Belle II Software development
SVDdEdxCalibrationAlgorithm Class Reference

Class implementing the SVD dEdx calibration algorithm. More...

#include <SVDdEdxCalibrationAlgorithm.h>

Inheritance diagram for SVDdEdxCalibrationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 SVDdEdxCalibrationAlgorithm ()
 Constructor.
 
virtual ~SVDdEdxCalibrationAlgorithm ()
 Destructor.
 
void setMonitoringPlots (bool value=false)
 function to enable plotting
 
void setNumDEdxBins (const int &value)
 set the number of dEdx bins for the payloads
 
void setNumPBins (const int &value)
 set the number of momentum bins for the payloads
 
void setDEdxCutoff (const double &value)
 set the upper edge of the dEdx binning for the payloads
 
void setMinEvtsPerTree (const double &value)
 set the upper edge of the dEdx binning for the payloads
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 run algorithm on data
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

TH2F LambdaMassFit (std::shared_ptr< TTree > preselTree)
 produce histograms for protons
 
std::tuple< TH2F, TH2F, TH2F > DstarMassFit (std::shared_ptr< TTree > preselTree)
 produce histograms for K/pi(/mu)
 
TH2F GammaHistogram (std::shared_ptr< TTree > preselTree)
 produce histograms for e
 
std::vector< double > CreatePBinningScheme ()
 build the binning scheme
 
std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

bool m_isMakePlots
 produce plots for monitoring
 
int m_numDEdxBins = 100
 the number of dEdx bins for the payloads
 
int m_numPBins = 69
 the number of momentum bins for the payloads
 
double m_dedxCutoff = 5.e6
 the upper edge of the dEdx binning for the payloads
 
int m_MinEvtsPerTree
 number of events in TTree below which we don't try to fit
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class implementing the SVD dEdx calibration algorithm.

Definition at line 24 of file SVDdEdxCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ SVDdEdxCalibrationAlgorithm()

Constructor.

Definition at line 38 of file SVDdEdxCalibrationAlgorithm.cc.

38 : CalibrationAlgorithm("SVDdEdxCollector"),
39 m_isMakePlots(true)
40{
41 setDescription("SVD dE/dx calibration algorithm");
42}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
bool m_isMakePlots
produce plots for monitoring

◆ ~SVDdEdxCalibrationAlgorithm()

virtual ~SVDdEdxCalibrationAlgorithm ( )
inlinevirtual

Destructor.

Definition at line 36 of file SVDdEdxCalibrationAlgorithm.h.

36{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

run algorithm on data

Implements CalibrationAlgorithm.

Definition at line 45 of file SVDdEdxCalibrationAlgorithm.cc.

46{
47 gROOT->SetBatch(true);
48
49 const auto exprun = getRunList()[0];
50 B2INFO("ExpRun used for calibration: " << exprun.first << " " << exprun.second);
51
52 auto payload = new Belle2::SVDdEdxPDFs();
53
54 // Get data objects
55 auto ttreeLambda = getObjectPtr<TTree>("Lambda");
56 auto ttreeDstar = getObjectPtr<TTree>("Dstar");
57 auto ttreeGamma = getObjectPtr<TTree>("Gamma");
58
59 if (ttreeLambda->GetEntries() < m_MinEvtsPerTree) {
60 B2WARNING("Not enough data for calibration.");
61 return c_NotEnoughData;
62 }
63
64 // call the calibration functions
65 TH2F hLambdaP = LambdaMassFit(ttreeLambda);
66 auto [hDstarK, hDstarPi, hDstarMu] = DstarMassFit(ttreeDstar);
67 TH2F hGammaE = GammaHistogram(ttreeGamma);
68 std::vector<double> pbins = CreatePBinningScheme();
69 TH2F hEmpty("hEmpty", "A histogram returned if we cannot calibrate", m_numPBins, pbins.data(), m_numDEdxBins, 0, m_dedxCutoff);
70 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
71 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
72 hEmpty.SetBinContent(pbin, dedxbin, 0.01);
73 };
74 }
75
76 B2INFO("Histograms are ready, proceed to creating the payload object...");
77 std::vector<TH2F*> hDedxPDFs(6);
78
79 std::array<std::string, 6> part = {"Electron", "Muon", "Pion", "Kaon", "Proton", "Deuteron"};
80
81 TCanvas* candEdx = new TCanvas("candEdx", "SVD dEdx payloads", 1200, 700);
82 candEdx->Divide(3, 2);
83 gStyle->SetOptStat(11);
84
85 for (bool trunmean : {false, true}) {
86 for (int iPart = 0; iPart < 6; iPart++) {
87
88 if (iPart == 0 && trunmean) {
89 hDedxPDFs[iPart] = &hGammaE;
90 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
91 } else if (iPart == 1 && trunmean) {
92 hDedxPDFs[iPart] = &hDstarMu;
93 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
94 } else if (iPart == 2 && trunmean) {
95 hDedxPDFs[iPart] = &hDstarPi;
96 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
97 } else if (iPart == 3 && trunmean) {
98 hDedxPDFs[iPart] = &hDstarK;
99 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
100 } else if (iPart == 4 && trunmean) {
101 hDedxPDFs[iPart] = &hLambdaP;
102 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
103 } else if (iPart == 5 && trunmean) {
104 hDedxPDFs[iPart] = &hEmpty;
105 hDedxPDFs[iPart]->SetName("hist_d1_1000010020_trunc");
106 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
107 } else if (iPart == 0 && !trunmean) {
108 hDedxPDFs[iPart] = &hEmpty;
109 hDedxPDFs[iPart]->SetName("hist_d1_11");
110 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
111 } else if (iPart == 1 && !trunmean) {
112 hDedxPDFs[iPart] = &hEmpty;
113 hDedxPDFs[iPart]->SetName("hist_d1_13");
114 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
115 } else if (iPart == 2 && !trunmean) {
116 hDedxPDFs[iPart] = &hEmpty;
117 hDedxPDFs[iPart]->SetName("hist_d1_211");
118 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
119 } else if (iPart == 3 && !trunmean) {
120 hDedxPDFs[iPart] = &hEmpty;
121 hDedxPDFs[iPart]->SetName("hist_d1_321");
122 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
123 } else if (iPart == 4 && !trunmean) {
124 hDedxPDFs[iPart] = &hEmpty;
125 hDedxPDFs[iPart]->SetName("hist_d1_2212");
126 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
127 } else if (iPart == 5 && !trunmean) {
128 hDedxPDFs[iPart] = &hEmpty;
129 hDedxPDFs[iPart]->SetName("hist_d1_1000010020");
130 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
131 }
132
133 else
134 hDedxPDFs[iPart] = &hEmpty;
135 payload->setPDF(*hDedxPDFs[iPart], iPart, trunmean);
136
137 candEdx->cd(iPart + 1);
138 hDedxPDFs[iPart]->SetTitle(Form("%s; p(GeV/c) of %s; dE/dx", hDedxPDFs[iPart]->GetTitle(), part[iPart].data()));
139 hDedxPDFs[iPart]->DrawCopy("colz");
140
141 if (m_isMakePlots) {
142 candEdx->SaveAs("PlotsSVDdEdxPDFs_wTruncMean.pdf");
143 }
144 }
145 // candEdx->SetTitle(Form("Likehood dist. of charged particles from %s, trunmean = %s", idet.data(), check.str().data()));
146 }
147
148 saveCalibration(payload, "SVDdEdxPDFs");
149 B2INFO("SVD dE/dx calibration done!");
150
151 return c_OK;
152}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
std::tuple< TH2F, TH2F, TH2F > DstarMassFit(std::shared_ptr< TTree > preselTree)
produce histograms for K/pi(/mu)
int m_numPBins
the number of momentum bins for the payloads
std::vector< double > CreatePBinningScheme()
build the binning scheme
int m_MinEvtsPerTree
number of events in TTree below which we don't try to fit
int m_numDEdxBins
the number of dEdx bins for the payloads
TH2F GammaHistogram(std::shared_ptr< TTree > preselTree)
produce histograms for e
TH2F LambdaMassFit(std::shared_ptr< TTree > preselTree)
produce histograms for protons
double m_dedxCutoff
the upper edge of the dEdx binning for the payloads
Specialized class for holding the SVD dE/dx PDFs.
Definition: SVDdEdxPDFs.h:26

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ CreatePBinningScheme()

std::vector< double > CreatePBinningScheme ( )
inlineprivate

build the binning scheme

Definition at line 82 of file SVDdEdxCalibrationAlgorithm.h.

83 {
84 std::vector<double> pbins;
85 pbins.reserve(m_numPBins + 1);
86 pbins.push_back(0.0);
87 pbins.push_back(0.05);
88
89 for (int iBin = 2; iBin <= m_numPBins; iBin++) {
90 if (iBin <= 19)
91 pbins.push_back(0.025 + 0.025 * iBin);
92 else if (iBin <= 59)
93 pbins.push_back(pbins.at(19) + 0.05 * (iBin - 19));
94 else
95 pbins.push_back(pbins.at(59) + 0.3 * (iBin - 59));
96 }
97
98 return pbins;
99 }

◆ DstarMassFit()

std::tuple< TH2F, TH2F, TH2F > DstarMassFit ( std::shared_ptr< TTree >  preselTree)
private

produce histograms for K/pi(/mu)

Definition at line 346 of file SVDdEdxCalibrationAlgorithm.cc.

347{
348 B2INFO("Configuring the Dstar fit...");
349 gROOT->SetBatch(true);
350 RooMsgService::instance().setGlobalKillBelow(RooFit::WARNING);
351
352 RooRealVar deltaM("deltaM", "m(D*)-m(D^{0})", 0.139545, 0.151, "GeV/c^{2}");
353
354 RooRealVar KaonMomentum("KaonMomentum", "momentum for Kaon(GeV)", -1.e8, 1.e8);
355 RooRealVar KaonSVDdEdx("KaonSVDdEdx", "", -1.e8, 1.e8);
356 RooRealVar PionDMomentum("PionDMomentum", "momentum for pion(GeV)", -1.e8, 1.e8);
357 RooRealVar PionDSVDdEdx("PionDSVDdEdx", "", -1.e8, 1.e8);
358 RooRealVar SlowPionMomentum("SlowPionMomentum", "momentum for slow pion(GeV)", -1.e8, 1.e8);
359 RooRealVar SlowPionSVDdEdx("SlowPionSVDdEdx", "", -1.e8, 1.e8);
360
361 RooRealVar exp("exp", "experiment number", 0, 1.e5);
362 RooRealVar run("run", "run number", 0, 1.e8);
363
364 auto variables = new RooArgSet();
365 variables->add(deltaM);
366 variables->add(KaonMomentum);
367 variables->add(KaonSVDdEdx);
368 variables->add(PionDMomentum);
369 variables->add(PionDSVDdEdx);
370 variables->add(SlowPionMomentum);
371 variables->add(SlowPionSVDdEdx);
372 variables->add(exp);
373 variables->add(run);
374
375 RooDataSet* DstarDataset = new RooDataSet("DstarDataset", "DstarDataset", preselTree.get(), *variables);
376
377 if (DstarDataset->sumEntries() == 0) {
378 B2FATAL("The Dstar dataset is empty, stopping here");
379 }
380
381 RooPlot* DstarFitFrame = DstarDataset->plotOn(deltaM.frame());
382
383 RooRealVar GaussMean("GaussMean", "GaussMean", 0.145, 0.140, 0.150);
384 RooRealVar GaussSigma1("GaussSigma1", "GaussSigma1", 0.01, 1.e-4, 1.0);
385 RooGaussian DstarGauss1("DstarGauss1", "DstarGauss1", deltaM, GaussMean, GaussSigma1);
386 RooRealVar GaussSigma2("GaussSigma2", "GaussSigma2", 0.001, 1.e-4, 1.0);
387 RooGaussian DstarGauss2("DstarGauss2", "DstarGauss2", deltaM, GaussMean, GaussSigma2);
388 RooRealVar fracGaussYield("fracGaussYield", "Fraction of two Gaussians", 0.75, 0.0, 1.0);
389 RooAddPdf DstarSignalPDF("DstarSignalPDF", "DstarGauss1+DstarGauss2", RooArgList(DstarGauss1, DstarGauss2), fracGaussYield);
390
391 RooRealVar dm0Bkg("dm0Bkg", "dm0", 0.13957018, 0.130, 0.140);
392 RooRealVar aBkg("aBkg", "a", -0.0784, -0.08, 3.0);
393 RooRealVar bBkg("bBkg", "b", -0.444713, -0.5, 0.4);
394 RooRealVar cBkg("cBkg", "c", 0.3);
395 RooDstD0BG DstarBkgPDF("DstarBkgPDF", "DstarBkgPDF", deltaM, dm0Bkg, cBkg, aBkg, bBkg);
396 RooRealVar nSignalDstar("nSignalDstar", "signal yield", 0.5 * preselTree->GetEntries(), 0, preselTree->GetEntries());
397 RooRealVar nBkgDstar("nBkgDstar", "background yield", 0.5 * preselTree->GetEntries(), 0, preselTree->GetEntries());
398 RooAddPdf totalPDFDstar("totalPDFDstar", "totalPDFDstar pdf", RooArgList(DstarSignalPDF, DstarBkgPDF),
399 RooArgList(nSignalDstar, nBkgDstar));
400
401 B2INFO("Dstar: Start fitting...");
402 RooFitResult* DstarFitResult = totalPDFDstar.fitTo(*DstarDataset, Save(kTRUE), PrintLevel(-1));
403
404 int status = DstarFitResult->status();
405 int covqual = DstarFitResult->covQual();
406 double diff = nSignalDstar.getValV() + nBkgDstar.getValV() - DstarDataset->sumEntries();
407
408 B2INFO("Dstar: Fit status: " << status << "; covariance quality: " << covqual);
409 // if the fit is not healthy, try again once before giving up, with a slightly different setup:
410 if ((status > 0) || (TMath::Abs(diff) > 1.) || (nSignalDstar.getError() < sqrt(nSignalDstar.getValV()))
411 || (nSignalDstar.getError() > (nSignalDstar.getValV()))) {
412
413 DstarFitResult = totalPDFDstar.fitTo(*DstarDataset, Save(), Strategy(2), Offset(1));
414 status = DstarFitResult->status();
415 covqual = DstarFitResult->covQual();
416 diff = nSignalDstar.getValV() + nBkgDstar.getValV() - DstarDataset->sumEntries();
417 }
418
419 if ((status > 0) || (TMath::Abs(diff) > 1.) || (nSignalDstar.getError() < sqrt(nSignalDstar.getValV()))
420 || (nSignalDstar.getError() > (nSignalDstar.getValV()))) {
421 B2WARNING("Dstar: Fit problem: fit status " << status << "; sum of component yields minus the dataset yield is " << diff <<
422 "; signal yield is " << nSignalDstar.getValV() << ", while its uncertainty is " << nSignalDstar.getError());
423 }
424 if (covqual < 2) {
425 B2INFO("Dstar: Fit warning: covariance quality " << covqual);
426 }
427
428 totalPDFDstar.plotOn(DstarFitFrame, LineColor(TColor::GetColor("#4575b4")));
429
430 double chisquare = DstarFitFrame->chiSquare();
431 B2INFO("Dstar: Fit chi2 = " << chisquare);
432 totalPDFDstar.paramOn(DstarFitFrame, Layout(0.63, 0.96, 0.93), Format("NEU", AutoPrecision(2)));
433 DstarFitFrame->getAttText()->SetTextSize(0.03);
434
435 totalPDFDstar.plotOn(DstarFitFrame, Components("DstarSignalPDF"), LineColor(TColor::GetColor("#d73027")));
436 totalPDFDstar.plotOn(DstarFitFrame, Components("DstarBkgPDF"), LineColor(TColor::GetColor("#fc8d59")));
437 totalPDFDstar.plotOn(DstarFitFrame, LineColor(TColor::GetColor("#4575b4")));
438
439 DstarFitFrame->GetXaxis()->SetTitle("#Deltam [GeV/c^{2}]");
440 TCanvas* canvDstar = new TCanvas("canvDstar", "canvDstar");
441 canvDstar->cd();
442
443 DstarFitFrame->Draw();
444
445 if (m_isMakePlots) {
446 canvDstar->Print("SVDdEdxCalibrationFitDstar.pdf");
447 TFile DstarFitPlotFile("SVDdEdxCalibrationDstarFitPlotFile.root", "RECREATE");
448 canvDstar->Write();
449 DstarFitPlotFile.Close();
450 }
451
453
454 RooStats::SPlot* sPlotDatasetDstar = new RooStats::SPlot("sData", "An SPlot", *DstarDataset, &totalPDFDstar,
455 RooArgList(nSignalDstar, nBkgDstar));
456
457 for (int iEvt = 0; iEvt < 5; iEvt++) {
458 if (TMath::Abs(sPlotDatasetDstar->GetSWeight(iEvt, "nSignalDstar") + sPlotDatasetDstar->GetSWeight(iEvt, "nBkgDstar") - 1) > 5.e-3)
459 B2FATAL("Dstar: sPlot error: sum of weights not equal to 1");
460 }
461
462 RooDataSet* DstarDatasetSWeighted = new RooDataSet(DstarDataset->GetName(), DstarDataset->GetTitle(), DstarDataset,
463 *DstarDataset->get());
464
465 RooDataSet::setDefaultStorageType(RooAbsData::Tree);
466 ((RooTreeDataStore*)(DstarDatasetSWeighted->store())->tree())->SetName("treeDstar_sw");
467 TTree* treeDstar_sw = DstarDatasetSWeighted->GetClonedTree();
468
469 B2INFO("Dstar: sPlot done. Proceed to histogramming");
470
471 std::vector<double> pbins = CreatePBinningScheme();
472
473 // the kaon payload
474 TH2F* hDstarK = new TH2F("hist_d1_321_trunc", "hist_d1_321_trunc", m_numPBins, pbins.data(),
476 // the pion payload
477 TH2F* hDstarPi = new TH2F("hist_d1_211_trunc", "hist_d1_211_trunc", m_numPBins, pbins.data(),
479
480 treeDstar_sw->Draw("KaonSVDdEdx:KaonMomentum>>hist_d1_321_trunc", "nSignalDstar_sw * (KaonSVDdEdx>0)", "goff");
481 // the pion one will be built from both pions in the Dstar decay tree
482 TH2F* hDstarPiPart1 = (TH2F*)hDstarPi->Clone("hist_d1_211_truncPart1");
483 TH2F* hDstarPiPart2 = (TH2F*)hDstarPi->Clone("hist_d1_211_truncPart2");
484
485 treeDstar_sw->Draw("PionDSVDdEdx:PionDMomentum>>hist_d1_211_truncPart1", "nSignalDstar_sw * (PionDSVDdEdx>0)", "goff");
486 treeDstar_sw->Draw("SlowPionSVDdEdx:SlowPionMomentum>>hist_d1_211_truncPart2", "nSignalDstar_sw * (SlowPionSVDdEdx>0)", "goff");
487 hDstarPi->Add(hDstarPiPart1);
488 hDstarPi->Add(hDstarPiPart2);
489
490 // the current strategy assumes that the muon and pion payloads are indistinguishable: clone the pion one
491 TH2F* hDstarMu = (TH2F*)hDstarPi->Clone("hist_d1_13_trunc");
492 hDstarMu->SetTitle("hist_d1_13_trunc");
493
494 // produce the 1D profile (for data-MC comparisons)
495 if (m_isMakePlots) {
496 TH1F* PionProfile = (TH1F*)hDstarPi->ProfileX("PionProfile");
497 PionProfile->SetTitle("PionProfile");
498 canvDstar->SetTicky(1);
499 PionProfile->GetYaxis()->SetRangeUser(0, m_dedxCutoff);
500 PionProfile->GetXaxis()->SetTitle("Momentum, GeV/c");
501 PionProfile->GetYaxis()->SetTitle("dE/dx");
502 PionProfile->Draw();
503 canvDstar->Print("SVDdEdxCalibrationProfilePion.pdf");
504 TFile PionProfileFile("SVDdEdxCalibrationProfilePion.root", "RECREATE");
505 PionProfile->Write();
506 PionProfileFile.Close();
507
508 TH1F* KaonProfile = (TH1F*)hDstarK->ProfileX("KaonProfile");
509 KaonProfile->SetTitle("KaonProfile");
510 KaonProfile->GetYaxis()->SetRangeUser(0, m_dedxCutoff);
511 KaonProfile->GetXaxis()->SetTitle("Momentum, GeV/c");
512 KaonProfile->GetYaxis()->SetTitle("dE/dx");
513 KaonProfile->Draw();
514 canvDstar->Print("SVDdEdxCalibrationProfileKaon.pdf");
515 TFile KaonProfileFile("SVDdEdxCalibrationProfileKaon.root", "RECREATE");
516 KaonProfile->Write();
517 KaonProfileFile.Close();
518 canvDstar->SetTicky(0);
519 }
520
521 // hDstarK normalisation
522 // for each momentum bin, normalize the pdf
523
524 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
525 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
526 // get rid of the bins with negative weights
527 if (hDstarK->GetBinContent(pbin, dedxbin) <= 1) {
528 hDstarK->SetBinContent(pbin, dedxbin, 0);
529 };
530 }
531 // create a projection (1D histogram) in a given momentum bin
532 TH1D* slice = (TH1D*)hDstarK->ProjectionY("slice", pbin, pbin);
533 // normalise, but ignore the cases with empty histograms
534 if (slice->Integral() > 0) {
535 slice->Scale(1. / slice->Integral());
536 }
537 // fill back the 2D histo with the result
538 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
539 hDstarK->SetBinContent(pbin, dedxbin, slice->GetBinContent(dedxbin));
540 }
541 }
542
543 // hDstarPi normalisation
544 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
545 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
546 // get rid of the bins with negative weights
547 if (hDstarPi->GetBinContent(pbin, dedxbin) <= 1) {
548 hDstarPi->SetBinContent(pbin, dedxbin, 0);
549 };
550 }
551 // create a projection (1D histogram) in a given momentum bin
552 TH1D* slice = (TH1D*)hDstarPi->ProjectionY("slice", pbin, pbin);
553 // normalise, but ignore the cases with empty histograms
554 if (slice->Integral() > 0) {
555 slice->Scale(1. / slice->Integral());
556 }
557 // fill back the 2D histo with the result
558 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
559 hDstarPi->SetBinContent(pbin, dedxbin, slice->GetBinContent(dedxbin));
560 }
561 }
562
563 // hDstarMu normalisation
564 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
565 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
566 // get rid of the bins with negative weights
567 if (hDstarMu->GetBinContent(pbin, dedxbin) <= 1) {
568 hDstarMu->SetBinContent(pbin, dedxbin, 0);
569 };
570 }
571 // create a projection (1D histogram) in a given momentum bin
572 TH1D* slice = (TH1D*)hDstarMu->ProjectionY("slice", pbin, pbin);
573 // normalise, but ignore the cases with empty histograms
574 if (slice->Integral() > 0) {
575 slice->Scale(1. / slice->Integral());
576 }
577 // fill back the 2D histo with the result
578 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
579 hDstarMu->SetBinContent(pbin, dedxbin, slice->GetBinContent(dedxbin));
580 }
581 }
582 if (m_isMakePlots) {
583 hDstarK->Draw("COLZ");
584 canvDstar->Print("SVDdEdxCalibrationHistoDstarK.pdf");
585 hDstarPi->Draw("COLZ");
586 canvDstar->Print("SVDdEdxCalibrationHistoDstarPi.pdf");
587 hDstarMu->Draw("COLZ");
588 canvDstar->Print("SVDdEdxCalibrationHistoDstarMu.pdf");
589 }
590
591 return std::make_tuple(*hDstarK, *hDstarPi, *hDstarMu);
592}
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
std::vector< Atom > slice(std::vector< Atom > vec, int s, int e)
Slice the vector to contain only elements with indexes s .. e (included)
Definition: Splitter.h:85

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ GammaHistogram()

TH2F GammaHistogram ( std::shared_ptr< TTree >  preselTree)
private

produce histograms for e

Definition at line 594 of file SVDdEdxCalibrationAlgorithm.cc.

595{
596 B2INFO("Histogramming the converted photon selection...");
597 gROOT->SetBatch(true);
598
599 if (preselTree->GetEntries() == 0) {
600 B2FATAL("The Gamma tree is empty, stopping here");
601 }
602 std::vector<double> pbins = CreatePBinningScheme();
603
604 TH2F* hGammaE = new TH2F("hist_d1_11_trunc", "hist_d1_11_trunc", m_numPBins, pbins.data(), m_numDEdxBins, 0, m_dedxCutoff);
605
606 TH2F* hGammaEPart1 = (TH2F*)hGammaE->Clone("hist_d1_11_truncPart1");
607 TH2F* hGammaEPart2 = (TH2F*)hGammaE->Clone("hist_d1_11_truncPart2");
608
609 preselTree->Draw("FirstElectronSVDdEdx:FirstElectronMomentum>>hist_d1_11_truncPart1", "FirstElectronSVDdEdx>0", "goff");
610 preselTree->Draw("SecondElectronSVDdEdx:SecondElectronMomentum>>hist_d1_11_truncPart2", "SecondElectronSVDdEdx>0", "goff");
611 hGammaE->Add(hGammaEPart1);
612 hGammaE->Add(hGammaEPart2);
613
614 // produce the 1D profile (for data-MC comparisons)
615 TCanvas* canvGamma = new TCanvas("canvGamma", "canvGamma");
616 if (m_isMakePlots) {
617 TH1F* ElectronProfile = (TH1F*)hGammaE->ProfileX("ElectronProfile");
618 ElectronProfile->SetTitle("ElectronProfile");
619 canvGamma->SetTicky(1);
620 ElectronProfile->GetYaxis()->SetRangeUser(0, m_dedxCutoff);
621 ElectronProfile->GetXaxis()->SetTitle("Momentum, GeV/c");
622 ElectronProfile->GetYaxis()->SetTitle("dE/dx");
623 ElectronProfile->Draw();
624 canvGamma->Print("SVDdEdxCalibrationProfileElectron.pdf");
625 TFile ElectronProfileFile("SVDdEdxCalibrationProfileElectron.root", "RECREATE");
626 ElectronProfile->Write();
627 ElectronProfileFile.Close();
628 canvGamma->SetTicky(0);
629 }
630
631 // for each momentum bin, normalize the pdf
632 // hGammaE normalisation
633 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
634 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
635 // get rid of the bins with negative weights
636 if (hGammaE->GetBinContent(pbin, dedxbin) <= 1) {
637 hGammaE->SetBinContent(pbin, dedxbin, 0);
638 };
639 }
640
641 // create a projection (1D histogram) in a given momentum bin
642 TH1D* slice = (TH1D*)hGammaE->ProjectionY("slice", pbin, pbin);
643 // normalise, but ignore the cases with empty histograms
644 if (slice->Integral() > 0) {
645 slice->Scale(1. / slice->Integral());
646 }
647 // fill back the 2D histo with the result
648 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
649 hGammaE->SetBinContent(pbin, dedxbin, slice->GetBinContent(dedxbin));
650 }
651 }
652
653 if (m_isMakePlots) {
654 hGammaE->Draw("COLZ");
655 canvGamma->Print("SVDdEdxCalibrationHistoGamma.pdf");
656 }
657
658 return *hGammaE;
659}

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ LambdaMassFit()

TH2F LambdaMassFit ( std::shared_ptr< TTree >  preselTree)
private

produce histograms for protons

Definition at line 154 of file SVDdEdxCalibrationAlgorithm.cc.

155{
156 B2INFO("Configuring the Lambda fit...");
157 gROOT->SetBatch(true);
158 RooMsgService::instance().setGlobalKillBelow(RooFit::WARNING);
159
160 RooRealVar InvM("InvM", "m(p^{+}#pi^{-})", 1.1, 1.13, "GeV/c^{2}");
161
162 RooRealVar ProtonMomentum("ProtonMomentum", "momentum for p", -1.e8, 1.e8);
163 RooRealVar ProtonSVDdEdx("ProtonSVDdEdx", "", -1.e8, 1.e8);
164
165 RooRealVar exp("exp", "experiment number", 0, 1.e5);
166 RooRealVar run("run", "run number", 0, 1.e7);
167
168 auto variables = new RooArgSet();
169
170 variables->add(InvM);
171
172 variables->add(ProtonMomentum);
173 variables->add(ProtonSVDdEdx);
174 variables->add(exp);
175 variables->add(run);
176
177 RooDataSet* LambdaDataset = new RooDataSet("LambdaDataset", "LambdaDataset", preselTree.get(), *variables);
178
179 if (LambdaDataset->sumEntries() == 0) {
180 B2FATAL("The Lambda dataset is empty, stopping here");
181 }
182
183 // the signal PDF; might be revisited at a later point
184
185 RooRealVar GaussMean("GaussMean", " GaussMean", 1.116, 1.111, 1.12);
186 RooRealVar GaussSigma("GaussSigma", "#sigma_{1}", 3.e-3, 3.e-5, 10.e-3);
187 RooGaussian LambdaGauss("LambdaGauss", "LambdaGauss", InvM, GaussMean, GaussSigma);
188
189 /* temporary RooRealVar sigmaBifurGaussL1 and sigmaBifurGaussR1 to replace
190 * RooRealVar resolutionParamL("resolutionParamL", "resolutionParamL", 0.4, 5.e-4, 1.0);
191 * RooRealVar resolutionParamR("resolutionParamR", "resolutionParamR", 0.4, 5.e-4, 1.0);
192 * RooFormulaVar sigmaBifurGaussL1("sigmaBifurGaussL1", "resolutionParamL*GaussSigma", RooArgSet(resolutionParamL, GaussSigma));
193 * RooFormulaVar sigmaBifurGaussR1("sigmaBifurGaussR1", "resolutionParamR*GaussSigma", RooArgSet(resolutionParamR, GaussSigma));
194 */
195 RooRealVar sigmaBifurGaussL1("sigmaBifurGaussL1", "sigma left", 0.4 * 3.e-3, 3.e-5, 10.e-3);
196 RooRealVar sigmaBifurGaussR1("sigmaBifurGaussR1", "sigma right", 0.4 * 3.e-3, 3.e-5, 10.e-3);
197 RooBifurGauss LambdaBifurGauss("LambdaBifurGauss", "LambdaBifurGauss", InvM, GaussMean, sigmaBifurGaussL1, sigmaBifurGaussR1);
198
199 /* temporary RooRealVar sigmaBifurGaussL2 to replace
200 * RooRealVar resolutionParam2("resolutionParam2", "resolutionParam2", 0.2, 5.e-4, 1.0);
201 * sigmaBifurGaussL2("sigmaBifurGaussL2", "resolutionParam2*GaussSigma", RooArgSet(resolutionParam2, GaussSigma));
202 */
203 RooRealVar sigmaBifurGaussL2("sigmaBifurGaussL2", "sigmaBifurGaussL2", 0.2 * 3.e-3, 3.e-5, 10.e-3);
204 RooGaussian LambdaBifurGauss2("LambdaBifurGauss2", "LambdaBifurGauss2", InvM, GaussMean, sigmaBifurGaussL2);
205
206 RooRealVar fracBifurGaussYield("fracBifurGaussYield", "fracBifurGaussYield", 0.3, 5.e-4, 1.0);
207 RooRealVar fracGaussYield("fracGaussYield", "fracGaussYield", 0.8, 5.e-4, 1.0);
208
209 RooAddPdf LambdaCombinedBifurGauss("LambdaCombinedBifurGauss", "LambdaBifurGauss + LambdaBifurGauss2 ", RooArgList(LambdaBifurGauss,
210 LambdaBifurGauss2), RooArgList(fracBifurGaussYield));
211
212 RooAddPdf LambdaSignalPDF("LambdaSignalPDF", "LambdaCombinedBifurGauss + LambdaGauss", RooArgList(LambdaCombinedBifurGauss,
213 LambdaGauss), RooArgList(fracGaussYield));
214
215 // Background PDF
216 RooRealVar BkgPolyCoef0("BkgPolyCoef0", "BkgPolyCoef0", 0.1, 0., 1.5);
217 RooRealVar BkgPolyCoef1("BkgPolyCoef1", "BkgPolyCoef1", -0.5, -1.5, -1.e-3);
218 RooChebychev BkgPolyPDF("BkgPolyPDF", "BkgPolyPDF", InvM, RooArgList(BkgPolyCoef0, BkgPolyCoef1));
219
220 RooRealVar nSignalLambda("nSignalLambda", "nSignalLambda", 0.6 * preselTree->GetEntries(), 0., 0.99 * preselTree->GetEntries());
221 RooRealVar nBkgLambda("nBkgLambda", "nBkgLambda", 0.4 * preselTree->GetEntries(), 0., 0.99 * preselTree->GetEntries());
222 RooAddPdf totalPDFLambda("totalPDFLambda", "totalPDFLambda pdf", RooArgList(LambdaSignalPDF, BkgPolyPDF),
223 RooArgList(nSignalLambda, nBkgLambda));
224
225 B2INFO("Lambda: Start fitting...");
226 RooFitResult* LambdaFitResult = totalPDFLambda.fitTo(*LambdaDataset, Save(kTRUE), PrintLevel(-1));
227
228 int status = LambdaFitResult->status();
229 int covqual = LambdaFitResult->covQual();
230 double diff = nSignalLambda.getValV() + nBkgLambda.getValV() - LambdaDataset->sumEntries();
231
232 B2INFO("Lambda: Fit status: " << status << "; covariance quality: " << covqual);
233 // if the fit is not healthy, try again once before giving up, with a slightly different setup:
234 if ((status > 0) || (TMath::Abs(diff) > 1.) || (nSignalLambda.getError() < sqrt(nSignalLambda.getValV()))
235 || (nSignalLambda.getError() > (nSignalLambda.getValV()))) {
236
237 LambdaFitResult = totalPDFLambda.fitTo(*LambdaDataset, Save(), Strategy(2), Offset(1));
238 status = LambdaFitResult->status();
239 covqual = LambdaFitResult->covQual();
240 diff = nSignalLambda.getValV() + nBkgLambda.getValV() - LambdaDataset->sumEntries();
241 }
242
243 if ((status > 0) || (TMath::Abs(diff) > 1.) || (nSignalLambda.getError() < sqrt(nSignalLambda.getValV()))
244 || (nSignalLambda.getError() > (nSignalLambda.getValV()))) {
245 B2WARNING("Lambda: Fit problem: fit status " << status << "; sum of component yields minus the dataset yield is " << diff <<
246 "; signal yield is " << nSignalLambda.getValV() << ", while its uncertainty is " << nSignalLambda.getError());
247 }
248 if (covqual < 2) {
249 B2INFO("Lambda: Fit warning: covariance quality " << covqual);
250 }
251
252 TCanvas* canvLambda = new TCanvas("canvLambda", "canvLambda");
253 RooPlot* LambdaFitFrame = LambdaDataset->plotOn(InvM.frame(130));
254 totalPDFLambda.plotOn(LambdaFitFrame, LineColor(TColor::GetColor("#4575b4")));
255
256 double chisquare = LambdaFitFrame->chiSquare();
257 B2INFO("Lambda: Fit chi2 = " << chisquare);
258 totalPDFLambda.paramOn(LambdaFitFrame, Layout(0.6, 0.96, 0.93), Format("NEU", AutoPrecision(2)));
259 LambdaFitFrame->getAttText()->SetTextSize(0.03);
260
261 totalPDFLambda.plotOn(LambdaFitFrame, Components("LambdaSignalPDF"), LineColor(TColor::GetColor("#d73027")));
262 totalPDFLambda.plotOn(LambdaFitFrame, Components("BkgPolyPDF"), LineColor(TColor::GetColor("#fc8d59")));
263 totalPDFLambda.plotOn(LambdaFitFrame, LineColor(TColor::GetColor("#4575b4")));
264
265 LambdaFitFrame->GetXaxis()->SetTitle("m(p#pi^{-}) (GeV/c^{2})");
266
267 LambdaFitFrame->Draw();
268
269 if (m_isMakePlots) {
270 canvLambda->Print("SVDdEdxCalibrationFitLambda.pdf");
271 TFile LambdaFitPlotFile("SVDdEdxCalibrationLambdaFitPlotFile.root", "RECREATE");
272 canvLambda->Write();
273 LambdaFitPlotFile.Close();
274 }
275 RooStats::SPlot* sPlotDatasetLambda = new RooStats::SPlot("sData", "An SPlot", *LambdaDataset, &totalPDFLambda,
276 RooArgList(nSignalLambda, nBkgLambda));
277
278 for (int iEvt = 0; iEvt < 5; iEvt++) {
279 if (TMath::Abs(sPlotDatasetLambda->GetSWeight(iEvt, "nSignalLambda") + sPlotDatasetLambda->GetSWeight(iEvt,
280 "nBkgLambda") - 1) > 5.e-3)
281 B2FATAL("Lambda: sPlot error: sum of weights not equal to 1");
282 }
283
284 RooDataSet* LambdaDatasetSWeighted = new RooDataSet(LambdaDataset->GetName(), LambdaDataset->GetTitle(), LambdaDataset,
285 *LambdaDataset->get());
286
287 RooDataSet::setDefaultStorageType(RooAbsData::Tree);
288 ((RooTreeDataStore*)(LambdaDatasetSWeighted->store())->tree())->SetName("treeLambda_sw");
289 TTree* treeLambda_sw = LambdaDatasetSWeighted->GetClonedTree();
290
291 B2INFO("Lambda: sPlot done. Proceed to histogramming");
292
293 std::vector<double> pbins = CreatePBinningScheme();
294
295 TH2F* hLambdaP = new TH2F("hist_d1_2212_trunc", "hist_d1_2212_trunc", m_numPBins, pbins.data(), m_numDEdxBins, 0, m_dedxCutoff);
296
297 treeLambda_sw->Draw("ProtonSVDdEdx:ProtonMomentum>>hist_d1_2212_trunc",
298 "nSignalLambda_sw * (ProtonMomentum>0.15) * (ProtonSVDdEdx>0)", "goff");
299
300 // produce the 1D profile (for data-MC comparisons)
301 if (m_isMakePlots) {
302 TH1F* ProtonProfile = (TH1F*)hLambdaP->ProfileX("ProtonProfile");
303 ProtonProfile->SetTitle("ProtonProfile");
304 canvLambda->SetTicky(1);
305 ProtonProfile->GetYaxis()->SetRangeUser(0, m_dedxCutoff);
306 ProtonProfile->GetXaxis()->SetTitle("Momentum, GeV/c");
307 ProtonProfile->GetYaxis()->SetTitle("dE/dx");
308 ProtonProfile->Draw();
309 canvLambda->Print("SVDdEdxCalibrationProfileProton.pdf");
310 TFile ProtonProfileFile("SVDdEdxCalibrationProfileProton.root", "RECREATE");
311 ProtonProfile->Write();
312 ProtonProfileFile.Close();
313 canvLambda->SetTicky(0);
314 }
315
316 // for each momentum bin, normalize the pdf
317
318 // hLambdaP normalisation
319 for (int pbin = 0; pbin <= m_numPBins + 1; pbin++) {
320 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
321 // get rid of the bins with negative weights
322 if (hLambdaP->GetBinContent(pbin, dedxbin) <= 1) {
323 hLambdaP->SetBinContent(pbin, dedxbin, 0);
324 };
325 }
326 // create a projection (1D histogram) in a given momentum bin
327 TH1D* slice = (TH1D*)hLambdaP->ProjectionY("slice", pbin, pbin);
328 // normalise, but ignore the cases with empty histograms
329 if (slice->Integral() > 0) {
330 slice->Scale(1. / slice->Integral());
331 }
332 // fill back the 2D histo with the result
333 for (int dedxbin = 0; dedxbin <= m_numDEdxBins + 1; dedxbin++) {
334 hLambdaP->SetBinContent(pbin, dedxbin, slice->GetBinContent(dedxbin));
335 }
336 }
337
338 if (m_isMakePlots) {
339 hLambdaP->Draw("COLZ");
340 canvLambda->Print("SVDdEdxCalibrationHistoLambda.pdf");
341 }
342
343 return *hLambdaP;
344}

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDEdxCutoff()

void setDEdxCutoff ( const double &  value)
inline

set the upper edge of the dEdx binning for the payloads

Definition at line 56 of file SVDdEdxCalibrationAlgorithm.h.

56{ m_dedxCutoff = value; }

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMinEvtsPerTree()

void setMinEvtsPerTree ( const double &  value)
inline

set the upper edge of the dEdx binning for the payloads

Definition at line 61 of file SVDdEdxCalibrationAlgorithm.h.

61{ m_MinEvtsPerTree = value; }

◆ setMonitoringPlots()

void setMonitoringPlots ( bool  value = false)
inline

function to enable plotting

Definition at line 41 of file SVDdEdxCalibrationAlgorithm.h.

41{ m_isMakePlots = value; }

◆ setNumDEdxBins()

void setNumDEdxBins ( const int &  value)
inline

set the number of dEdx bins for the payloads

Definition at line 46 of file SVDdEdxCalibrationAlgorithm.h.

46{ m_numDEdxBins = value; }

◆ setNumPBins()

void setNumPBins ( const int &  value)
inline

set the number of momentum bins for the payloads

Definition at line 51 of file SVDdEdxCalibrationAlgorithm.h.

51{ m_numPBins = value; }

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_dedxCutoff

double m_dedxCutoff = 5.e6
private

the upper edge of the dEdx binning for the payloads

Definition at line 76 of file SVDdEdxCalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_isMakePlots

bool m_isMakePlots
private

produce plots for monitoring

Definition at line 70 of file SVDdEdxCalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_MinEvtsPerTree

int m_MinEvtsPerTree
private
Initial value:
=
100

number of events in TTree below which we don't try to fit

Definition at line 77 of file SVDdEdxCalibrationAlgorithm.h.

◆ m_numDEdxBins

int m_numDEdxBins = 100
private

the number of dEdx bins for the payloads

Definition at line 74 of file SVDdEdxCalibrationAlgorithm.h.

◆ m_numPBins

int m_numPBins = 69
private

the number of momentum bins for the payloads

Definition at line 75 of file SVDdEdxCalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.


The documentation for this class was generated from the following files: