Belle II Software development
eclMuMuEAlgorithm Class Reference

Calibrate ecl crystals using muon pair events. More...

#include <eclMuMuEAlgorithm.h>

Inheritance diagram for eclMuMuEAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclMuMuEAlgorithm ()
 ..Constructor
 
virtual ~eclMuMuEAlgorithm ()
 ..Destructor
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int cellIDLo
 ..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
 
int cellIDHi
 Last cellID to be fit.
 
int minEntries
 All crystals to be fit must have at least minEntries events in the fit range.
 
int nToRebin
 If fewer entries than this, rebin and fix eta parameter.
 
double tRatioMin
 entries/peak at low edge of fit must be greater than this

 
double tRatioMax
 entries/peak at high edge of fit must be greater than this
 
double lowerEdgeThresh
 Lower edge is where the fit = lowerEdgeThresh * peak value.
 
bool performFits
 if false, input histograms are copied to output, but no fits are done.
 
bool findExpValues
 if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant
 
int storeConst
 controls which values are written to the database.
 

Protected Member Functions

virtual EResult calibrate () override
 ..Run algorithm on events
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

int fitOK = 16
 fit is OK
 
int iterations = 8
 fit reached max number of iterations, but is usable
 
int noLowerEdge = 5
 could not determine lower edge of fit
 
int atLimit = 4
 a parameter is at the limit; fit not usable
 
int poorFit = 3
 low chi square; fit not usable
 
int notFit = -1
 no fit performed
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Calibrate ecl crystals using muon pair events.

Definition at line 22 of file eclMuMuEAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclMuMuEAlgorithm()

..Constructor

Definition at line 56 of file eclMuMuEAlgorithm.cc.

56 : CalibrationAlgorithm("eclMuMuECollector"), cellIDLo(1),
58 nToRebin(1000), tRatioMin(0.05), tRatioMax(0.40), lowerEdgeThresh(0.10), performFits(true), findExpValues(false), storeConst(0)
59{
61 "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by muons"
62 );
63}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
double tRatioMin
entries/peak at low edge of fit must be greater than this
int storeConst
controls which values are written to the database.
bool performFits
if false, input histograms are copied to output, but no fits are done.
int cellIDHi
Last cellID to be fit.
double lowerEdgeThresh
Lower edge is where the fit = lowerEdgeThresh * peak value.
int cellIDLo
..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
bool findExpValues
if true, fits are used to find expected energy deposit for each crystal instead of the calibration co...
int minEntries
All crystals to be fit must have at least minEntries events in the fit range.
int nToRebin
If fewer entries than this, rebin and fix eta parameter.
double tRatioMax
entries/peak at high edge of fit must be greater than this
const int c_NCrystals
Number of crystals.

◆ ~eclMuMuEAlgorithm()

virtual ~eclMuMuEAlgorithm ( )
inlinevirtual

..Destructor

Definition at line 29 of file eclMuMuEAlgorithm.h.

29{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events


ranges of various fit parameters, and tolerance to determine that fit is at the limit

Put root into batch mode so that we don't try to open a graphics window


Write out the job parameters


Clean up existing histograms if necessary


Histograms containing the data collected by eclMuMuECollectorModule


Record the number of entries per crystal in the normalized energy histogram and calculate the average expected energy per crystal and calibration constants from Collector


Write out the basic histograms in all cases


If we have not been asked to do fits, we can quit now


Check that every crystal has enough entries.

Insufficient data. Quit if we are required to have a successful fit for every crystal


Some prep for the many fits about to follow

histograms to store results for database

Diagnostic histograms

1D summary histograms


Fits are requested and there is sufficient data. Loop over specified crystals and performs fits to the amplitude distributions

Project 1D histogram of energy in this crystal

Fit function (xmin, xmax, nparameters) for this histogram

Estimate initial parameters from the histogram. For peak, use maximum bin in the allowed range

eta is nominal values


Fit

Set the initial parameters

Fit

bins on either side of this value

look for the target value between these two points


Fit status

did not find lower edge

poor fit

parameter at limit

fill diagnostic histograms

1D summary histograms

Store histogram with fit


Interpret results of fit as expected energy or calibration constant

if the fit is not successful, set peakE and edge to -1, so that output calib = -1 * abs(input calib)

Find expected energies from MC, if requested

Otherwise, calibration constant


Write output to DB if requested and successful

Store expected energies

Store calibration constants


Write out diagnostic histograms

Histograms containing values written to DB


Clean up histograms in case Algorithm is called again


Set the return code appropriately

Implements CalibrationAlgorithm.

Definition at line 65 of file eclMuMuEAlgorithm.cc.

66{
69 double limitTol = 0.0005; /*< tolerance for checking if a parameter is at the limit */
70 double minFitLimit = 1e-25; /*< cut off for labeling a fit as poor */
71 double peakMin(0.4), peakMax(2.2); /*< range for peak of normalized energy distribution */
72 double peakTol = limitTol * (peakMax - peakMin); /*< fit is at limit if it is within peakTol of min or max */
73 double effSigMin(0.02), effSigMax(0.2); /*< range for effective sigma of normalized energy distribution */
74 double effSigTol = limitTol * (effSigMax - effSigMin); /*< fit is at limit if it is within effSigTol of min or max */
75 double etaNom(-0.41); /*< Nominal tail parameter; fixed to this value for low statistics fits */
76 double etaMin(-1.), etaMax(0.); /*< Novosibirsk tail parameter range */
77 double etaTol = limitTol * (etaMax - etaMin); /*< fit is at limit if it is within etaTol of min or max */
78
80 gROOT->SetBatch();
81
84 B2INFO("eclMuMuEAlgorithm parameters:");
85 B2INFO("cellIDLo = " << cellIDLo);
86 B2INFO("cellIDHi = " << cellIDHi);
87 B2INFO("minEntries = " << minEntries);
88 B2INFO("tRatioMin = " << tRatioMin);
89 B2INFO("tRatioMax = " << tRatioMax);
90 B2INFO("lowerEdgeThresh = " << lowerEdgeThresh);
91 B2INFO("performFits = " << performFits);
92 B2INFO("findExpValues = " << findExpValues);
93 B2INFO("storeConst = " << storeConst);
94
97 TH1F* dummy;
98 dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysID");
99 if (dummy) {delete dummy;}
100 dummy = (TH1F*)gROOT->FindObject("AverageExpECrys");
101 if (dummy) {delete dummy;}
102 dummy = (TH1F*)gROOT->FindObject("AverageElecCalib");
103 if (dummy) {delete dummy;}
104 dummy = (TH1F*)gROOT->FindObject("AverageInitCalib");
105 if (dummy) {delete dummy;}
106
109 auto TrkPerCrysID = getObjectPtr<TH1F>("TrkPerCrysID");
110 auto EnVsCrysID = getObjectPtr<TH2F>("EnVsCrysID");
111 auto ExpEvsCrys = getObjectPtr<TH1F>("ExpEvsCrys");
112 auto ElecCalibvsCrys = getObjectPtr<TH1F>("ElecCalibvsCrys");
113 auto InitialCalibvsCrys = getObjectPtr<TH1F>("InitialCalibvsCrys");
114 auto CalibEntriesvsCrys = getObjectPtr<TH1F>("CalibEntriesvsCrys");
115 auto RawDigitAmpvsCrys = getObjectPtr<TH2F>("RawDigitAmpvsCrys");
116 auto RawDigitTimevsCrys = getObjectPtr<TH2F>("RawDigitTimevsCrys");
117 auto hitCrysVsExtrapolatedCrys = getObjectPtr<TH2F>("hitCrysVsExtrapolatedCrys");
118
122 TH1F* IntegralVsCrysID = new TH1F("IntegralVsCrysID", "Integral of EnVsCrysID for each crystal;crystal ID;Entries",
124 TH1F* AverageExpECrys = new TH1F("AverageExpECrys", "Average expected E per crys from collector;Crystal ID;Energy (GeV)",
127 TH1F* AverageElecCalib = new TH1F("AverageElecCalib", "Average electronics calib const vs crystal;Crystal ID;Calibration constant",
129 TH1F* AverageInitCalib = new TH1F("AverageInitCalib", "Average initial calib const vs crystal;Crystal ID;Calibration constant",
131
132 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
133 TH1D* hEnergy = EnVsCrysID->ProjectionY("hEnergy", crysID + 1, crysID + 1);
134 int Integral = hEnergy->Integral();
135 IntegralVsCrysID->SetBinContent(crysID + 1, Integral);
136
137 double TotEntries = CalibEntriesvsCrys->GetBinContent(crysID + 1);
138
139 double expectedE = 0.;
140 if (TotEntries > 0.) {expectedE = ExpEvsCrys->GetBinContent(crysID + 1) / TotEntries;}
141 AverageExpECrys->SetBinContent(crysID + 1, expectedE);
142
143 double calibconst = 0.;
144 if (TotEntries > 0.) {calibconst = ElecCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
145 AverageElecCalib->SetBinContent(crysID + 1, calibconst);
146
147 calibconst = 0.;
148 if (TotEntries > 0.) {calibconst = InitialCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
149 AverageInitCalib->SetBinContent(crysID + 1, calibconst);
150 }
151
154 TFile* histfile = new TFile("eclMuMuEAlgorithm.root", "recreate");
155 TrkPerCrysID->Write();
156 EnVsCrysID->Write();
157 IntegralVsCrysID->Write();
158 AverageExpECrys->Write();
159 AverageElecCalib->Write();
160 AverageInitCalib->Write();
161 RawDigitAmpvsCrys->Write();
162 RawDigitTimevsCrys->Write();
163 hitCrysVsExtrapolatedCrys->Write();
164
167 if (!performFits) {
168 B2RESULT("eclMuMuEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
169 histfile->Close();
170 return c_NotEnoughData;
171 }
172
175 bool sufficientData = true;
176 for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
177 if (IntegralVsCrysID->GetBinContent(crysID + 1) < minEntries) {
178 if (storeConst == 1) {B2RESULT("eclMuMuEAlgorithm: crystal " << crysID << " has insufficient statistics: " << IntegralVsCrysID->GetBinContent(crysID + 1) << ". Requirement is " << minEntries);}
179 sufficientData = false;
180 break;
181 }
182 }
183
185 if (!sufficientData && storeConst == 1) {
186 histfile->Close();
187 return c_NotEnoughData;
188 }
189
194 TH1F* CalibVsCrysID = new TH1F("CalibVsCrysID", "Calibration constant vs crystal ID;crystal ID;counts per GeV",
196 TH1F* ExpEnergyperCrys = new TH1F("ExpEnergyperCrys", "Expected energy per crystal;Crystal ID;Peak energy (GeV)",
198
200 TH1F* PeakVsCrysID = new TH1F("PeakVsCrysID", "Peak of Novo fit vs crystal ID;crystal ID;Peak normalized energy",
203 TH1F* EdgeVsCrysID = new TH1F("EdgeVsCrysID", "Lower edge of Novo fit vs crystal ID;crystal ID", ECLElementNumbers::c_NCrystals, 0,
205 TH1F* effSigVsCrysID = new TH1F("effSigVsCrysID", "effSigma vs crystal ID;crystal ID;sigma)", ECLElementNumbers::c_NCrystals, 0,
207 TH1F* etaVsCrysID = new TH1F("etaVsCrysID", "eta vs crystal ID;crystal ID;Novo eta parameter", ECLElementNumbers::c_NCrystals, 0,
209 TH1F* normVsCrysID = new TH1F("normVsCrysID", "Novosibirsk normalization vs crystal ID;crystal ID;normalization",
211 TH1F* lowerLimitVsCrysID = new TH1F("lowerLimitVsCrysID", "fit range lower limit vs crystal ID;crystal ID;lower fit limit",
214 TH1F* fitLimitVsCrysID = new TH1F("fitLimitVsCrysID", "fit range upper limit vs crystal ID;crystal ID;upper fit limit",
217 TH1F* StatusVsCrysID = new TH1F("StatusVsCrysID", "Fit status vs crystal ID;crystal ID;Fit status", ECLElementNumbers::c_NCrystals,
219
221 TH1F* hStatus = new TH1F("hStatus", "Fit status", 25, -5, 20);
222 TH1F* hPeak = new TH1F("hPeak", "Peaks of normalized energy distributions, successful fits;Peak of Novosibirsk fit", 200, 0.8, 1.2);
223 TH1F* fracPeakUnc = new TH1F("fracPeakUnc", "Fractional uncertainty on peak uncertainty, successful fits;Uncertainty on peak", 100,
224 0, 0.1);
225
226
229 bool allFitsOK = true;
230 for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
231
233 TString name = "Enormalized";
234 name += crysID;
235 TH1D* hEnergy = EnVsCrysID->ProjectionY(name, crysID + 1, crysID + 1);
236
238 double histMin = hEnergy->GetXaxis()->GetXmin();
239 double histMax = hEnergy->GetXaxis()->GetXmax();
240 TF1* func = new TF1("eclNovoConst", eclNovoConst, histMin, histMax, 5);
241 func->SetParNames("normalization", "peak", "effSigma", "eta", "const");
242 func->SetParLimits(1, peakMin, peakMax);
243 func->SetParLimits(2, effSigMin, effSigMax);
244 func->SetParLimits(3, etaMin, etaMax);
245
246 //..Currently not using the constant term
247 double constant = 0.;
248 func->FixParameter(4, constant);
249
250 //..If low statistics, rebin, and fix eta
251 if (hEnergy->GetEntries() < nToRebin) {
252 hEnergy->Rebin(2);
253 func->FixParameter(3, etaNom);
254 }
255
257 hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
258 double peak = hEnergy->GetMaximum();
259 int maxBin = hEnergy->GetMaximumBin();
260 double peakE = hEnergy->GetBinLowEdge(maxBin);
261 double peakEUnc = 0.;
262 double normalization = hEnergy->GetMaximum();
263 double normUnc = 0.;
264 double effSigma = hEnergy->GetRMS();
265 double sigmaUnc = 0.;
266 hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
267 double fitProb = 0.;
268
270 double eta = etaNom;
271 double etaUnc = 0.;
272
273 //..Will find the lower edge of normalized energy at the end of the fit
274 double lowerEnEdge = 0.;
275
276 //..Fit range from set of bins with sufficient entries.
277 double targetY = tRatioMin * peak;
278 int iLow = maxBin;
279 while (hEnergy->GetBinContent(iLow) > targetY) {iLow--;}
280 double fitlow = hEnergy->GetBinLowEdge(iLow);
281
282 targetY = tRatioMax * peak;
283 int iHigh = maxBin;
284 while (hEnergy->GetBinContent(iHigh) > targetY) {iHigh++;}
285 double fithigh = hEnergy->GetBinLowEdge(iHigh + 1);
286
289 bool fitHist = IntegralVsCrysID->GetBinContent(crysID + 1) >= minEntries; /* fit only if enough events */
290 if (fitHist) {
291
293 func->SetParameters(normalization, peakE, effSigma, eta, constant);
294
296 hEnergy->Fit(func, "LIQ", "", fitlow, fithigh);
297 normalization = func->GetParameter(0);
298 normUnc = func->GetParError(0);
299 peakE = func->GetParameter(1);
300 peakEUnc = func->GetParError(1);
301 effSigma = func->GetParameter(2);
302 sigmaUnc = func->GetParError(2);
303 eta = func->GetParameter(3);
304 etaUnc = func->GetParError(3);
305 fitProb = func->GetProb();
306
307 //..Lower edge of the fit function is used to find the calibration constant.
308 // Can now use the peak of the fit, instead of the bin content.
309 peak = func->Eval(peakE);
310 targetY = lowerEdgeThresh * peak;
311
313 iHigh = hEnergy->GetXaxis()->FindBin(peakE) + 1;
314 iLow = hEnergy->GetXaxis()->FindBin(fitlow);
315 int iLast = iHigh;
316 for (int ibin = iHigh; ibin > iLow; ibin--) {
317 double xc = hEnergy->GetBinCenter(ibin);
318 if (func->Eval(xc) > targetY) {iLast = ibin;}
319 }
320 double xHigh = hEnergy->GetBinCenter(iLast);
321 double xLow = hEnergy->GetBinCenter(iLast - 1);
322
324 if (func->Eval(xLow) < targetY and func->Eval(xHigh) > targetY) {
325 func->SetNpx(1000);
326 lowerEnEdge = func->GetX(targetY, xLow, xHigh);
327 }
328 }
329
332 int iStatus = fitOK; // success
333
335 if (lowerEnEdge < 0.01) {iStatus = noLowerEdge;}
336
338 if (fitProb <= minFitLimit) {iStatus = poorFit;}
339
341 if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus = atLimit;}
342 if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus = atLimit;}
343 if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus = atLimit;}
344
345 //** No fit
346 if (!fitHist) {iStatus = notFit;} // not fit
347
349 int histbin = crysID + 1;
350 PeakVsCrysID->SetBinContent(histbin, peakE);
351 PeakVsCrysID->SetBinError(histbin, peakEUnc);
352 EdgeVsCrysID->SetBinContent(histbin, lowerEnEdge);
353 EdgeVsCrysID->SetBinError(histbin, peakEUnc); // approximate
354 effSigVsCrysID->SetBinContent(histbin, effSigma);
355 effSigVsCrysID->SetBinError(histbin, sigmaUnc);
356 etaVsCrysID->SetBinContent(histbin, eta);
357 etaVsCrysID->SetBinError(histbin, etaUnc);
358 normVsCrysID->SetBinContent(histbin, normalization);
359 normVsCrysID->SetBinError(histbin, normUnc);
360 lowerLimitVsCrysID->SetBinContent(histbin, fitlow);
361 lowerLimitVsCrysID->SetBinError(histbin, 0);
362 fitLimitVsCrysID->SetBinContent(histbin, fithigh);
363 fitLimitVsCrysID->SetBinError(histbin, 0);
364 StatusVsCrysID->SetBinContent(histbin, iStatus);
365 StatusVsCrysID->SetBinError(histbin, 0);
366
368 hStatus->Fill(iStatus);
369 if (iStatus >= iterations) {
370 hPeak->Fill(peakE);
371 fracPeakUnc->Fill(peakEUnc / peakE);
372 }
373
375 B2INFO("cellID " << crysID + 1 << " status = " << iStatus << " fit probability = " << fitProb);
376 histfile->cd();
377 hEnergy->Write();
378
379 } /* end of loop over crystals */
380
383 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
384 int histbin = crysID + 1;
385 double fitstatus = StatusVsCrysID->GetBinContent(histbin);
386 double peakE = PeakVsCrysID->GetBinContent(histbin);
387 double edge = EdgeVsCrysID->GetBinContent(histbin);
388 double fracpeakEUnc = PeakVsCrysID->GetBinError(histbin) / peakE;
389
391 if (fitstatus < iterations) {
392 peakE = -1.;
393 edge = -1.;
394 fracpeakEUnc = 0.;
395 if (histbin >= cellIDLo && histbin <= cellIDHi) {
396 B2RESULT("eclMuMuEAlgorithm: cellID " << histbin << " is not a successful fit. Status = " << fitstatus);
397 allFitsOK = false;
398 }
399 }
400
402 if (findExpValues) {
403 double inputExpE = abs(AverageExpECrys->GetBinContent(histbin));
404 ExpEnergyperCrys->SetBinContent(histbin, inputExpE * edge);
405 ExpEnergyperCrys->SetBinError(histbin, fracpeakEUnc * inputExpE * peakE);
406 } else {
407
409 double inputCalib = abs(AverageInitCalib->GetBinContent(histbin));
410 CalibVsCrysID->SetBinContent(histbin, inputCalib / edge);
411 CalibVsCrysID->SetBinError(histbin, fracpeakEUnc * inputCalib / peakE);
412 }
413 }
414
417 bool DBsuccess = false;
418 if (storeConst == 0 || (storeConst == 1 && allFitsOK)) {
419 DBsuccess = true;
420 if (findExpValues) {
421
423 std::vector<float> tempE;
424 std::vector<float> tempUnc;
425 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
426 tempE.push_back(ExpEnergyperCrys->GetBinContent(crysID + 1));
427 tempUnc.push_back(ExpEnergyperCrys->GetBinError(crysID + 1));
428 }
429 ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
430 ExpectedE->setCalibVector(tempE, tempUnc);
431 saveCalibration(ExpectedE, "ECLExpMuMuE");
432 B2RESULT("eclCosmicEAlgorithm: successfully stored expected energies ECLExpMuMuE");
433
434 } else {
435
437 std::vector<float> tempCalib;
438 std::vector<float> tempCalibUnc;
439 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
440 tempCalib.push_back(CalibVsCrysID->GetBinContent(crysID + 1));
441 tempCalibUnc.push_back(CalibVsCrysID->GetBinError(crysID + 1));
442 }
443 ECLCrystalCalib* MuMuECalib = new ECLCrystalCalib();
444 MuMuECalib->setCalibVector(tempCalib, tempCalibUnc);
445 saveCalibration(MuMuECalib, "ECLCrystalEnergyMuMu");
446 B2RESULT("eclMuMuEAlgorithm: successfully stored ECLCrystalEnergyMuMu calibration constants");
447 }
448 }
449
453 PeakVsCrysID->Write();
454 EdgeVsCrysID->Write();
455 effSigVsCrysID->Write();
456 etaVsCrysID->Write();
457 normVsCrysID->Write();
458 lowerLimitVsCrysID->Write();
459 fitLimitVsCrysID->Write();
460 StatusVsCrysID->Write();
461 hPeak->Write();
462 fracPeakUnc->Write();
463 hStatus->Write();
464
466 if (findExpValues) {
467 ExpEnergyperCrys->Write();
468 } else {
469 CalibVsCrysID->Write();
470 }
471 histfile->Close();
472
475 dummy = (TH1F*)gROOT->FindObject("PeakVsCrysID"); delete dummy;
476 dummy = (TH1F*)gROOT->FindObject("EdgeVsCrysID"); delete dummy;
477 dummy = (TH1F*)gROOT->FindObject("effSigVsCrysID"); delete dummy;
478 dummy = (TH1F*)gROOT->FindObject("etaVsCrysID"); delete dummy;
479 dummy = (TH1F*)gROOT->FindObject("normVsCrysID"); delete dummy;
480 dummy = (TH1F*)gROOT->FindObject("lowerLimitVsCrysID"); delete dummy;
481 dummy = (TH1F*)gROOT->FindObject("fitLimitVsCrysID"); delete dummy;
482 dummy = (TH1F*)gROOT->FindObject("StatusVsCrysID"); delete dummy;
483 dummy = (TH1F*)gROOT->FindObject("fitProbSame"); delete dummy;
484 dummy = (TH1F*)gROOT->FindObject("fracPeakUnc"); delete dummy;
485 dummy = (TH1F*)gROOT->FindObject("hStatus"); delete dummy;
486 dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrys"); delete dummy;
487 dummy = (TH1F*)gROOT->FindObject("CalibVsCrysID"); delete dummy;
488
489
492 if (storeConst == -1) {
493 B2RESULT("eclMuMuEAlgorithm performed fits but was not asked to store constants");
494 return c_Failure;
495 } else if (!DBsuccess) {
496 if (findExpValues) { B2RESULT("eclMuMuEAlgorithm: failed to store expected values"); }
497 else { B2RESULT("eclMuMuEAlgorithm: failed to store calibration constants"); }
498 return c_Failure;
499 }
500 return c_OK;
501}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
int poorFit
low chi square; fit not usable
int iterations
fit reached max number of iterations, but is usable
int noLowerEdge
could not determine lower edge of fit
int atLimit
a parameter is at the limit; fit not usable

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ atLimit

int atLimit = 4
private

a parameter is at the limit; fit not usable

Definition at line 55 of file eclMuMuEAlgorithm.h.

◆ cellIDHi

int cellIDHi

Last cellID to be fit.

Definition at line 33 of file eclMuMuEAlgorithm.h.

◆ cellIDLo

int cellIDLo

..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events

First cellID to be fit

Definition at line 32 of file eclMuMuEAlgorithm.h.

◆ findExpValues

bool findExpValues

if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant

Definition at line 40 of file eclMuMuEAlgorithm.h.

◆ fitOK

int fitOK = 16
private

fit is OK

Definition at line 52 of file eclMuMuEAlgorithm.h.

◆ iterations

int iterations = 8
private

fit reached max number of iterations, but is usable

Definition at line 53 of file eclMuMuEAlgorithm.h.

◆ lowerEdgeThresh

double lowerEdgeThresh

Lower edge is where the fit = lowerEdgeThresh * peak value.

Definition at line 38 of file eclMuMuEAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ minEntries

int minEntries

All crystals to be fit must have at least minEntries events in the fit range.

Definition at line 34 of file eclMuMuEAlgorithm.h.

◆ noLowerEdge

int noLowerEdge = 5
private

could not determine lower edge of fit

Definition at line 54 of file eclMuMuEAlgorithm.h.

◆ notFit

int notFit = -1
private

no fit performed

Definition at line 57 of file eclMuMuEAlgorithm.h.

◆ nToRebin

int nToRebin

If fewer entries than this, rebin and fix eta parameter.

Definition at line 35 of file eclMuMuEAlgorithm.h.

◆ performFits

bool performFits

if false, input histograms are copied to output, but no fits are done.

Definition at line 39 of file eclMuMuEAlgorithm.h.

◆ poorFit

int poorFit = 3
private

low chi square; fit not usable

Definition at line 56 of file eclMuMuEAlgorithm.h.

◆ storeConst

int storeConst

controls which values are written to the database.

0 (default): store value found by successful fits, or -|input value| otherwise; -1 : do not store values 1 : store values if every fit for [cellIDLo,cellIDHi] was successful

Definition at line 41 of file eclMuMuEAlgorithm.h.

◆ tRatioMax

double tRatioMax

entries/peak at high edge of fit must be greater than this

Definition at line 37 of file eclMuMuEAlgorithm.h.

◆ tRatioMin

double tRatioMin

entries/peak at low edge of fit must be greater than this

Definition at line 36 of file eclMuMuEAlgorithm.h.


The documentation for this class was generated from the following files: