Belle II Software development
eclTValidationAlgorithm Class Reference

Validate the ecl timing calibrations using a hadronic event selection. More...

#include <eclTValidationAlgorithm.h>

Inheritance diagram for eclTValidationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclTValidationAlgorithm ()
 ..Constructor
 
 eclTValidationAlgorithm (std::string physicsProcessCollectorName)
 ..Constructor - main one as it allows user to choose which collector data to analyse
 
 ~eclTValidationAlgorithm ()
 ..Destructor
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int cellIDLo
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
int cellIDHi
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
bool readPrevCrysPayload
 Read the previous crystal payload values for comparison.
 
double meanCleanRebinFactor
 Rebinning factor for mean calculation.
 
double meanCleanCutMinFactor
 After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value.
 
double clusterTimesFractionWindow_maxtime
 Maximum time for window to calculate cluster time fraction, in ns.
 
bool debugOutput
 Save every histogram and fitted function to debugFilename.
 
std::string debugFilenameBase
 Name of file with debug output, eclTValidationAlgorithm.root by default.
 

Protected Member Functions

EResult calibrate () override
 ..Run algorithm on events
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Validate the ecl timing calibrations using a hadronic event selection.

Definition at line 31 of file eclTValidationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclTValidationAlgorithm() [1/2]

..Constructor

Definition at line 43 of file eclTValidationAlgorithm.cc.

43 :
44 // Parameters
45 CalibrationAlgorithm("eclHadronTimeCalibrationValidationCollector"),
46 cellIDLo(1),
52 debugFilenameBase("eclTValidationAlgorithm")
53{
54 setDescription("Fit gaussian function to the cluster times to validate results.");
55}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
int cellIDHi
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
int cellIDLo
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
double meanCleanRebinFactor
Rebinning factor for mean calculation.
double clusterTimesFractionWindow_maxtime
Maximum time for window to calculate cluster time fraction, in ns.
double meanCleanCutMinFactor
After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the ma...
bool readPrevCrysPayload
Read the previous crystal payload values for comparison.
std::string debugFilenameBase
Name of file with debug output, eclTValidationAlgorithm.root by default.
const int c_NCrystals
Number of crystals.

◆ eclTValidationAlgorithm() [2/2]

eclTValidationAlgorithm ( std::string  physicsProcessCollectorName)
explicit

..Constructor - main one as it allows user to choose which collector data to analyse

Definition at line 64 of file eclTValidationAlgorithm.cc.

64 :
65 // Parameters
66 CalibrationAlgorithm(physicsProcessCollectorName.c_str()),
67 cellIDLo(1),
73 debugFilenameBase("eclTValidationAlgorithm")
74{
75 setDescription("Fit gaussian function to the cluster times to validate results.");
76}

◆ ~eclTValidationAlgorithm()

..Destructor

Definition at line 41 of file eclTValidationAlgorithm.h.

41{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events

Put root into batch mode so that we don't try to open a graphics window

Write out job parameters


Implements CalibrationAlgorithm.

Definition at line 81 of file eclTValidationAlgorithm.cc.

82{
84 gROOT->SetBatch();
85
86
88 B2INFO("eclTValidationAlgorithm parameters:");
89 B2INFO("cellIDLo = " << cellIDLo);
90 B2INFO("cellIDHi = " << cellIDHi);
91 B2INFO("readPrevCrysPayload = " << readPrevCrysPayload);
92 B2INFO("meanCleanRebinFactor = " << meanCleanRebinFactor);
93 B2INFO("meanCleanCutMinFactor = " << meanCleanCutMinFactor);
94 B2INFO("clusterTimesFractionWindow_maxtime = " << clusterTimesFractionWindow_maxtime);
95
96
97 /* Histogram with the data collected by eclTimeCalibrationValidationCollector*/
98 auto clusterTime = getObjectPtr<TH1F>("clusterTime");
99 auto clusterTime_cid = getObjectPtr<TH2F>("clusterTime_cid");
100 auto clusterTime_run = getObjectPtr<TH2F>("clusterTime_run");
101 auto clusterTimeClusterE = getObjectPtr<TH2F>("clusterTimeClusterE");
102 auto dt99_clusterE = getObjectPtr<TH2F>("dt99_clusterE");
103 auto eventT0 = getObjectPtr<TH1F>("eventT0");
104 auto clusterTimeE0E1diff = getObjectPtr<TH1F>("clusterTimeE0E1diff");
105
106 // Collect other plots just for reference - combines all the runs for these plots.
107 auto cutflow = getObjectPtr<TH1F>("cutflow");
108
109 vector <int> binProjectionLeft_Time_vs_E_runDep ;
110 vector <int> binProjectionRight_Time_vs_E_runDep ;
111
112 for (int binCounter = 1; binCounter <= clusterTimeClusterE->GetNbinsX(); binCounter++) {
113 binProjectionLeft_Time_vs_E_runDep.push_back(binCounter);
114 binProjectionRight_Time_vs_E_runDep.push_back(binCounter);
115 }
116
117 if (!clusterTime_cid) return c_Failure;
118
121 TFile* histfile = 0;
122
123 // Vector of time offsets to track how far from nominal the cluster times are.
124 vector<float> t_offsets(ECLElementNumbers::c_NCrystals, 0.0);
125 vector<float> t_offsets_unc(ECLElementNumbers::c_NCrystals, 0.0);
126 vector<long> numClusterPerCrys(ECLElementNumbers::c_NCrystals, 0);
127 vector<bool> crysHasGoodFitandStats(ECLElementNumbers::c_NCrystals, false);
128 vector<bool> crysHasGoodFit(ECLElementNumbers::c_NCrystals, false);
129 int numCrysWithNonZeroEntries = 0 ;
130 int numCrysWithGoodFit = 0 ;
131
132 int minNumEntries = 40;
133
134 double mean;
135 double sigma;
136
137
138 bool minRunNumBool = false;
139 bool maxRunNumBool = false;
140 int minRunNum = -1;
141 int maxRunNum = -1;
142 int minExpNum = -1;
143 int maxExpNum = -1;
144 for (auto expRun : getRunList()) {
145 int expNumber = expRun.first;
146 int runNumber = expRun.second;
147 if (!minRunNumBool) {
148 minExpNum = expNumber;
149 minRunNum = runNumber;
150 minRunNumBool = true;
151 }
152 if (!maxRunNumBool) {
153 maxExpNum = expNumber;
154 maxRunNum = runNumber;
155 maxRunNumBool = true;
156 }
157 if (((minRunNum > runNumber) && (minExpNum >= expNumber)) ||
158 (minExpNum > expNumber)) {
159 minExpNum = expNumber;
160 minRunNum = runNumber;
161 }
162 if (((maxRunNum < runNumber) && (maxExpNum <= expNumber)) ||
163 (maxExpNum < expNumber))
164
165 {
166 maxExpNum = expNumber;
167 maxRunNum = runNumber;
168 }
169 }
170
171 B2INFO("debugFilenameBase = " << debugFilenameBase);
172 string runNumsString = string("_") + to_string(minExpNum) + "_" + to_string(minRunNum) + string("-") +
173 to_string(maxExpNum) + "_" + to_string(maxRunNum);
174 string debugFilename = debugFilenameBase + runNumsString + string(".root");
175
176
177 // Need to load information about the event/run/experiment to get the right database information
178 // Will be used for:
179 // * ECLChannelMapper (to map crystal to crates)
180 // * crystal payload updating for iterating crystal and crate fits
181 int eventNumberForCrates = 1;
182
183
184 //-------------------------------------------------------------------
185 /* Uploading older payloads for the current set of runs */
186
188 // simulate the initialize() phase where we can register objects in the DataStore
190 evtPtr.registerInDataStore();
192 // now construct the event metadata
193 evtPtr.construct(eventNumberForCrates, minRunNum, minExpNum);
194 // and update the database contents
195 DBStore& dbstore = DBStore::Instance();
196 dbstore.update();
197 // this is only needed it the payload might be intra-run dependent,
198 // that is if it might change during one run as well
199 dbstore.updateEvent();
200
201
202 B2INFO("Uploading payload for exp " << minExpNum << ", run " << minRunNum << ", event " << eventNumberForCrates);
203 updateDBObjPtrs(eventNumberForCrates, minRunNum, minExpNum);
204 unique_ptr<ECLChannelMapper> crystalMapper(new ECL::ECLChannelMapper());
205 crystalMapper->initFromDB();
206
207 /* 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency.
208 Same for all crystals. */
209 const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
210
211 //------------------------------------------------------------------------
212 //..Read payloads from database
213 DBObjPtr<Belle2::ECLCrystalCalib> crystalTimeObject("ECLCrystalTimeOffset");
214 B2INFO("Dumping payload");
215
216 //..Get vectors of values from the payloads
217 std::vector<float> currentValuesCrys = crystalTimeObject->getCalibVector();
218 std::vector<float> currentUncCrys = crystalTimeObject->getCalibUncVector();
219
220 //..Print out a few values for quality control
221 B2INFO("Values read from database. Write out for their values for comparison against those from tcol");
222 for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
223 B2INFO("ts: cellID " << ic + 1 << " " << currentValuesCrys[ic] << " +/- " << currentUncCrys[ic]);
224 }
225
226
227 //..Read in the previous crystal payload values
228 DBObjPtr<Belle2::ECLCrystalCalib> customPrevCrystalTimeObject("ECLCrystalTimeOffsetPreviousValues");
229 vector<float> prevValuesCrys(ECLElementNumbers::c_NCrystals);
231 //..Get vectors of values from the payloads
232 prevValuesCrys = customPrevCrystalTimeObject->getCalibVector();
233
234 //..Print out a few values for quality control
235 B2INFO("Previous values read from database. Write out for their values for comparison against those from tcol");
236 for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
237 B2INFO("ts custom previous payload: cellID " << ic + 1 << " " << prevValuesCrys[ic]);
238 }
239 }
240
241
242 //------------------------------------------------------------------------
243 //..Start looking at timing information
244
245 B2INFO("Debug output rootfile: " << debugFilename);
246 histfile = new TFile(debugFilename.c_str(), "recreate");
247
248
249 clusterTime ->Write();
250 clusterTime_cid ->Write();
251 clusterTime_run ->Write();
252 clusterTimeClusterE ->Write();
253 dt99_clusterE ->Write();
254 eventT0 ->Write();
255 clusterTimeE0E1diff ->Write();
256
257 cutflow->Write();
258
259
260 double hist_tmin = clusterTime->GetXaxis()->GetXmin();
261 double hist_tmax = clusterTime->GetXaxis()->GetXmax();
262 int hist_nTbins = clusterTime->GetNbinsX();
263
264 B2INFO("hist_tmin = " << hist_tmin);
265 B2INFO("hist_tmax = " << hist_tmax);
266 B2INFO("hist_nTbins = " << hist_nTbins);
267
268 double time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
269 double time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
270
271
272 // define histogram for keeping track of the peak of the cluster times per crystal
273 auto peakClusterTime_cid = new TH1F("peakClusterTime_cid", ";cell id;Peak cluster time [ns]", ECLElementNumbers::c_NCrystals, 1,
275 auto peakClusterTimes = new TH1F("peakClusterTimes",
276 "-For crystals with at least one hit-;Peak cluster time [ns];Number of crystals",
277 hist_nTbins, hist_tmin, hist_tmax);
278 auto peakClusterTimesGoodFit = new TH1F("peakClusterTimesGoodFit",
279 "-For crystals with a good fit to distribution of hits-;Peak cluster time [ns];Number of crystals",
280 hist_nTbins, hist_tmin, hist_tmax);
281
282 auto peakClusterTimesGoodFit__cid = new TH1F("peakClusterTimesGoodFit__cid",
283 "-For crystals with a good fit to distribution of hits-;cell id (only crystals with good fit);Peak cluster time [ns]",
285
286
287 // define histograms to keep track of the difference in the new crystal times vs the old ones
288 auto tsNew_MINUS_tsCustomPrev__cid = new TH1F("TsNew_MINUS_TsCustomPrev__cid",
289 ";cell id; ts(new|merged) - ts(old = 'pre-calib'|merged) [ns]",
291
292 auto tsNew_MINUS_tsCustomPrev = new TH1F("TsNew_MINUS_TsCustomPrev",
293 ";ts(new | merged) - ts(old = 'pre-calib' | merged) [ns];Number of crystals",
294 285, -69.5801, 69.5801);
295
296
297
298 // Histogram to keep track of the fraction of cluster times within a window.
299 double timeWindow_maxTime = clusterTimesFractionWindow_maxtime;
300 B2INFO("timeWindow_maxTime = " << timeWindow_maxTime);
301 int binyLeft = clusterTime_cid->GetYaxis()->FindBin(-timeWindow_maxTime);
302 int binyRight = clusterTime_cid->GetYaxis()->FindBin(timeWindow_maxTime);
303 double windowLowTimeFromBin = clusterTime_cid->GetYaxis()->GetBinLowEdge(binyLeft);
304 double windowHighTimeFromBin = clusterTime_cid->GetYaxis()->GetBinLowEdge(binyRight + 1);
305 std::string s_lowTime = std::to_string(windowLowTimeFromBin);
306 std::string s_highTime = std::to_string(windowHighTimeFromBin);
307 TString fracWindowTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
308 "] ns;cell id;Fraction of cluster times in window";
309 B2INFO("fracWindowTitle = " << fracWindowTitle);
310 TString fracWindowInGoodECLRingsTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
311 "] ns and in good ECL theta rings;cell id;Fraction cluster times in window + good ECL rings";
312 B2INFO("fracWindowInGoodECLRingsTitle = " << fracWindowInGoodECLRingsTitle);
313 B2INFO("Good ECL rings skip gaps in the acceptance, and includes ECL theta IDs: 3-10, 15-39, 44-56, 61-66.");
314
315 TString fracWindowHistTitle = "Fraction of cluster times in window [" + s_lowTime + ", " + s_highTime +
316 "] ns;Fraction of cluster times in window;Number of crystals";
317
318 auto clusterTimeNumberInWindow__cid = new TH1F("clusterTimeNumberInWindow__cid", fracWindowTitle, ECLElementNumbers::c_NCrystals, 1,
320 auto clusterTimeNumberInWindowInGoodECLRings__cid = new TH1F("clusterTimeNumberInWindowInGoodECLRings__cid", fracWindowTitle,
323 auto clusterTimeNumber__cid = new TH1F("clusterTimeNumber_cid", fracWindowTitle, ECLElementNumbers::c_NCrystals, 1,
325 auto clusterTimeFractionInWindow = new TH1F("clusterTimeFractionInWindow", fracWindowHistTitle, 110, 0.0, 1.1);
326
327 clusterTimeNumberInWindow__cid->Sumw2();
328 clusterTimeNumberInWindowInGoodECLRings__cid->Sumw2();
329 clusterTimeNumber__cid->Sumw2();
330
331
332
333 /* CRYSTAL BY CRYSTAL VALIDATION */
334
336
337 // Loop over all the crystals for doing the crystal calibation
338 for (int crys_id = cellIDLo; crys_id <= cellIDHi; crys_id++) {
339 double clusterTime_mean = 0;
340 double clusterTime_mean_unc = 0;
341
342 B2INFO("Crystal cell id = " << crys_id);
343
344 eclgeo->Mapping(crys_id - 1);
345 int thetaID = eclgeo->GetThetaID();
346
347
348 /* Determining which bins to mask out for mean calculation
349 */
350
351 TH1D* h_time = clusterTime_cid->ProjectionY((std::string("h_time_psi__") + std::to_string(crys_id)).c_str(),
352 crys_id, crys_id);
353 TH1D* h_timeMask = (TH1D*)h_time->Clone();
354 TH1D* h_timeMasked = (TH1D*)h_time->Clone((std::string("h_time_psi_masked__") + std::to_string(crys_id)).c_str());
355 TH1D* h_timeRebin = (TH1D*)h_time->Clone();
356
357 // Do rebinning and cleaning of some bins but only if the user selection values call for it since it slows the code down
359
360 h_timeRebin->Rebin(meanCleanRebinFactor);
361
362 h_timeMask->Scale(0.0); // set all bins to being masked off
363
364 time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
365 time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
366
367 // Find value of bin with max value
368 double histRebin_max = h_timeRebin->GetMaximum();
369
370 bool maskedOutNonZeroBin = false;
371 // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
372 for (int bin = 1; bin <= h_timeRebin->GetNbinsX(); bin++) {
373 for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
374 int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
375 if (nonRebinnedBinNumber < h_time->GetNbinsX()) {
376 if (h_timeRebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
377 h_timeMask->SetBinContent(nonRebinnedBinNumber, 1);
378
379 // Save the lower and upper edges of the rebin histogram time range for fitting purposes
380 double x_lower = h_timeRebin->GetXaxis()->GetBinLowEdge(bin);
381 double x_upper = h_timeRebin->GetXaxis()->GetBinUpEdge(bin);
382 if (x_lower < time_fit_min) {
383 time_fit_min = x_lower;
384 }
385 if (x_upper > time_fit_max) {
386 time_fit_max = x_upper;
387 }
388
389 } else {
390 if (h_time->GetBinContent(nonRebinnedBinNumber) > 0) {
391 B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_timeMasked->GetBinContent(nonRebinnedBinNumber) << " to 0");
392 maskedOutNonZeroBin = true;
393 }
394 h_timeMasked->SetBinContent(nonRebinnedBinNumber, 0);
395 }
396 }
397 }
398 }
399 B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
400 h_timeMasked->ResetStats();
401 h_timeMask->ResetStats();
402
403 }
404
405 // Calculate mean from masked histogram
406 double default_meanMasked = h_timeMasked->GetMean();
407 //double default_meanMasked_unc = h_timeMasked->GetMeanError();
408 B2INFO("default_meanMasked = " << default_meanMasked);
409
410
411 // Get the overall mean and standard deviation of the distribution within the plot. This doesn't require a fit.
412 double default_mean = h_time->GetMean();
413 double default_mean_unc = h_time->GetMeanError();
414 double default_sigma = h_time->GetStdDev();
415
416 B2INFO("Fitting crystal between " << time_fit_min << " and " << time_fit_max);
417
418 // gaus(0) is a substitute for [0]*exp(-0.5*((x-[1])/[2])**2)
419 TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
420 gaus->SetParNames("numCrystalHitsNormalization", "mean", "sigma");
421 /*
422 gaus->ReleaseParameter(0); // number of crystals
423 gaus->ReleaseParameter(1); // mean
424 gaus->ReleaseParameter(2); // standard deviation
425 */
426
427 double hist_max = h_time->GetMaximum();
428
429 //=== Estimate initial value of sigma as std dev.
430 double stddev = h_time->GetStdDev();
431 sigma = stddev;
432 mean = default_mean;
433
434 //=== Setting parameters for initial iteration
435 gaus->SetParameter(0, hist_max / 2.);
436 gaus->SetParameter(1, mean);
437 gaus->SetParameter(2, sigma);
438 // L -- Use log likelihood method
439 // I -- Use integral of function in bin instead of value at bin center // not using
440 // R -- Use the range specified in the function range
441 // B -- Fix one or more parameters with predefined function // not using
442 // Q -- Quiet mode
443
444 h_timeMasked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
445
446 double fit_mean = gaus->GetParameter(1);
447 double fit_mean_unc = gaus->GetParError(1);
448 double fit_sigma = gaus->GetParameter(2);
449
450 double meanDiff = fit_mean - default_mean;
451 double meanUncDiff = fit_mean_unc - default_mean_unc;
452 double sigmaDiff = fit_sigma - default_sigma;
453
454 bool good_fit = false;
455
456 if ((fabs(meanDiff) > 10) ||
457 (fabs(meanUncDiff) > 10) ||
458 (fabs(sigmaDiff) > 10) ||
459 (fit_mean_unc > 3) ||
460 (fit_sigma < 0.1) ||
461 (fit_mean < time_fit_min) ||
462 (fit_mean > time_fit_max)) {
463 B2INFO("Crystal cell id = " << crys_id);
464 B2INFO("fit mean, default mean = " << fit_mean << ", " << default_mean);
465 B2INFO("fit mean unc, default mean unc = " << fit_mean_unc << ", " << default_mean_unc);
466 B2INFO("fit sigma, default sigma = " << fit_sigma << ", " << default_sigma);
467
468 B2INFO("crystal fit mean - hist mean = " << meanDiff);
469 B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
470 B2INFO("fit sigma - hist sigma = " << sigmaDiff);
471
472 B2INFO("fit_mean = " << fit_mean);
473 B2INFO("time_fit_min = " << time_fit_min);
474 B2INFO("time_fit_max = " << time_fit_max);
475
476 if (fabs(meanDiff) > 10) B2INFO("fit mean diff too large");
477 if (fabs(meanUncDiff) > 10) B2INFO("fit mean unc diff too large");
478 if (fabs(sigmaDiff) > 10) B2INFO("fit mean sigma diff too large");
479 if (fit_mean_unc > 3) B2INFO("fit mean unc too large");
480 if (fit_sigma < 0.1) B2INFO("fit sigma too small");
481
482 } else {
483 good_fit = true;
484 numCrysWithGoodFit++;
485 crysHasGoodFit[crys_id - 1] = true ;
486 }
487
488
489 int numEntries = h_time->GetEntries();
490 // If number of entries in histogram is greater than X then use the statistical information from the data otherwise leave crystal uncalibrated. Histograms are still shown though.
491 // ALSO require the that fits are good.
492 if ((numEntries >= minNumEntries) && good_fit) {
493 clusterTime_mean = fit_mean;
494 clusterTime_mean_unc = fit_mean_unc;
495 crysHasGoodFitandStats[crys_id - 1] = true ;
496 } else {
497 clusterTime_mean = default_mean;
498 clusterTime_mean_unc = default_mean_unc;
499 }
500
501 if (numEntries < minNumEntries) B2INFO("Number of entries less than minimum");
502 if (numEntries == 0) B2INFO("Number of entries == 0");
503
504
505 t_offsets[crys_id - 1] = clusterTime_mean ;
506 t_offsets_unc[crys_id - 1] = clusterTime_mean_unc ;
507 numClusterPerCrys[crys_id - 1] = numEntries ;
508
509 histfile->WriteTObject(h_time, (std::string("h_time_psi") + std::to_string(crys_id)).c_str());
510 histfile->WriteTObject(h_timeMasked, (std::string("h_time_psi_masked") + std::to_string(crys_id)).c_str());
511
512 // Set this for each crystal even if there are zero entries
513 peakClusterTime_cid->SetBinContent(crys_id, t_offsets[crys_id - 1]);
514 peakClusterTime_cid->SetBinError(crys_id, t_offsets_unc[crys_id - 1]);
515
516 /* Store mean cluster time info in a separate histogram but only if there is at
517 least one entry for that crystal. */
518 if (numEntries > 0) {
519 peakClusterTimes->Fill(t_offsets[crys_id - 1]);
520 numCrysWithNonZeroEntries++ ;
521 }
522 if ((numEntries >= minNumEntries) && good_fit) {
523 peakClusterTimesGoodFit->Fill(t_offsets[crys_id - 1]);
524 peakClusterTimesGoodFit__cid->SetBinContent(crys_id, t_offsets[crys_id - 1]);
525 peakClusterTimesGoodFit__cid->SetBinError(crys_id, t_offsets_unc[crys_id - 1]);
526 }
527
528
529 // Find the fraction of cluster times within +-X ns and fill histograms
530 double numClusterTimesWithinWindowFraction = h_time->Integral(binyLeft, binyRight) ;
531 double clusterTimesWithinWindowFraction = numClusterTimesWithinWindowFraction;
532 if (numEntries > 0) {
533 clusterTimesWithinWindowFraction /= numEntries;
534 } else {
535 clusterTimesWithinWindowFraction = -0.1;
536 }
537
538 B2INFO("Crystal cell id = " << crys_id << ", theta id = " <<
539 thetaID << ", clusterTimesWithinWindowFraction = " <<
540 numClusterTimesWithinWindowFraction << " / " << numEntries << " = " <<
541 clusterTimesWithinWindowFraction);
542
543 clusterTimeFractionInWindow->Fill(clusterTimesWithinWindowFraction);
544 clusterTimeNumberInWindow__cid->SetBinContent(crys_id, numClusterTimesWithinWindowFraction);
545 clusterTimeNumber__cid->SetBinContent(crys_id, numEntries);
546
547 if ((thetaID >= 3 && thetaID <= 10) ||
548 (thetaID >= 15 && thetaID <= 39) ||
549 (thetaID >= 44 && thetaID <= 56) ||
550 (thetaID >= 61 && thetaID <= 66)) {
551 clusterTimeNumberInWindowInGoodECLRings__cid->SetBinContent(crys_id, numClusterTimesWithinWindowFraction);
552 }
553
554
555 delete gaus;
556 }
557
558 // Find the fraction of cluster times within +-X ns and fill histogram
559 auto g_clusterTimeFractionInWindow__cid = new TGraphAsymmErrors(clusterTimeNumberInWindow__cid, clusterTimeNumber__cid, "w");
560 auto g_clusterTimeFractionInWindowInGoodECLRings__cid = new TGraphAsymmErrors(clusterTimeNumberInWindowInGoodECLRings__cid,
561 clusterTimeNumber__cid, "w");
562 g_clusterTimeFractionInWindow__cid->SetTitle(fracWindowTitle);
563 g_clusterTimeFractionInWindowInGoodECLRings__cid->SetTitle(fracWindowInGoodECLRingsTitle);
564
565
566 peakClusterTime_cid->ResetStats();
567 peakClusterTimesGoodFit__cid->ResetStats();
568
569 histfile->WriteTObject(peakClusterTime_cid, "peakClusterTime_cid");
570 histfile->WriteTObject(peakClusterTimes, "peakClusterTimes");
571 histfile->WriteTObject(peakClusterTimesGoodFit__cid, "peakClusterTimesGoodFit__cid");
572 histfile->WriteTObject(peakClusterTimesGoodFit, "peakClusterTimesGoodFit");
573 histfile->WriteTObject(g_clusterTimeFractionInWindow__cid, "g_clusterTimeFractionInWindow__cid");
574 histfile->WriteTObject(g_clusterTimeFractionInWindowInGoodECLRings__cid, "g_clusterTimeFractionInWindowInGoodECLRings__cid");
575 histfile->WriteTObject(clusterTimeFractionInWindow, "clusterTimeFractionInWindow");
576
577
578
579 /* -----------------------------------------------------------
580 Fit the time histograms for different energy slices */
581
582 vector <int> binProjectionLeft = binProjectionLeft_Time_vs_E_runDep;
583 vector <int> binProjectionRight = binProjectionRight_Time_vs_E_runDep;
584
585 auto h2 = clusterTimeClusterE;
586
587
588 double max_E = h2->GetXaxis()->GetXmax();
589
590 // Determine the energy bins. Save the left edge for histogram purposes
591 vector <double> E_binEdges(binProjectionLeft.size() + 1);
592 for (long unsigned int x_bin = 0; x_bin < binProjectionLeft.size(); x_bin++) {
593 TH1D* h_E_t_slice = h2->ProjectionX("h_E_t_slice", 1, 1) ;
594 E_binEdges[x_bin] = h_E_t_slice->GetXaxis()->GetBinLowEdge(binProjectionLeft[x_bin]) ;
595 B2INFO("E_binEdges[" << x_bin << "] = " << E_binEdges[x_bin]);
596 if (x_bin == binProjectionLeft.size() - 1) {
597 E_binEdges[x_bin + 1] = max_E ;
598 B2INFO("E_binEdges[" << x_bin + 1 << "] = " << E_binEdges[x_bin + 1]);
599 }
600 }
601
602
603 auto clusterTimePeak_ClusterEnergy_varBin = new TH1F("clusterTimePeak_ClusterEnergy_varBin",
604 ";ECL cluster energy [GeV];Cluster time fit position [ns]", E_binEdges.size() - 1, &(E_binEdges[0]));
605 auto clusterTimePeakWidth_ClusterEnergy_varBin = new TH1F("clusterTimePeakWidth_ClusterEnergy_varBin",
606 ";ECL cluster energy [GeV];Cluster time fit width [ns]", E_binEdges.size() - 1, &(E_binEdges[0]));
607
608 int Ebin_counter = 1 ;
609
610 // Loop over all the energy bins
611 for (long unsigned int x_bin = 0; x_bin < binProjectionLeft.size(); x_bin++) {
612 double clusterTime_mean = 0;
613 double clusterTime_mean_unc = 0;
614 double clusterTime_sigma = 0;
615
616 B2INFO("x_bin = " << x_bin);
617
618 /* Determining which bins to mask out for mean calculation
619 */
620 TH1D* h_time = h2->ProjectionY(("h_time_E_slice_" + std::to_string(x_bin)).c_str(), binProjectionLeft[x_bin],
621 binProjectionRight[x_bin]) ;
622
623
624 TH1D* h_E_t_slice = h2->ProjectionX("h_E_t_slice", 1, 1) ;
625 double lowE = h_E_t_slice->GetXaxis()->GetBinLowEdge(binProjectionLeft[x_bin]) ;
626 double highE = h_E_t_slice->GetXaxis()->GetBinUpEdge(binProjectionRight[x_bin]) ;
627 double meanE = (lowE + highE) / 2.0 ;
628
629 B2INFO("bin " << Ebin_counter << ": low E = " << lowE << ", high E = " << highE << " GeV");
630
631 TH1D* h_timeMask = (TH1D*)h_time->Clone();
632 TH1D* h_timeMasked = (TH1D*)h_time->Clone((std::string("h_time_E_slice_masked__") + std::to_string(meanE)).c_str());
633 TH1D* h_timeRebin = (TH1D*)h_time->Clone();
634
635
637
638 h_timeRebin->Rebin(meanCleanRebinFactor);
639
640 h_timeMask->Scale(0.0); // set all bins to being masked off
641
642 time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
643 time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
644
645 // Find value of bin with max value
646 double histRebin_max = h_timeRebin->GetMaximum();
647
648 bool maskedOutNonZeroBin = false;
649 // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
650 for (int bin = 1; bin <= h_timeRebin->GetNbinsX(); bin++) {
651 for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
652 int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
653 if (nonRebinnedBinNumber < h_time->GetNbinsX()) {
654 if (h_timeRebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
655 h_timeMask->SetBinContent(nonRebinnedBinNumber, 1);
656
657 // Save the lower and upper edges of the rebin histogram time range for fitting purposes
658 double x_lower = h_timeRebin->GetXaxis()->GetBinLowEdge(bin);
659 double x_upper = h_timeRebin->GetXaxis()->GetBinUpEdge(bin);
660 if (x_lower < time_fit_min) {
661 time_fit_min = x_lower;
662 }
663 if (x_upper > time_fit_max) {
664 time_fit_max = x_upper;
665 }
666
667 } else {
668 if (h_time->GetBinContent(nonRebinnedBinNumber) > 0) {
669 B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_timeMasked->GetBinContent(nonRebinnedBinNumber) << " to 0");
670 maskedOutNonZeroBin = true;
671 }
672 h_timeMasked->SetBinContent(nonRebinnedBinNumber, 0);
673 }
674 }
675 }
676 }
677 B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
678 h_timeMasked->ResetStats();
679 h_timeMask->ResetStats();
680
681 }
682
683
684 // Calculate mean from masked histogram
685 double default_meanMasked = h_timeMasked->GetMean();
686 //double default_meanMasked_unc = h_timeMasked->GetMeanError();
687 B2INFO("default_meanMasked = " << default_meanMasked);
688
689
690 // Get the overall mean and standard deviation of the distribution within the plot. This doesn't require a fit.
691 double default_mean = h_time->GetMean();
692 double default_mean_unc = h_time->GetMeanError();
693 double default_sigma = h_time->GetStdDev();
694
695 B2INFO("Fitting crystal between " << time_fit_min << " and " << time_fit_max);
696
697 // gaus(0) is a substitute for [0]*exp(-0.5*((x-[1])/[2])**2)
698 TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
699 gaus->SetParNames("numCrystalHitsNormalization", "mean", "sigma");
700 /*
701 gaus->ReleaseParameter(0); // number of crystals
702 gaus->ReleaseParameter(1); // mean
703 gaus->ReleaseParameter(2); // standard deviation
704 */
705
706 double hist_max = h_time->GetMaximum();
707
708 //=== Estimate initial value of sigma as std dev.
709 double stddev = h_time->GetStdDev();
710 sigma = stddev;
711 mean = default_mean;
712
713 //=== Setting parameters for initial iteration
714 gaus->SetParameter(0, hist_max / 2.);
715 gaus->SetParameter(1, mean);
716 gaus->SetParameter(2, sigma);
717 // L -- Use log likelihood method
718 // I -- Use integral of function in bin instead of value at bin center // not using
719 // R -- Use the range specified in the function range
720 // B -- Fix one or more parameters with predefined function // not using
721 // Q -- Quiet mode
722
723 h_timeMasked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
724
725 double fit_mean = gaus->GetParameter(1);
726 double fit_mean_unc = gaus->GetParError(1);
727 double fit_sigma = gaus->GetParameter(2);
728
729 double meanDiff = fit_mean - default_mean;
730 double meanUncDiff = fit_mean_unc - default_mean_unc;
731 double sigmaDiff = fit_sigma - default_sigma;
732
733 bool good_fit = false;
734
735 if ((fabs(meanDiff) > 10) ||
736 (fabs(meanUncDiff) > 10) ||
737 (fabs(sigmaDiff) > 10) ||
738 (fit_mean_unc > 3) ||
739 (fit_sigma < 0.1) ||
740 (fit_mean < time_fit_min) ||
741 (fit_mean > time_fit_max)) {
742 B2INFO("x_bin = " << x_bin);
743 B2INFO("fit mean, default mean = " << fit_mean << ", " << default_mean);
744 B2INFO("fit mean unc, default mean unc = " << fit_mean_unc << ", " << default_mean_unc);
745 B2INFO("fit sigma, default sigma = " << fit_sigma << ", " << default_sigma);
746
747 B2INFO("crystal fit mean - hist mean = " << meanDiff);
748 B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
749 B2INFO("fit sigma - hist sigma = " << sigmaDiff);
750
751 B2INFO("fit_mean = " << fit_mean);
752 B2INFO("time_fit_min = " << time_fit_min);
753 B2INFO("time_fit_max = " << time_fit_max);
754
755 if (fabs(meanDiff) > 10) B2INFO("fit mean diff too large");
756 if (fabs(meanUncDiff) > 10) B2INFO("fit mean unc diff too large");
757 if (fabs(sigmaDiff) > 10) B2INFO("fit mean sigma diff too large");
758 if (fit_mean_unc > 3) B2INFO("fit mean unc too large");
759 if (fit_sigma < 0.1) B2INFO("fit sigma too small");
760
761 } else {
762 good_fit = true;
763 }
764
765
766 int numEntries = h_time->GetEntries();
767 /* If number of entries in histogram is greater than X then use the statistical information
768 from the data otherwise leave crystal uncalibrated. Histograms are still shown though.
769 ALSO require the that fits are good. */
770 if ((numEntries >= minNumEntries) && good_fit) {
771 clusterTime_mean = fit_mean;
772 clusterTime_mean_unc = fit_mean_unc;
773 clusterTime_sigma = fit_sigma;
774 } else {
775 clusterTime_mean = default_mean;
776 clusterTime_mean_unc = default_mean_unc;
777 clusterTime_sigma = default_sigma;
778 }
779
780 if (numEntries < minNumEntries) B2INFO("Number of entries less than minimum");
781 if (numEntries == 0) B2INFO("Number of entries == 0");
782
783 histfile->WriteTObject(h_time, (std::string("h_time_E_slice") + std::to_string(meanE)).c_str());
784 histfile->WriteTObject(h_timeMasked, (std::string("h_time_E_slice_masked") + std::to_string(meanE)).c_str());
785
786 // store mean cluster time info in a separate histogram
787 clusterTimePeak_ClusterEnergy_varBin->SetBinContent(Ebin_counter, clusterTime_mean);
788 clusterTimePeak_ClusterEnergy_varBin->SetBinError(Ebin_counter, clusterTime_mean_unc);
789
790 clusterTimePeakWidth_ClusterEnergy_varBin->SetBinContent(Ebin_counter, clusterTime_sigma);
791 clusterTimePeakWidth_ClusterEnergy_varBin->SetBinError(Ebin_counter, 0);
792
793 Ebin_counter++;
794
795 delete gaus;
796 }
797
798
799
800 /***************************************************************************
801 For the user, print out some information about the peak cluster times.
802 It is sorted by the absolute value of the peak cluster time so that the
803 worst times are at the end.
804 ***************************************************************************/
805
806 // Vector to store element with respective present index
807 vector< pair<double, int> > fitClusterTime__crystalIDBase0__pairs;
808
809 // Prepare a vector of pairs containing the fitted cluster time and cell ID (base 0)
810 for (int cid = 0; cid < ECLElementNumbers::c_NCrystals; cid++) {
811 fitClusterTime__crystalIDBase0__pairs.push_back(make_pair(0.0, cid));
812 }
813
814 // Inserting element in pair vector to keep track of crystal id.
815 for (int crys_id = cellIDLo; crys_id <= cellIDHi; crys_id++) {
816 fitClusterTime__crystalIDBase0__pairs[crys_id - 1] = make_pair(fabs(t_offsets[crys_id - 1]), crys_id - 1) ;
817 }
818
819 // Sorting by the absolute value of the fitted cluster time for the crystal
820 sort(fitClusterTime__crystalIDBase0__pairs.begin(), fitClusterTime__crystalIDBase0__pairs.end());
821
822
823 // Print out the fitted peak cluster time values sorted by their absolute value
824 B2INFO("-------- List of the (fitted) peak cluster times sorted by their absolute value ----------");
825 B2INFO("------------------------------------------------------------------------------------------");
826 B2INFO("------------------------------------------------------------------------------------------");
827 B2INFO("Quoted # of clusters is before the cutting off of the distribution tails, cellID=1..ECLElementNumbers::c_NCrystals, crysID=0..8735");
828
829 bool hasHitThresholdBadTimes = false ;
830 for (int iSortedTimes = 0; iSortedTimes < ECLElementNumbers::c_NCrystals; iSortedTimes++) {
831 int cid = fitClusterTime__crystalIDBase0__pairs[iSortedTimes].second ;
832 if (!hasHitThresholdBadTimes && fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first > 2) {
833 B2INFO("======== |t_fit| > Xns threshold ======");
834 hasHitThresholdBadTimes = true;
835 }
836 //B2INFO("crystal ID = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << ", # clusters = " << numClusterPerCrys[cid] << ", fabs(t) = " << fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first );
837 B2INFO("cid = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << " ns, # clust = " <<
838 numClusterPerCrys[cid] << ", good fit = " << crysHasGoodFit[cid] << ", good fit & stats = " << crysHasGoodFitandStats[cid]);
839 }
840
841
842
843
844
845 // Print out just a subset that definitely don't look good even though they have good stats.
846 B2INFO("######## List of poor (fitted) peak cluster times sorted by their absolute value #########");
847 B2INFO("##########################################################################################");
848 B2INFO("##########################################################################################");
849
850 for (int iSortedTimes = 0; iSortedTimes < ECLElementNumbers::c_NCrystals; iSortedTimes++) {
851 int cid = fitClusterTime__crystalIDBase0__pairs[iSortedTimes].second ;
852 if (fitClusterTime__crystalIDBase0__pairs[iSortedTimes].first > 2 && crysHasGoodFitandStats[cid]) {
853 B2INFO("WARNING: cid = " << cid << ", peak clust t = " << t_offsets[cid] << " +- " << t_offsets_unc[cid] << " ns, # clust = " <<
854 numClusterPerCrys[cid] << ", good fit = " << crysHasGoodFit[cid] << ", good fit & stats = " << crysHasGoodFitandStats[cid]);
855 }
856 }
857
858
859 B2INFO("~~~~~~~~");
860 B2INFO("Number of crystals with non-zero number of hits = " << numCrysWithNonZeroEntries);
861 B2INFO("Number of crystals with good quality fits = " << numCrysWithGoodFit);
862
863
864 clusterTimePeak_ClusterEnergy_varBin->ResetStats();
865 clusterTimePeakWidth_ClusterEnergy_varBin->ResetStats();
866
867 histfile->WriteTObject(clusterTimePeak_ClusterEnergy_varBin, "clusterTimePeak_ClusterEnergy_varBin");
868 histfile->WriteTObject(clusterTimePeakWidth_ClusterEnergy_varBin, "clusterTimePeakWidth_ClusterEnergy_varBin");
869
870
871
872 /* Fill histograms with the difference in the ts values from this iteration
873 and the previous values read in from the payload. */
874 B2INFO("Filling histograms for difference in crystal payload values and the pre-calibration values. These older values may be from a previous bucket or older reprocessing of the data.");
875 for (int crys_id = 1; crys_id <= ECLElementNumbers::c_NCrystals; crys_id++) {
876 double tsDiffCustomOld_ns = -999;
878 tsDiffCustomOld_ns = (currentValuesCrys[crys_id - 1] - prevValuesCrys[crys_id - 1]) * TICKS_TO_NS;
879 B2INFO("Crystal " << crys_id << ": ts new merged - 'before 1st iter' merged = (" <<
880 currentValuesCrys[crys_id - 1] << " - " << prevValuesCrys[crys_id - 1] <<
881 ") ticks * " << TICKS_TO_NS << " ns/tick = " << tsDiffCustomOld_ns << " ns");
882
883 }
884 tsNew_MINUS_tsCustomPrev__cid->SetBinContent(crys_id, tsDiffCustomOld_ns);
885 tsNew_MINUS_tsCustomPrev__cid->SetBinError(crys_id, 0);
886 tsNew_MINUS_tsCustomPrev__cid->ResetStats();
887
888 tsNew_MINUS_tsCustomPrev->Fill(tsDiffCustomOld_ns);
889 tsNew_MINUS_tsCustomPrev->ResetStats();
890 }
891
892 histfile->WriteTObject(tsNew_MINUS_tsCustomPrev__cid, "tsNew_MINUS_tsCustomPrev__cid");
893 histfile->WriteTObject(tsNew_MINUS_tsCustomPrev, "tsNew_MINUS_tsCustomPrev");
894
895
896 histfile->Close();
897
898 B2INFO("Finished validations algorithm");
899 return c_OK;
900}
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
Singleton class to cache database objects.
Definition: DBStore.h:31
static DataStore & Instance()
Instance of singleton Store.
Definition: DataStore.cc:54
void setInitializeActive(bool active)
Setter for m_initializeActive.
Definition: DataStore.cc:94
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
void Mapping(int cid)
Mapping theta, phi Id.
int GetThetaID()
Get Theta Id.
static double getRF()
See m_rf.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool construct(Args &&... params)
Construct an object of type T in this StoreObjPtr, using the provided constructor arguments.
Definition: StoreObjPtr.h:119
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33

Member Data Documentation

◆ cellIDHi

int cellIDHi

Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].

Definition at line 46 of file eclTValidationAlgorithm.h.

◆ cellIDLo

int cellIDLo

Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].

Definition at line 45 of file eclTValidationAlgorithm.h.

◆ clusterTimesFractionWindow_maxtime

double clusterTimesFractionWindow_maxtime

Maximum time for window to calculate cluster time fraction, in ns.

Definition at line 52 of file eclTValidationAlgorithm.h.

◆ debugFilenameBase

std::string debugFilenameBase

Name of file with debug output, eclTValidationAlgorithm.root by default.

Definition at line 56 of file eclTValidationAlgorithm.h.

◆ debugOutput

bool debugOutput

Save every histogram and fitted function to debugFilename.

Definition at line 54 of file eclTValidationAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ meanCleanCutMinFactor

double meanCleanCutMinFactor

After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value.

Expand mask and apply to non-rebinned histogram.

Definition at line 49 of file eclTValidationAlgorithm.h.

◆ meanCleanRebinFactor

double meanCleanRebinFactor

Rebinning factor for mean calculation.

Definition at line 48 of file eclTValidationAlgorithm.h.

◆ readPrevCrysPayload

bool readPrevCrysPayload

Read the previous crystal payload values for comparison.

Definition at line 47 of file eclTValidationAlgorithm.h.


The documentation for this class was generated from the following files: