Belle II Software development
eclWaveformTemplateCalibrationC2Algorithm Class Reference

Calibrate ecl crystals using gamma pair events. More...

#include <eclWaveformTemplateCalibrationC2Algorithm.h>

Inheritance diagram for eclWaveformTemplateCalibrationC2Algorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclWaveformTemplateCalibrationC2Algorithm ()
 ..Constructor
 
virtual ~eclWaveformTemplateCalibrationC2Algorithm ()
 ..Destructor
 
void setOutputName (const std::string &outputName)
 Setter for m_outputName.
 
std::string getOutputName ()
 Getter for m_outputName.
 
void setFirstCellID (int firstCellID)
 Setter for m_firstCellID.
 
void setLastCellID (int lastCellID)
 Getter for m_firstCellID.
 
void setAttemptLimit (int AttemptLimit)
 Setter for m_AttemptLimit.
 
void setParamLimitFactor (int ParamLimitFactor)
 Setter for m_ParamLimitFactor.
 
void setCollectorLimit (int CollectorLimit)
 Setter for m_CollectorLimit.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 ..Run algorithm on events
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::string m_outputName = "eclWaveformTemplateCalibrationC2Algorithm.root"
 file name for histogram output
 
int m_firstCellID
 First crystal to calibrate.
 
int m_lastCellID
 Last crystal to calibrate.
 
int m_CollectorLimit = 6
 max number of waveforms to simultaneously fit
 
double m_ParamLimitFactor = 0.25
 Factor to determine parameter limits in fit.
 
int m_AttemptLimit = 10
 Number of attempts before increasing parameter limits or resLimt.
 
const int m_NumberofADCPoints = 31
 Number of adc points in waveform.
 
const int m_SimutaniousFitLimit = 3
 Min number waveforms required for simultaneous fit.
 
const int m_TotalCountsThreshold = 3
 Min number waveforms required per crystal.
 
double m_ParLimitFactorIterator = 0.5
 Amount to increase m_ParamLimitFactor.
 
double m_ParLimitFactorLimit = 2.1
 Max limit to increase m_ParamLimitFactor.
 
double m_ResLimitIterator = 1.5
 Factor to increase resLimit.
 
const double m_BaseParamLimitFactor = 0.25
 Reset value of m_ParamLimitFactor.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Calibrate ecl crystals using gamma pair events.

Definition at line 22 of file eclWaveformTemplateCalibrationC2Algorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclWaveformTemplateCalibrationC2Algorithm()

..Constructor


Definition at line 36 of file eclWaveformTemplateCalibrationC2Algorithm.cc.

36 :
37 CalibrationAlgorithm("eclWaveformTemplateCalibrationC2Collector")
38{
40 "Perform the photon template shape calibration using waveforms from high energy crystals from e+e- --> gamma gamma events"
41 );
42
43}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~eclWaveformTemplateCalibrationC2Algorithm()

virtual ~eclWaveformTemplateCalibrationC2Algorithm ( )
inlinevirtual

..Destructor

Definition at line 29 of file eclWaveformTemplateCalibrationC2Algorithm.h.

29{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events

Put root into batch mode so that we don't try to open a graphics window

File to save waveform information, mainly for debugging

File to save arrays of photon templates, once determined. Needed in for C3 algorithm to follow

Initializing tree to read collector information

Count number of fit attempts

DBobject to store photon shape parameters computed by this algorithm

ParMin11t defined below represents typical fit parameters for barrel and endcaps. Note these are only used as the initial guess for the fit.

Computing photon templates for CellID range specified (recommend batches of 100)

Typical parameters used for initial guess in fit. Note endcaps and barrel have different shapes

Maximum Data/Fit value to classify fit as successful

Waveforms from collector to skip (likely to have pile-up noise outside baseline region)

Initializing max data/Fit value. Must reach below resLimit for fit to be successful

While PASS == false, resLimit has not been reached for the particular cellID

Array of multiple waveforms to simultaneously fit

Initial guesses for variables unique to each waveform (unlike template parameters)

Saving how many waveforms passed collector cuts for each crystal

skipping waveforms identified later in the calibration to potentially have pile-up noise outside baseline

guess arrays have one enrgy per waveform

rough estimate where t0 should occur

waveforms to fit have been extracted from ttree

in this case crystal does not have enough stat. Allow to proceed by clearing skip array and doubling resLimit

TGraph to fit

preparing the fit function

Fit function is an array of photon templates

fitf defined in namespace above calls FitFunctions[i]

Initializing parameters for TotalFitFunction

Performing the simultaneous fit

next checking fit result by computing maximum value of Data/Fit

computing maximum value of Data/Fit

In next attempt skip waveform containing largest Data/Fit value

Ensure at least 3 waveforms used in simultaneous fit

If fit is not successful after several attempts, parameter limits are increased.

resetting for next round of fits with larger parameter limits

If fit is still not successful after several increases to the parameter limits, then resLimit is relaxed.

resetting for next crystal

Saving value of maximum data/Fit

Saving fit result

Extracting result for photon template shape parameters

Defining a single normalized function with final parameters

Computing normalization parameter

Saving result for photon template shape parameters to db object

Saving photon shape to tree to be used in next stage of calibration (C3)

Template parameters now computed for input cellID range

Storing dbobject. Will be accessed in merging stage (C4).

Implements CalibrationAlgorithm.

Definition at line 73 of file eclWaveformTemplateCalibrationC2Algorithm.cc.

74{
75
76 B2INFO("Reading ECLCrystalCalib payload: eclWaveformTemplateCalibrationC1MaxResLimit");
77 DBObjPtr<ECLCrystalCalib> existingeclWaveformTemplateCalibrationC1MaxResLimit("eclWaveformTemplateCalibrationC1MaxResLimit");
78 auto runs = getRunList();
79 ExpRun chosenRun = runs.front();
80 // After here your DBObjPtrs are correct
81 updateDBObjPtrs(1, chosenRun.second, chosenRun.first);
82
84 gROOT->SetBatch();
85
86 std::vector<double> cellIDArray;
87 std::vector<double> maxResidualArray; // used to quantify fit result
88 std::vector<double> limitResidualArray; // what was final resLimit used
89 std::vector<double> parLimitFactorArray; // what was final parLimitFactorArray used
90
92 TFile* histfile = new TFile(m_outputName.c_str(), "recreate");
93
95 TFile* f_PhotonTemplateOutput = new TFile(Form("PhotonShapes_Low%d_High%d.root", m_firstCellID, m_lastCellID), "RECREATE");
96 TTree* mtree = new TTree("mtree", "");
97 std::vector<double> PhotonWaveformArray(100000);
98 mtree->Branch("PhotonArray", PhotonWaveformArray.data(), "PhotonWaveformArray[100000]/D");
99
101 auto tree = getObjectPtr<TTree>("tree");
102 int CellID;
103 tree->SetBranchAddress("CellID", &CellID);
104 std::vector<int> Waveform(m_NumberofADCPoints);
105 std::vector<int> XValues(m_NumberofADCPoints);
106 for (int i = 0; i < m_NumberofADCPoints; i++) {
107 tree->SetBranchAddress(Form("ADC%d", i), &Waveform[i]);
108 XValues[i] = i;
109 }
110
111 std::time_t t = std::time(0);
112
114 int AttemptCounter = 0;
115
118
121 double ParMin11t[11];
122
124 for (int CellID_i = m_firstCellID; CellID_i <= m_lastCellID; CellID_i++) {
125
127 if (CellID_i > 7776 || CellID_i < 1153) {
128 ParMin11t[0] = 20.3216;
129 ParMin11t[1] = -0.0206266;
130 ParMin11t[2] = 0.313928;
131 ParMin11t[3] = 0.589646;
132 ParMin11t[4] = 0.455526;
133 ParMin11t[5] = 1.03656;
134 ParMin11t[6] = 0.000822467;
135 ParMin11t[7] = 45.1574;
136 ParMin11t[8] = 0.716034;
137 ParMin11t[9] = 0.616753;
138 ParMin11t[10] = 0.0851222;
139 } else {
140 ParMin11t[0] = 24.6176;
141 ParMin11t[1] = 0.00725002;
142 ParMin11t[2] = 0.601578;
143 ParMin11t[3] = 0.491976;
144 ParMin11t[4] = 0.601034;
145 ParMin11t[5] = 0.601684;
146 ParMin11t[6] = -0.0103788;
147 ParMin11t[7] = 2.22615;
148 ParMin11t[8] = 0.671294;
149 ParMin11t[9] = 0.529878;
150 ParMin11t[10] = 0.0757927;
151 }
152
153 double resLimit = 2 * existingeclWaveformTemplateCalibrationC1MaxResLimit->getCalibVector()[CellID_i -
154 1];
155 double resLimitOriginal = resLimit;
156
158 std::vector<int> EntriesToSkip;
159
161 double maxResidual = 1000.0;
162
164 bool PASS = false;
165 while (PASS == false) {
166
168 std::vector<double> xValuesToFit;
169 std::vector<double> yValuesToFit;
170
172 std::vector<double> guessBaseline;
173 std::vector<double> guessAmp;
174 std::vector<double> guessTime;
175
177 std::vector<int> NtupleEntries;
178
179 int counter = 0; // counts entry number in xValuesToFit
180 int counterWaveforms = 0; // counts number of waveforms selected
181
182 for (int i = 0; i < tree->GetEntries(); i++) {
183
185 bool skipEvent = false;
186 for (int k = 0; k < (int)EntriesToSkip.size(); k++) {
187 if (EntriesToSkip[k] == i) skipEvent = true;
188 }
189 if (skipEvent) continue;
190
191 tree->GetEntry(i);
192
193 if (CellID != CellID_i) continue;
194
195 double maxval = 0;
196 double maxIndex = 0;
197 for (int j = 0; j < m_NumberofADCPoints; j++) {
198 xValuesToFit.push_back(counter);
199 yValuesToFit.push_back(Waveform[j]);
200 if (Waveform[j] > maxval) {
201 maxval = Waveform[j];
202 maxIndex = j;
203 }
204 counter++;
205 }
206
208 guessBaseline.push_back(Waveform[0]);
209 guessAmp.push_back(maxval);
210 guessTime.push_back((maxIndex - 4.5) * 0.5);
212 NtupleEntries.push_back(i);
213 B2INFO("Entry: " << i);
214
215 counterWaveforms++;
216
217 if (counterWaveforms == m_CollectorLimit) break;
218
219 }
220
222 B2INFO("CellID " << CellID_i << " counterWaveforms = " << counterWaveforms);
223
224 if (counterWaveforms < m_TotalCountsThreshold) {
226 B2INFO("eclWaveformTemplateCalibrationC2Algorithm: warning total entries for cell ID " << CellID_i << " is only: " <<
227 counterWaveforms << " Requirement is : " << m_TotalCountsThreshold);
228 EntriesToSkip.clear();
229 resLimit *= 2;
230 B2INFO("eclWaveformTemplateCalibrationC2Algorithm: warning " << CellID_i << " resLimit is doubled to" << resLimit << " start was "
231 << resLimitOriginal);
232 }
233
234
236 auto gWaveformToFit = new TGraph(xValuesToFit.size(), xValuesToFit.data(), yValuesToFit.data());
237 gWaveformToFit->SetName(Form("gWaveformToFit_%d", int(CellID_i)));
238
242 FitFunctions.clear();
243 for (int i = 0; i < counterWaveforms; i++) {
244 FitFunctions.push_back(new TF1(Form("Shp_%d", i), Belle2::ECL::WaveFuncTwoComponent, 0, 30.5, 26));
245 FitFunctions[i]->SetNpx(10000);
246 FitFunctions[i]->FixParameter(3, 0);
247 for (int k = 0; k < 10; k++) {
248 FitFunctions[i]->SetParameter(4 + k, ParMin11t[k + 1]);
249 FitFunctions[i]->FixParameter(10 + 4 + k, ParMin11t[k + 1]);
250 }
251 FitFunctions[i]->FixParameter(24, ParMin11t[0]);
252 FitFunctions[i]->FixParameter(25, 1);
253 }
254
256 TF1* TotalFitFunction = new TF1("TotalFitFunction", fitf, 0, counterWaveforms * m_NumberofADCPoints,
257 (3 * FitFunctions.size()) + 10);
258
260 int FFsize = FitFunctions.size();
261 for (int i = 0; i < FFsize; i++) {
262 TotalFitFunction->SetParameter(i, guessTime[i]);
263 TotalFitFunction->SetParameter(FFsize + i, guessBaseline[i]);
264 TotalFitFunction->SetParameter((2 * FFsize) + i, guessAmp[i]);
265 for (int k = 0; k < 10; k++) {
266 TotalFitFunction->SetParameter((3 * FFsize) + k, ParMin11t[k + 1]);
267 if (m_ParamLimitFactor < 2) {
268 TotalFitFunction->SetParLimits((3 * FFsize) + k, ParMin11t[k + 1] - m_ParamLimitFactor * fabs(ParMin11t[k + 1]),
269 ParMin11t[k + 1] + m_ParamLimitFactor * fabs(ParMin11t[k + 1]));
270 } else {
271 TotalFitFunction->ReleaseParameter((3 * FFsize) + k);
272 }
273 }
274 }
275
277 gWaveformToFit->Fit("TotalFitFunction", "Q M W N 0 R", "", 0, counterWaveforms * m_NumberofADCPoints);
278
280 std::vector<int> FitResultY;
281 std::vector<int> FitResultX;
282 int maxResidualWaveformID = 0; // Used to remove waveforms with potential pile-up outside baseline
283
285 maxResidual = 0.0;
286 double npts = xValuesToFit.size();
287 double maxResidualOld = 0.0;
288 for (int k = 0; k < npts; k++) {
289 double xVal = xValuesToFit[k];
290 double yVal = TotalFitFunction->Eval(xVal);
291 FitResultX.push_back(xVal);
292 FitResultY.push_back(yVal);
293 double diff = fabs(yValuesToFit[k] - yVal);
294 if (diff > maxResidual) {
295 maxResidual = diff;
296 maxResidualWaveformID = (k / m_NumberofADCPoints);
297 maxResidualOld = fabs(yValuesToFit[k] / yVal);
298 }
299 }
300
301 // Checking if fit matches the data.
302 if (maxResidual > resLimit) {
303
304 B2INFO("FAIL: CellID_i " << CellID_i << " maxResidual " << maxResidual << " removing entry: " <<
305 NtupleEntries[maxResidualWaveformID] <<
306 " which was waveform number " << maxResidualWaveformID << " resLimit was " << resLimit << " , resLimit started at " <<
307 resLimitOriginal);
308 B2INFO("Old maxResidual of Data/Fit was " << maxResidualOld);
309
310 B2INFO("Iter Time = " << std::time(0) - t << std::endl);
311 t = std::time(0);
312
313 std::cout << "FAIL: CellID_i " << CellID_i << " maxResidual " << maxResidual << " removing entry: " <<
314 NtupleEntries[maxResidualWaveformID] <<
315 " which was waveform number " << maxResidualWaveformID << " resLimit was " << resLimit << " , resLimit started at " <<
316 resLimitOriginal << std::endl;
317 std::cout << "wave = [";
318 for (int k = 0; k < npts; k++) {
319 std::cout << yValuesToFit[k];
320 if (k < (npts - 1)) {
321 std::cout << ",";
322 } else {
323 std::cout << "]" << std::endl;
324 }
325 }
326 std::cout << "fitRes = [";
327 for (int k = 0; k < npts; k++) {
328 std::cout << TotalFitFunction->Eval(xValuesToFit[k]);
329 if (k < (npts - 1)) {
330 std::cout << ",";
331 } else {
332 std::cout << "]" << std::endl;
333 }
334 }
335
337 EntriesToSkip.push_back(NtupleEntries[maxResidualWaveformID]);
338
339 AttemptCounter++;
340
342 if (counterWaveforms < m_SimutaniousFitLimit) AttemptCounter = m_AttemptLimit;
343
345 if (AttemptCounter == m_AttemptLimit) {
346
348
349 B2INFO("AttemptCounter reach limit: " << AttemptCounter << " counterWaveforms: " << counterWaveforms);
350 B2INFO("Increasing m_ParamLimitFactor to " << m_ParamLimitFactor);
351
353 EntriesToSkip.clear();
354 AttemptCounter = 0;
355
358 resLimit *= m_ResLimitIterator;
359 B2INFO("Increasing resLimit to " << resLimit);
361 }
362 }
363
364 } else {
365
366 B2INFO("PASS: CellID_i " << CellID_i << " maxResidual " << maxResidual << " number of waveforms used was " << counterWaveforms <<
367 " resLimit was " << resLimit);
368
369 PASS = true;
370
371 limitResidualArray.push_back(resLimit);
372 parLimitFactorArray.push_back(m_ParamLimitFactor);
373
375 AttemptCounter = 0;
377
378 auto gFitResult = new TGraph(FitResultX.size(), FitResultX.data(), FitResultY.data());
379 gFitResult->SetName(Form("gFitResult_%d", int(CellID_i)));
380
382 cellIDArray.push_back(CellID_i);
383 maxResidualArray.push_back(maxResidual);
384
386 histfile->cd();
387 gWaveformToFit->Write();
388 gFitResult->Write();
389
391 float tempPhotonPar11[11];
392 tempPhotonPar11[0] = ParMin11t[0];
393 for (unsigned int k = 0; k < 10; k++) tempPhotonPar11[k + 1] = TotalFitFunction->GetParameter((3 * FFsize) + k);
394
396 FitFunctions[0]->SetParameter(0, 0);
397 FitFunctions[0]->SetParameter(1, 0);
398 FitFunctions[0]->SetParameter(2, 1);
399 for (int k = 0; k < 10; k++) {
400 FitFunctions[0]->SetParameter(4 + k, tempPhotonPar11[k + 1]);
401 FitFunctions[0]->SetParameter(10 + 4 + k, tempPhotonPar11[k + 1]);
402 }
403 FitFunctions[0]->FixParameter(24, ParMin11t[0]);
404 FitFunctions[0]->FixParameter(25, 1);
405
407 double MaxVal = -1.0;
408 const double cnpts = 2000;
409 for (int k = 0; k < cnpts; k++) {
410 double xVal = (k * double(m_NumberofADCPoints) / cnpts);
411 double yVal = FitFunctions[0]->Eval(xVal);
412 if (yVal > MaxVal) MaxVal = yVal;
413 }
414 B2INFO("MaxVal " << MaxVal);
415 tempPhotonPar11[0] /= MaxVal;
416 FitFunctions[0]->FixParameter(24, tempPhotonPar11[0]);
417
419 PhotonParameters->setTemplateParameters(CellID_i, tempPhotonPar11, tempPhotonPar11, tempPhotonPar11);
420
422 for (unsigned int k = 0; k < PhotonWaveformArray.size();
423 k++) PhotonWaveformArray[k] = FitFunctions[0]->Eval(((double)k) * (1. / 1000.)) ;
424 mtree->Fill();
425
426 }
427 for (int w = 0; w < (int)FitFunctions.size(); w++) FitFunctions[w]->Delete();
428 TotalFitFunction->Delete() ;
429 gWaveformToFit->Delete();
430 }
431 }
432
434 histfile->cd();
435 auto gmaxResidual = new TGraph(cellIDArray.size(), cellIDArray.data(), maxResidualArray.data());
436 gmaxResidual->SetName("gmaxResidual");
437 auto glimitResidualArray = new TGraph(cellIDArray.size(), cellIDArray.data(), limitResidualArray.data());
438 glimitResidualArray->SetName("glimitResidualArray");
439 auto gparLimitFactorArray = new TGraph(cellIDArray.size(), cellIDArray.data(), parLimitFactorArray.data());
440 gparLimitFactorArray->SetName("gparLimitFactorArray");
441
442 gmaxResidual->Write();
443 glimitResidualArray->Write();
444 gparLimitFactorArray->Write();
445 histfile->Write();
446 histfile->Close();
447 delete histfile;
448
449 f_PhotonTemplateOutput->cd();
450 mtree->Write();
451 f_PhotonTemplateOutput->Write();
452 f_PhotonTemplateOutput->Close();
453 delete f_PhotonTemplateOutput;
454
456 saveCalibration(PhotonParameters, Form("PhotonParameters_CellID%d_CellID%d", m_firstCellID, m_lastCellID));
457 B2INFO("eclWaveformTemplateCalibrationC2Algorithm: successfully stored " << Form("PhotonParameters_CellID%d_CellID%d",
458 m_firstCellID, m_lastCellID) << " constants");
459
460 return c_OK;
461}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
DB object to store photon, hadron and diode shape parameters.
void setTemplateParameters(int cellID, const float photonInput[11], const float hadronInput[11], const float diodeInput[11])
Set photon, hadron and diode template parameters for crystal.
int m_AttemptLimit
Number of attempts before increasing parameter limits or resLimt.
double m_ParamLimitFactor
Factor to determine parameter limits in fit.
const int m_SimutaniousFitLimit
Min number waveforms required for simultaneous fit.
const int m_TotalCountsThreshold
Min number waveforms required per crystal.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getOutputName()

std::string getOutputName ( )
inline

Getter for m_outputName.

Definition at line 35 of file eclWaveformTemplateCalibrationC2Algorithm.h.

35{return m_outputName;}

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setAttemptLimit()

void setAttemptLimit ( int  AttemptLimit)
inline

Setter for m_AttemptLimit.

Definition at line 44 of file eclWaveformTemplateCalibrationC2Algorithm.h.

44{m_AttemptLimit = AttemptLimit;}

◆ setCollectorLimit()

void setCollectorLimit ( int  CollectorLimit)
inline

Setter for m_CollectorLimit.

Definition at line 50 of file eclWaveformTemplateCalibrationC2Algorithm.h.

50{m_CollectorLimit = CollectorLimit;}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setFirstCellID()

void setFirstCellID ( int  firstCellID)
inline

Setter for m_firstCellID.

Definition at line 38 of file eclWaveformTemplateCalibrationC2Algorithm.h.

38{m_firstCellID = firstCellID;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setLastCellID()

void setLastCellID ( int  lastCellID)
inline

Getter for m_firstCellID.

Definition at line 41 of file eclWaveformTemplateCalibrationC2Algorithm.h.

41{m_lastCellID = lastCellID;}

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setOutputName()

void setOutputName ( const std::string &  outputName)
inline

Setter for m_outputName.

Definition at line 32 of file eclWaveformTemplateCalibrationC2Algorithm.h.

32{m_outputName = outputName;}

◆ setParamLimitFactor()

void setParamLimitFactor ( int  ParamLimitFactor)
inline

Setter for m_ParamLimitFactor.

Definition at line 47 of file eclWaveformTemplateCalibrationC2Algorithm.h.

47{m_ParamLimitFactor = ParamLimitFactor;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_AttemptLimit

int m_AttemptLimit = 10
private

Number of attempts before increasing parameter limits or resLimt.

Definition at line 65 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_BaseParamLimitFactor

const double m_BaseParamLimitFactor = 0.25
private

Reset value of m_ParamLimitFactor.

Definition at line 72 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_CollectorLimit

int m_CollectorLimit = 6
private

max number of waveforms to simultaneously fit

Definition at line 63 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_firstCellID

int m_firstCellID
private

First crystal to calibrate.

Definition at line 61 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_lastCellID

int m_lastCellID
private

Last crystal to calibrate.

Definition at line 62 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_NumberofADCPoints

const int m_NumberofADCPoints = 31
private

Number of adc points in waveform.

Definition at line 66 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_outputName

std::string m_outputName = "eclWaveformTemplateCalibrationC2Algorithm.root"
private

file name for histogram output

Definition at line 59 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_ParamLimitFactor

double m_ParamLimitFactor = 0.25
private

Factor to determine parameter limits in fit.

Definition at line 64 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_ParLimitFactorIterator

double m_ParLimitFactorIterator = 0.5
private

Amount to increase m_ParamLimitFactor.

Definition at line 69 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_ParLimitFactorLimit

double m_ParLimitFactorLimit = 2.1
private

Max limit to increase m_ParamLimitFactor.

Definition at line 70 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_ResLimitIterator

double m_ResLimitIterator = 1.5
private

Factor to increase resLimit.

Definition at line 71 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_SimutaniousFitLimit

const int m_SimutaniousFitLimit = 3
private

Min number waveforms required for simultaneous fit.

Definition at line 67 of file eclWaveformTemplateCalibrationC2Algorithm.h.

◆ m_TotalCountsThreshold

const int m_TotalCountsThreshold = 3
private

Min number waveforms required per crystal.

Definition at line 68 of file eclWaveformTemplateCalibrationC2Algorithm.h.


The documentation for this class was generated from the following files: