5;
556 double amax = 0; int jmax = 6;
557 for (int j = 0; j < c_NFitPoints; j++) {
558 if (amax < fitA[j]) {
559 amax = fitA[j];
560 jmax = j;
561 }
562 }
563
564 double amax1 = 0; int jmax1 = 6;
565 for (int j = 0; j < c_NFitPoints; j++) {
566 if (j < jmax - 3 || jmax + 4 < j) {
567 if (j == 0) {
568 if (amax1 < fitA[j] && fitA[j + 1] < fitA[j]) {
569 amax1 = fitA[j];
570 jmax1 = j;
571 }
572 } else if (j == 30) {
573 if (amax1 < fitA[j] && fitA[j - 1] < fitA[j]) {
574 amax1 = fitA[j];
575 jmax1 = j;
576 }
577 } else {
578 if (amax1 < fitA[j] && fitA[j + 1] < fitA[j] && fitA[j - 1] < fitA[j]) {
579 amax1 = fitA[j];
580 jmax1 = j;
581 }
582 }
583 }
584 }
585
586 double sumB0 = 0;
587 int jsum = 0;
588 for (int j = 0; j < c_NFitPoints; j++) {
589 if ((j < jmax - 3 || jmax + 4 < j) && (j < jmax1 - 3 || jmax1 + 4 < j)) {
590 sumB0 += fitA[j];
591 ++jsum;
592 }
593 }
594 double B0 = sumB0 / jsum;
595 amax -= B0;
596 amax = std::max(10.0, amax);
597 amax1 -= B0;
598 amax1 = std::max(10.0, amax1);
599 double T0 = dt * (4.5 - jmax);
600 double T01 = dt * (4.5 - jmax1);
601
602 double A0 = amax, A01 = amax1;
604 0, "B", B0, 10, B0 / 1.5, B0 * 1.5, ierflg);
606 1, "Ag", A0, A0 / 20, 0, 2 * A0, ierflg);
608 2, "T", T0, 0.5, T0 - 2.5, T0 + 2.5, ierflg);
610 3, "Ah", 0., A0 / 20, -A0, 2 * A0, ierflg);
612 4, "A2", A01, A01 / 20, 0, 2 * A01, ierflg);
614 5, "T2", T01, 0.5, T01 - 2.5, T01 + 2.5, ierflg);
615
616 // Now ready for minimization step
617 arglist[0] = 50000;
618 arglist[1] = 1.;
619 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("MIGRAD", arglist, 2, ierflg);
620
621 double edm, errdef;
622 int nvpar, nparx, icstat;
623 m_MinuitPhotonHadronBackgroundPhoton->mnstat(chi2, edm, errdef, nvpar, nparx, icstat);
624 double error;
625 m_MinuitPhotonHadronBackgroundPhoton->GetParameter(0, pedestal, error);
626 m_MinuitPhotonHadronBackgroundPhoton->GetParameter(1, amplitudePhoton, error);
627 m_MinuitPhotonHadronBackgroundPhoton->GetParameter(2, signalTime, error);
628 m_MinuitPhotonHadronBackgroundPhoton->GetParameter(3, amplitudeHadron, error);
630 4, amplitudeBackgroundPhoton, error);
632 5, timeBackgroundPhoton, error);
633}
TMinuit * m_MinuitPhotonHadronBackgroundPhoton
Minuit minimizer for fit with photon, hadron, and background photon.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 323 of file Module.h.

324 {
325 return m_conditions;
326 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 313 of file Module.h.

314 {
315 if (m_conditions.empty()) {
316 return nullptr;
317 } else {
318 return &m_conditions.front();
319 }
320 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 201 of file Module.h.

201{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:510

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 133 of file Module.h.

134 {
135 return std::vector<std::string>();
136 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 224 of file Module.h.

224{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 505 of file Module.h.

505{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 186 of file Module.h.

186{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:507

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 196 of file Module.h.

196{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:515

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 362 of file Module.h.

362{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 380 of file Module.h.

380{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:508

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 310 of file Module.h.

310{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 377 of file Module.h.

377{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize variables.

Reimplemented from Module.

Definition at line 319 of file ECLWaveformFit.cc.

320{
321 // ECL dataobjects
322 m_eclDSPs.isRequired();
323 m_eclDigits.isRequired();
324 // While we set a relation from ECLDsps to ECLDigits here, the relation
325 // is already register in previous modules: let's require it here
326 m_eclDSPs.registerRelationTo(m_eclDigits);
327
328 //initializing fit minimizer
329 m_MinuitPhotonHadron = new TMinuit(4);
330 m_MinuitPhotonHadron->SetFCN(fcnPhotonHadron);
331 double arglist[10];
332 int ierflg = 0;
333 arglist[0] = -1;
334 m_MinuitPhotonHadron->mnexcm("SET PRIntout", arglist, 1, ierflg);
335 m_MinuitPhotonHadron->mnexcm("SET NOWarnings", arglist, 0, ierflg);
336 arglist[0] = 1;
337 m_MinuitPhotonHadron->mnexcm("SET ERR", arglist, 1, ierflg);
338 arglist[0] = 0;
339 m_MinuitPhotonHadron->mnexcm("SET STRategy", arglist, 1, ierflg);
340 arglist[0] = 1;
341 m_MinuitPhotonHadron->mnexcm("SET GRAdient", arglist, 1, ierflg);
342 arglist[0] = 1e-6;
343 m_MinuitPhotonHadron->mnexcm("SET EPSmachine", arglist, 1, ierflg);
344
345 //initializing fit minimizer photon+hadron + background photon
347 m_MinuitPhotonHadronBackgroundPhoton->SetFCN(fcnPhotonHadronBackgroundPhoton);
348 arglist[0] = -1;
349 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET PRIntout", arglist, 1, ierflg);
350 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET NOWarnings", arglist, 0, ierflg);
351 arglist[0] = 1;
352 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET ERR", arglist, 1, ierflg);
353 arglist[0] = 0;
354 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET STRategy", arglist, 1, ierflg);
355 arglist[0] = 1;
356 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET GRAdient", arglist, 1, ierflg);
357 arglist[0] = 1e-6;
358 m_MinuitPhotonHadronBackgroundPhoton->mnexcm("SET EPSmachine", arglist, 1, ierflg);
359
360 //flag for callback to load templates each run
361 m_TemplatesLoaded = false;
362}

◆ loadTemplateParameterArray()

void loadTemplateParameterArray ( )
private

Loads waveform templates from database.

Definition at line 214 of file ECLWaveformFit.cc.

215{
216
217 m_TemplatesLoaded = true;
218
219 if (m_IsMCFlag == 0) {
220 //load data templates
221 std::vector<double> Ptemp(11), Htemp(11), Dtemp(11);
222 for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++) {
223 for (int j = 0; j < 11; j++) {
224 Ptemp[j] = (double)m_WaveformParameters->getPhotonParameters(i + 1)[j];
225 Htemp[j] = (double)m_WaveformParameters->getHadronParameters(i + 1)[j];
226 Dtemp[j] = (double)m_WaveformParameters->getDiodeParameters(i + 1)[j];
227 }
231 }
232 } else {
233 //load mc template
234 std::vector<double> Ptemp(11), Htemp(11), Dtemp(11);
235 for (int j = 0; j < 11; j++) {
236 Ptemp[j] = (double)m_WaveformParametersForMC->getPhotonParameters()[j];
237 Htemp[j] = (double)m_WaveformParametersForMC->getHadronParameters()[j];
238 Dtemp[j] = (double)m_WaveformParametersForMC->getDiodeParameters()[j];
239 }
243 }
244}
DBObjPtr< ECLDigitWaveformParameters > m_WaveformParameters
Waveform parameters.
DBObjPtr< ECLDigitWaveformParametersForMC > m_WaveformParametersForMC
Waveform parameters for MC.
Interpolation of signal shape using function values and the first derivative.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 229 of file Module.h.

229{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 213 of file Module.h.

213{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 500 of file Module.h.

500{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:28
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

terminate.

Reimplemented from Module.

Definition at line 488 of file ECLWaveformFit.cc.

489{
490}

Member Data Documentation

◆ m_ADCtoEnergy

std::vector<double> m_ADCtoEnergy
private

Calibration vector from ADC to energy.

Definition at line 214 of file ECLWaveformFit.h.

◆ m_AutoCovariance

DBObjPtr<ECLAutoCovariance> m_AutoCovariance
private

Autocovariance.

Definition at line 244 of file ECLWaveformFit.h.

◆ m_Chi2Threshold25dof

double m_Chi2Threshold25dof {57.1}
private

chi2 threshold (25 dof) to classify offline fit as good fit.

Definition at line 202 of file ECLWaveformFit.h.

◆ m_Chi2Threshold27dof

double m_Chi2Threshold27dof {60.0}
private

chi2 threshold (27 dof) to classify offline fit as good fit.

Definition at line 205 of file ECLWaveformFit.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 520 of file Module.h.

◆ m_CovarianceMatrix

bool m_CovarianceMatrix {true}
private

Option to use crystal dependent covariance matrices.

Definition at line 208 of file ECLWaveformFit.h.

◆ m_CrystalElectronics

DBObjPtr<ECLCrystalCalib> m_CrystalElectronics {"ECLCrystalElectronics"}
private

Crystal electronics.

Definition at line 232 of file ECLWaveformFit.h.

◆ m_CrystalEnergy

DBObjPtr<ECLCrystalCalib> m_CrystalEnergy {"ECLCrystalEnergy"}
private

Crystal energy.

Definition at line 235 of file ECLWaveformFit.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 510 of file Module.h.

◆ m_eclDigits

StoreArray<ECLDigit> m_eclDigits
private

StoreArray ECLDigit.

Definition at line 250 of file ECLWaveformFit.h.

◆ m_eclDSPs

StoreArray<ECLDsp> m_eclDSPs
private

StoreArray ECLDsp.

Definition at line 247 of file ECLWaveformFit.h.

◆ m_EnergyThreshold

double m_EnergyThreshold {0.03}
private

Energy threshold to fit pulse offline.

Definition at line 199 of file ECLWaveformFit.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 517 of file Module.h.

◆ m_IsMCFlag

bool m_IsMCFlag {false}
private

Flag to indicate if running over data or MC.

Definition at line 229 of file ECLWaveformFit.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 513 of file Module.h.

◆ m_MinuitPhotonHadron

TMinuit* m_MinuitPhotonHadron = nullptr
private

Minuit minimizer for fit with photon and hadron.

Definition at line 217 of file ECLWaveformFit.h.

◆ m_MinuitPhotonHadronBackgroundPhoton

TMinuit* m_MinuitPhotonHadronBackgroundPhoton = nullptr
private

Minuit minimizer for fit with photon, hadron, and background photon.

Definition at line 220 of file ECLWaveformFit.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 515 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 507 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 509 of file Module.h.

◆ m_PackedCovariance

CovariancePacked m_PackedCovariance[ECLElementNumbers::c_NCrystals] = {}
private

Packed covariance matrices.

Definition at line 226 of file ECLWaveformFit.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 511 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 518 of file Module.h.

◆ m_SignalInterpolation

SignalInterpolation2 m_SignalInterpolation[ECLElementNumbers::c_NCrystals][3]
private

ShaperDSP signal shapes.

Definition at line 223 of file ECLWaveformFit.h.

◆ m_TemplatesLoaded

bool m_TemplatesLoaded {false}
private

Flag to indicate if waveform templates are loaded from database.

Definition at line 211 of file ECLWaveformFit.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 508 of file Module.h.

◆ m_u1

double m_u1
private

u1 parameter for regularization function.

Definition at line 253 of file ECLWaveformFit.h.

◆ m_WaveformParameters

DBObjPtr<ECLDigitWaveformParameters> m_WaveformParameters
private

Waveform parameters.

Definition at line 238 of file ECLWaveformFit.h.

◆ m_WaveformParametersForMC

DBObjPtr<ECLDigitWaveformParametersForMC> m_WaveformParametersForMC
private

Waveform parameters for MC.

Definition at line 241 of file ECLWaveformFit.h.


The documentation for this class was generated from the following files: