Belle II Software development
TOPLocalCalFitter Class Reference

This module is the fitter for the CAF collector TOPLaserCalibratorCollector. More...

#include <TOPLocalCalFitter.h>

Inheritance diagram for TOPLocalCalFitter:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 TOPLocalCalFitter ()
 Constructor.
 
virtual ~TOPLocalCalFitter ()
 Destructor.
 
void setMinEntries (int minEntries)
 Sets the minimum number of entries to perform the calibration in one channel.
 
void setOutputFileName (const std::string &output)
 Sets the name of the output root file.
 
void setFitConstraintsFileName (const std::string &fitConstraints)
 Sets the name of the root file containing the laser MC time corrections and the fit constraints.
 
void setTTSFileName (const std::string &TTSData)
 Sets the name of the root file containing the TTS parameters.
 
void setFitMode (const std::string &fitterMode)
 Sets the fitter mode.
 
void fitInAmpliduteBins (bool isFitInAmplitudeBins)
 Enables the fit amplitude bins.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

void setupOutputTreeAndFile ()
 prepares the output tree
 
void loadMCInfoTrees ()
 loads the TTS parameters and the MC truth info
 
void determineFitStatus ()
 determines if the constant obtained by the fit are good or not
 
void fitChannel (short, short, TH1 *)
 Fits the laser light on one channel.
 
void fitPulser (TH1 *, TH1 *)
 Fits the two pulsers.
 
void calculateChennelT0 ()
 Calculates the commonT0 calibration after the fits have been done.
 
virtual EResult calibrate () override
 Runs the algorithm on events.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

int m_minEntries = 50
 Minimum number of entries to perform the fit.
 
std::string m_output = "laserFitResult.root"
 Name of the output file.
 
std::string m_fitConstraints
 File with the TTS parametrization.
 
std::string m_TTSData
 File with the Fit constraints and MC info.
 
std::string m_fitterMode = "calibration"
 Fit mode.
 
bool m_isFitInAmplitudeBins = false
 Enables the fit in amplitude bins.
 
std::vector< float > m_binEdges = {50, 100, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400, 430, 460, 490, 520, 550, 580, 610, 640, 670, 700, 800, 900, 1000, 1200, 1500, 2000}
 Amplitude bins.
 
TFile * m_inputTTS = nullptr
 File containing m_treeTTS.
 
TFile * m_inputConstraints = nullptr
 File containing m_treeConstraints.
 
TTree * m_treeTTS = nullptr
 Input to the fitter.
 
TTree * m_treeConstraints
 Input to the fitter.
 
TFile * m_histFile = nullptr
 Output of the fitter.
 
TTree * m_fitTree = nullptr
 Output of the fitter.
 
TTree * m_timewalkTree
 Output of the fitter.
 
float m_mean2 = 0
 Position of the second gaussian of the TTS parametrization with respect to the first one.
 
float m_sigma1 = 0
 Width of the first gaussian on the TTS parametrization.
 
float m_sigma2 = 0
 Width of the second gaussian on the TTS parametrization.
 
float m_f1 = 0
 Fraction of the first gaussian on the TTS parametrization.
 
float m_f2 = 0
 Fraction of the second gaussian on the TTS parametrization.
 
short m_pixelRow = 0
 Pixel row.
 
short m_pixelCol = 0
 Pixel column.
 
float m_peakTimeConstraints = 0
 Time of the main laser peak in the MC simulation (aka MC correction)

 
float m_deltaTConstraints = 0
 Distance between the main and the secondary laser peak.
 
float m_fractionConstraints = 0
 Fraction of the main peak.
 
float m_timeExtraConstraints = 0
 Position of the guassian used to describe the extra peak on the timing distribution tail.
 
float m_sigmaExtraConstraints = 0
 Width of the guassian used to describe the extra peak on the timing distribution tail.
 
float m_alphaExtraConstraints = 0.
 alpha parameter of the tail of the extra peak.
 
float m_nExtraConstraints = 0.
 parameter n of the tail of the extra peak
 
float m_timeBackgroundConstraints = 0.
 Position of the gaussian used to describe the background, w/ respect to peakTime.
 
float m_sigmaBackgroundConstraints = 0.
 Sigma of the gaussian used to describe the background.
 
float m_binLowerEdge = 0
 Lower edge of the amplitude bin in which this fit is performed.
 
float m_binUpperEdge = 0
 Upper edge of the amplitude bin in which this fit is performed.
 
short m_channel = 0
 Channel number (0-511)
 
short m_slot = 0
 Slot ID (1-16)
 
short m_row = 0
 Pixel row.
 
short m_col = 0
 Pixel column.
 
float m_peakTime = 0
 Fitted time of the main (i.e.
 
float m_deltaT
 Time difference between the main peak and the secondary peak.
 
float m_sigma = 0.
 Gaussian time resolution, fitted.
 
float m_fraction = 0.
 Fraction of events in the secondary peak.
 
float m_yieldLaser = 0.
 Total number of laser hits from the fitting function integral.
 
float m_histoIntegral = 0.
 Integral of the fitted histogram.
 
float m_peakTimeErr = 0
 Statistical error on peakTime.
 
float m_deltaTErr = 0
 Statistical error on deltaT.
 
float m_sigmaErr = 0.
 Statistical error on sigma.
 
float m_fractionErr = 0.
 Statistical error on fraction.
 
float m_yieldLaserErr = 0.
 Statistical error on yield.
 
float m_timeExtra = 0.
 Position of the extra peak seen in the timing tail, w/ respect to peakTime.
 
float m_sigmaExtra = 0.
 Gaussian sigma of the extra peak in the timing tail

 
float m_yieldLaserExtra = 0.
 Integral of the extra peak.
 
float m_alphaExtra = 0.
 alpha parameter of the tail of the extra peak.
 
float m_nExtra = 0.
 parameter n of the tail of the extra peak
 
float m_timeBackground = 0.
 Position of the gaussian used to describe the background, w/ respect to peakTime.
 
float m_sigmaBackground = 0.
 Sigma of the gaussian used to describe the background.
 
float m_yieldLaserBackground = 0.
 Integral of the background gaussian.
 
float m_fractionMC = 0.
 Fraction of events in the secondary peak form the MC simulation.
 
float m_deltaTMC = 0.
 Time difference between the main peak and the secondary peak in the MC simulation.
 
float m_peakTimeMC
 Time of the main peak in teh MC simulation, i.e.
 
float m_chi2 = 0
 Reduced chi2 of the fit.
 
float m_rms = 0
 RMS of the histogram used for the fit.
 
float m_channelT0
 Raw, channelT0 calibration, defined as peakTime-peakTimeMC.
 
float m_channelT0Err = 0.
 Statistical error on channelT0.
 
float m_firstPulserTime = 0.
 Average time of the first electronic pulse respect to the reference pulse, from a Gaussian fit.
 
float m_firstPulserSigma = 0.
 Time resolution from the fit of the first electronic pulse, from a Gaussian fit.
 
float m_secondPulserTime
 Average time of the second electronic pulse respect to the reference pulse, from a gaussian fit.
 
float m_secondPulserSigma = 0.
 Time resolution from the fit of the first electronic pulse, from a Gaussian fit.
 
short m_fitStatus = 1
 Fit quality flag, propagated to the constants.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

This module is the fitter for the CAF collector TOPLaserCalibratorCollector.

It analyzes the tree containing the timing of the laser and pulser hits produced by the collector, returning a tree with the fit results and the histograms for each channel. It can be used to produce both channelT0 calibrations and to analyze the daily, low statistics laser runs

Definition at line 27 of file TOPLocalCalFitter.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ TOPLocalCalFitter()

Constructor.

Definition at line 103 of file TOPLocalCalFitter.cc.

103 : CalibrationAlgorithm("TOPLaserCalibratorCollector")
104{
106 "Perform the fit of the laser and pulser runs"
107 );
108
109}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~TOPLocalCalFitter()

virtual ~TOPLocalCalFitter ( )
inlinevirtual

Destructor.

Definition at line 34 of file TOPLocalCalFitter.h.

34{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calculateChennelT0()

void calculateChennelT0 ( )
protected

Calculates the commonT0 calibration after the fits have been done.

It also saves the constants in a localDB and in the output tree

Definition at line 475 of file TOPLocalCalFitter.cc.

476{
477 int nEntries = m_fitTree->GetEntries();
478 if (nEntries != 8192) {
479 B2ERROR("fitTree does not contain an entry wit a fit result for each channel. Found " << nEntries <<
480 " instead of 8192. Perhaps you tried to run the commonT0 calculation before finishing the fitting?");
481 return;
482 }
483
484 // Create and fill the TOPCalChannelT0 object.
485 // This part is mostly copy-pasted from the DB importer used up to Jan 2020
486 auto* channelT0 = new TOPCalChannelT0();
487 short nCal[16] = {0};
488 for (int i = 0; i < nEntries; i++) {
489 m_fitTree->GetEntry(i);
491 if (m_fitStatus == 0) {
492 nCal[m_slot - 1]++;
493 } else {
494 channelT0->setUnusable(m_slot, m_channel);
495 }
496 }
497
498 // Normalize the constants
499 channelT0->suppressAverage();
500
501 // create the localDB
502 saveCalibration(channelT0);
503
504 short nCalTot = 0;
505 B2INFO("Summary: ");
506 for (int iSlot = 1; iSlot < 17; iSlot++) {
507 B2INFO("--> Number of calibrated channels on Slot " << iSlot << " : " << nCal[iSlot - 1] << "/512");
508 B2INFO("--> Cal on ch 1, 256 and 511: " << channelT0->getT0(iSlot, 0) << ", " << channelT0->getT0(iSlot,
509 257) << ", " << channelT0->getT0(iSlot, 511));
510 nCalTot += nCal[iSlot - 1];
511 }
512
513 B2RESULT("Channel T0 calibration constants imported to database, calibrated channels: " << nCalTot << "/ 8192");
514
515
516 // Loop again on the output tree to save the constants there too, adding two more branches.
517 TBranch* channelT0Branch = m_fitTree->Branch<float>("channelT0", &m_channelT0);
518 TBranch* channelT0ErrBranch = m_fitTree->Branch<float>("channelT0Err", &m_channelT0Err);
519
520 for (int i = 0; i < nEntries; i++) {
521 m_fitTree->GetEntry(i);
522 m_channelT0 = channelT0->getT0(m_slot, m_channel);
523 m_channelT0Err = channelT0->getT0Error(m_slot, m_channel);
524 channelT0Branch->Fill();
525 channelT0ErrBranch->Fill();
526 }
527 return ;
528
529}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
Channel T0 calibration constants for all 512 channels of 16 modules.
short m_fitStatus
Fit quality flag, propagated to the constants.
float m_peakTimeMC
Time of the main peak in teh MC simulation, i.e.
float m_peakTimeErr
Statistical error on peakTime.
short m_channel
Channel number (0-511)
float m_channelT0Err
Statistical error on channelT0.
float m_peakTime
Fitted time of the main (i.e.
float m_channelT0
Raw, channelT0 calibration, defined as peakTime-peakTimeMC.
TTree * m_fitTree
Output of the fitter.

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Runs the algorithm on events.

Currently, it always returns c_OK despite of the actual result of the fitting procedure. This is not an issue since this moduleis not intended to be used in the automatic calibration.

Implements CalibrationAlgorithm.

Definition at line 533 of file TOPLocalCalFitter.cc.

534{
535 gROOT->SetBatch();
536
538
539
541
542 // Loads the tree with the hits
543 auto hitTree = getObjectPtr<TTree>("hitTree");
544 TH2F* h_hitTime = new TH2F("h_hitTime", " ", 512 * 16, 0., 512 * 16, 22000, -70, 40.); // 5 ps bins
545
546 float amplitude, hitTime;
547 short channel, slot;
548 bool refTimeValid;
549 hitTree->SetBranchAddress("amplitude", &amplitude);
550 hitTree->SetBranchAddress("hitTime", &hitTime);
551 hitTree->SetBranchAddress("channel", &channel);
552 hitTree->SetBranchAddress("slot", &slot);
553 hitTree->SetBranchAddress("refTimeValid", &refTimeValid);
554
555 // An attempt to speed things up looping over the tree only once.
556 std::vector<TH2F*> h_hitTimeLaserHistos = {};
557 for (int iLowerEdge = 0; iLowerEdge < (int)m_binEdges.size() - 1; iLowerEdge++) {
558 TH2F* h_hitTimeLaser = new TH2F(("h_hitTimeLaser_" + std::to_string(iLowerEdge + 1)).c_str(), " ", 512 * 16, 0., 512 * 16, 14000,
559 -70, 0.); // 5 ps bins
560 h_hitTimeLaserHistos.push_back(h_hitTimeLaser);
561 }
562
563 for (unsigned int i = 0; i < hitTree->GetEntries(); i++) {
564 auto onepc = (unsigned int)(hitTree->GetEntries() / 100);
565 if (i % onepc == 0)
566 std::cout << "processing hit " << i << " of " << hitTree->GetEntries() << " (" << i / (onepc * 10) << " %)" << std::endl;
567 hitTree->GetEntry(i);
568 auto it = std::lower_bound(m_binEdges.cbegin(), m_binEdges.cend(), amplitude);
569 int iLowerEdge = std::distance(m_binEdges.cbegin(), it) - 1;
570
571 if (iLowerEdge >= 0 && iLowerEdge < static_cast<int>(m_binEdges.size()) - 1 && refTimeValid)
572 h_hitTimeLaserHistos[iLowerEdge]->Fill(channel + (slot - 1) * 512, hitTime);
573 if (amplitude > 80. && refTimeValid)
574 h_hitTime->Fill(channel + (slot - 1) * 512, hitTime);
575 }
576
577 m_histFile->cd();
578 h_hitTime->Write();
579
580 for (short iSlot = 0; iSlot < 16; iSlot++) {
581 std::cout << "fitting slot " << iSlot + 1 << std::endl;
582 for (short iChannel = 0; iChannel < 512; iChannel++) {
583 TH1D* h_profile = h_hitTime->ProjectionY(("profile_" + std::to_string(iSlot + 1) + "_" + std::to_string(iChannel)).c_str(),
584 iSlot * 512 + iChannel + 1, iSlot * 512 + iChannel + 1);
585 if (m_fitterMode == "MC")
586 h_profile->GetXaxis()->SetRangeUser(-10, -10);
587 else
588 h_profile->GetXaxis()->SetRangeUser(-65,
589 -5); // if you will even change it, make sure not to include the h_hitTime overflow bins in this range
590 fitChannel(iSlot, iChannel, h_profile);
591
593
594 // Now let's fit the pulser
595 TH1D* h_profileFirstPulser = h_hitTime->ProjectionY(("profileFirstPulser_" + std::to_string(iSlot + 1) + "_" + std::to_string(
596 iChannel)).c_str(), iSlot * 512 + iChannel + 1, iSlot * 512 + iChannel + 1);
597 TH1D* h_profileSecondPulser = h_hitTime->ProjectionY(("profileSecondPulser_" + std::to_string(iSlot + 1) + "_" + std::to_string(
598 iChannel)).c_str(), iSlot * 512 + iChannel + 1, iSlot * 512 + iChannel + 1);
599 h_profileFirstPulser->GetXaxis()->SetRangeUser(-10, 10);
600 h_profileSecondPulser->GetXaxis()->SetRangeUser(10, 40);
601
602 fitPulser(h_profileFirstPulser, h_profileSecondPulser);
603
604 m_fitTree->Fill();
605
606 h_profile->Write();
607 h_profileFirstPulser->Write();
608 h_profileSecondPulser->Write();
609 }
610
611 h_hitTime->Write();
612 }
613
615
616 m_fitTree->Write();
617
618
620 std::cout << "Fitting in bins" << std::endl;
621 for (int iLowerEdge = 0; iLowerEdge < (int)m_binEdges.size() - 1; iLowerEdge++) {
622 m_binLowerEdge = m_binEdges[iLowerEdge];
623 m_binUpperEdge = m_binEdges[iLowerEdge + 1];
624 std::cout << "Fitting the amplitude interval (" << m_binLowerEdge << ", " << m_binUpperEdge << " )" << std::endl;
625
626 for (short iSlot = 0; iSlot < 16; iSlot++) {
627 std::cout << " Fitting slot " << iSlot + 1 << std::endl;
628 for (short iChannel = 0; iChannel < 512; iChannel++) {
629 TH1D* h_profile = h_hitTimeLaserHistos[iLowerEdge]->ProjectionY(("profile_" + std::to_string(iSlot + 1) + "_" + std::to_string(
630 iChannel) + "_" + std::to_string(iLowerEdge)).c_str(),
631 iSlot * 512 + iChannel + 1, iSlot * 512 + iChannel + 1);
632 if (m_fitterMode == "MC")
633 h_profile->GetXaxis()->SetRangeUser(-10, -10);
634 else
635 h_profile->GetXaxis()->SetRangeUser(-65,
636 -5); // if you will even change it, make sure not to include the h_hitTime overflow bins in this range
637 fitChannel(iSlot, iChannel, h_profile);
638 m_histoIntegral = h_profile->Integral();
640
641 m_timewalkTree->Fill();
642 h_profile->Write();
643 }
644 }
645 }
646
647 m_timewalkTree->Write();
648 }
649
650 m_histFile->Close();
651
652 return c_OK;
653}
float m_binLowerEdge
Lower edge of the amplitude bin in which this fit is performed.
void fitChannel(short, short, TH1 *)
Fits the laser light on one channel.
void loadMCInfoTrees()
loads the TTS parameters and the MC truth info
std::vector< float > m_binEdges
Amplitude bins.
bool m_isFitInAmplitudeBins
Enables the fit in amplitude bins.
void calculateChennelT0()
Calculates the commonT0 calibration after the fits have been done.
TTree * m_timewalkTree
Output of the fitter.
std::string m_fitterMode
Fit mode.
float m_binUpperEdge
Upper edge of the amplitude bin in which this fit is performed.
TFile * m_histFile
Output of the fitter.
void determineFitStatus()
determines if the constant obtained by the fit are good or not
void setupOutputTreeAndFile()
prepares the output tree
float m_histoIntegral
Integral of the fitted histogram.
void fitPulser(TH1 *, TH1 *)
Fits the two pulsers.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ determineFitStatus()

void determineFitStatus ( )
protected

determines if the constant obtained by the fit are good or not

Definition at line 464 of file TOPLocalCalFitter.cc.

465{
466 if (m_chi2 < 4 && m_sigma < 0.2 && m_yieldLaser > 1000) {
467 m_fitStatus = 0;
468 } else {
469 m_fitStatus = 1;
470 }
471 return;
472}
float m_chi2
Reduced chi2 of the fit.

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ fitChannel()

void fitChannel ( short  iSlot,
short  iChannel,
TH1 *  h_profile 
)
protected

Fits the laser light on one channel.

Definition at line 241 of file TOPLocalCalFitter.cc.

242{
243
244 // loads the TTS infos and the fit constraint for the given channel and slot
245 if (m_fitterMode == "monitoring")
246 m_treeConstraints->GetEntry(iChannel + 512 * iSlot);
247 else if (m_fitterMode == "calibration") // The MC-based constraint file has only slot 1 at the moment
248 m_treeConstraints->GetEntry(iChannel);
249
250 m_treeTTS->GetEntry(iChannel + 512 * iSlot);
251 // finds the maximum of the hit timing histogram and adjust the histogram range around it (3 ns window)
252 double maxpos = h_profile->GetBinCenter(h_profile->GetMaximumBin());
253 h_profile->GetXaxis()->SetRangeUser(maxpos - 1, maxpos + 2.);
254
255 // gets the histogram integral to give a starting value to the fitter
256 double integral = h_profile->Integral();
257
258 // creates the fit function
259 TF1 laser = TF1("laser", laserPDF, maxpos - 1, maxpos + 2., 16);
260
261 // par[0] = peakTime
262 laser.SetParameter(0, maxpos);
263 laser.SetParLimits(0, maxpos - 0.06, maxpos + 0.06);
264
265 // par[1] = sigma
266 laser.SetParameter(1, 0.1);
267 laser.SetParLimits(1, 0.05, 0.25);
268 if (m_fitterMode == "MC") {
269 laser.SetParameter(1, 0.02);
270 laser.SetParLimits(1, 0., 0.04);
271 }
272 // par[2] = fraction of the main peak respect to the total
273 laser.SetParameter(2, m_fractionConstraints);
274 laser.SetParLimits(2, 0.5, 1.);
275
276 // par[3]= time difference between the main and secondary path. fixed to the MC value
277 laser.FixParameter(3, m_deltaTConstraints);
278
279 // This is an hack: in some channels the MC sees one peak only, while in the data there are clearly
280 // two well distinguished peaks. This will disappear if we'll ever get a better laser simulation.
281 if (m_deltaTConstraints > -0.001) {
282 laser.SetParameter(3, -0.3);
283 laser.SetParLimits(3, -0.4, -0.2);
284 }
285
286 // par[4] is the quadratic difference of the sigmas of the two TTS gaussians (tail - core)
287 laser.FixParameter(4, TMath::Sqrt(m_sigma2 * m_sigma2 - m_sigma1 * m_sigma1));
288 // par[5] is the position of the second TTS gaussian w/ respect to the first one
289 laser.FixParameter(5, m_mean2);
290 // par[6] is the relative contribution of the second TTS gaussian
291 laser.FixParameter(6, m_f1);
292 if (m_fitterMode == "MC")
293 laser.FixParameter(6, 0);
294
295 // par[7] is the PDF normalization, = integral*bin width
296 laser.SetParameter(7, integral * 0.005);
297 laser.SetParLimits(7, 0.2 * integral * 0.005, 2.*integral * 0.005);
298
299 // par[8-10] are the relative position, the sigma and the integral of the extra peak
300 laser.SetParameter(8, 1.);
301 laser.SetParLimits(8, 0.3, 2.);
302 laser.SetParameter(9, 0.2);
303 laser.SetParLimits(9, 0.08, 1.);
304 laser.SetParameter(10, 0.1 * integral * 0.005);
305 laser.SetParLimits(10, 0., 0.2 * integral * 0.005);
306 // par[14-15] are the tail parameters of the crystal ball function used to describe the extra peak
307 laser.SetParameter(14, -2.);
308 laser.SetParameter(15, 2.);
309 laser.SetParLimits(15, 1.01, 20.);
310
311 // par[11-13] are relative position, sigma and integral of the broad gaussian added to better describe the tail at high times
312 laser.SetParameter(11, 1.);
313 laser.SetParLimits(11, 0.1, 5.);
314 laser.SetParameter(12, 0.8);
315 laser.SetParLimits(12, 0., 5.);
316 laser.SetParameter(13, 0.01 * integral * 0.005);
317 laser.SetParLimits(13, 0., 0.2 * integral * 0.005);
318
319 // if it's a monitoring fit, fix a buch more parameters.
320 if (m_fitterMode == "monitoring") {
321 laser.FixParameter(2, m_fractionConstraints);
322 laser.FixParameter(3, m_deltaTConstraints);
323 laser.FixParameter(8, m_timeExtraConstraints);
324 laser.FixParameter(9, m_sigmaExtraConstraints);
325 laser.FixParameter(14, m_alphaExtraConstraints);
326 laser.FixParameter(15, m_nExtraConstraints);
327 laser.FixParameter(11, m_timeBackgroundConstraints);
328 laser.FixParameter(12, m_sigmaBackgroundConstraints);
329 }
330
331
332 // if it's a MC fit, fix a buch more parameters.
333 if (m_fitterMode == "MC") {
334 laser.SetParameter(2, 0.8);
335 laser.SetParLimits(2, 0., 1.);
336 laser.SetParameter(3, -0.1);
337 laser.SetParLimits(3, -0.4, -0.);
338 // The following are just random reasonable number, only to pin-point the tail components to some value and remove them form the fit
339 laser.FixParameter(8, 0);
340 laser.FixParameter(9, 0.1);
341 laser.FixParameter(14, -2.);
342 laser.FixParameter(15, 2);
343 laser.FixParameter(11, 1.);
344 laser.FixParameter(12, 0.1);
345 laser.FixParameter(13, 0.);
346 laser.FixParameter(10, 0.);
347 }
348
349
350
351 // make the plot of the fit function nice setting 2000 sampling points
352 laser.SetNpx(2000);
353
354
355 // do the fit!
356 h_profile->Fit("laser", "R L Q");
357
358
359 // Add by hand the different fit components to the histogram, mostly for debugging/presentation purposes
360 TF1* peak1 = new TF1("peak1", laserPDF, maxpos - 1, maxpos + 2., 16);
361 TF1* peak2 = new TF1("peak2", laserPDF, maxpos - 1, maxpos + 2., 16);
362 TF1* extra = new TF1("extra", laserPDF, maxpos - 1, maxpos + 2., 16);
363 TF1* background = new TF1("background", laserPDF, maxpos - 1, maxpos + 2., 16);
364 for (int iPar = 0; iPar < 16; iPar++) {
365 peak1->FixParameter(iPar, laser.GetParameter(iPar));
366 peak2->FixParameter(iPar, laser.GetParameter(iPar));
367 extra->FixParameter(iPar, laser.GetParameter(iPar));
368 background->FixParameter(iPar, laser.GetParameter(iPar));
369 }
370 peak1->FixParameter(2, 0.);
371 peak1->FixParameter(7, (1 - laser.GetParameter(2))*laser.GetParameter(7));
372 peak1->FixParameter(10, 0.);
373 peak1->FixParameter(13, 0.);
374
375 peak2->FixParameter(2, 1.);
376 peak2->FixParameter(7, laser.GetParameter(2)*laser.GetParameter(7));
377 peak2->FixParameter(10, 0.);
378 peak2->FixParameter(13, 0.);
379
380 extra->FixParameter(7, 0.);
381 extra->FixParameter(13, 0.);
382
383 background->FixParameter(7, 0.);
384 background->FixParameter(10, 0.);
385
386 h_profile->GetListOfFunctions()->Add(peak1);
387 h_profile->GetListOfFunctions()->Add(peak2);
388 h_profile->GetListOfFunctions()->Add(extra);
389 h_profile->GetListOfFunctions()->Add(background);
390
391
392 // save the results in the variables linked to the tree branches
393 m_channel = iChannel;
396 m_slot = iSlot + 1;
397 m_peakTime = laser.GetParameter(0);
398 m_peakTimeErr = laser.GetParError(0);
399 m_deltaT = laser.GetParameter(3);
400 m_deltaTErr = laser.GetParError(3);
401 m_sigma = laser.GetParameter(1);
402 m_sigmaErr = laser.GetParError(1);
403 m_fraction = laser.GetParameter(2);
404 m_fractionErr = laser.GetParError(2);
405 m_yieldLaser = laser.GetParameter(7) / 0.005;
406 m_yieldLaserErr = laser.GetParError(7) / 0.005;
407 m_timeExtra = laser.GetParameter(8);
408 m_sigmaExtra = laser.GetParameter(9);
409 m_yieldLaserExtra = laser.GetParameter(10) / 0.005;
410 m_alphaExtra = laser.GetParameter(14);
411 m_nExtra = laser.GetParameter(15);
412 m_timeBackground = laser.GetParameter(11);
413 m_sigmaBackground = laser.GetParameter(12);
414 m_yieldLaserBackground = laser.GetParameter(13) / 0.005;
415 m_chi2 = laser.GetChisquare() / laser.GetNDF();
416
417 // copy some MC information to the output tree
421
422 return;
423}
float m_yieldLaserErr
Statistical error on yield.
float m_nExtraConstraints
parameter n of the tail of the extra peak
float m_timeExtraConstraints
Position of the guassian used to describe the extra peak on the timing distribution tail.
float m_f1
Fraction of the first gaussian on the TTS parametrization.
float m_fraction
Fraction of events in the secondary peak.
float m_sigmaExtra
Gaussian sigma of the extra peak in the timing tail
float m_yieldLaserBackground
Integral of the background gaussian.
float m_sigma
Gaussian time resolution, fitted.
float m_timeBackground
Position of the gaussian used to describe the background, w/ respect to peakTime.
float m_deltaTMC
Time difference between the main peak and the secondary peak in the MC simulation.
float m_sigmaBackground
Sigma of the gaussian used to describe the background.
float m_fractionErr
Statistical error on fraction.
float m_alphaExtra
alpha parameter of the tail of the extra peak.
float m_mean2
Position of the second gaussian of the TTS parametrization with respect to the first one.
float m_yieldLaser
Total number of laser hits from the fitting function integral.
float m_nExtra
parameter n of the tail of the extra peak
float m_alphaExtraConstraints
alpha parameter of the tail of the extra peak.
float m_sigmaErr
Statistical error on sigma.
TTree * m_treeConstraints
Input to the fitter.
float m_sigmaExtraConstraints
Width of the guassian used to describe the extra peak on the timing distribution tail.
float m_deltaT
Time difference between the main peak and the secondary peak.
float m_peakTimeConstraints
Time of the main laser peak in the MC simulation (aka MC correction)
float m_sigma1
Width of the first gaussian on the TTS parametrization.
float m_fractionMC
Fraction of events in the secondary peak form the MC simulation.
float m_sigmaBackgroundConstraints
Sigma of the gaussian used to describe the background.
TTree * m_treeTTS
Input to the fitter.
float m_timeBackgroundConstraints
Position of the gaussian used to describe the background, w/ respect to peakTime.
float m_deltaTErr
Statistical error on deltaT.
float m_yieldLaserExtra
Integral of the extra peak.
float m_sigma2
Width of the second gaussian on the TTS parametrization.
float m_timeExtra
Position of the extra peak seen in the timing tail, w/ respect to peakTime.
float m_fractionConstraints
Fraction of the main peak.
float m_deltaTConstraints
Distance between the main and the secondary laser peak.

◆ fitInAmpliduteBins()

void fitInAmpliduteBins ( bool  isFitInAmplitudeBins)
inline

Enables the fit amplitude bins.


Definition at line 85 of file TOPLocalCalFitter.h.

86 {
87 m_isFitInAmplitudeBins = isFitInAmplitudeBins;
88 }

◆ fitPulser()

void fitPulser ( TH1 *  h_profileFirstPulser,
TH1 *  h_profileSecondPulser 
)
protected

Fits the two pulsers.

Definition at line 426 of file TOPLocalCalFitter.cc.

427{
428 float maxpos = h_profileFirstPulser->GetBinCenter(h_profileFirstPulser->GetMaximumBin());
429 h_profileFirstPulser->GetXaxis()->SetRangeUser(maxpos - 1, maxpos + 1.);
430 if (h_profileFirstPulser->Integral() > 1000) {
431 TF1 pulser1 = TF1("pulser1", "[0]*TMath::Gaus(x, [1], [2], kTRUE)", maxpos - 1, maxpos + 1.);
432 pulser1.SetParameter(0, 1.);
433 pulser1.SetParameter(1, maxpos);
434 pulser1.SetParameter(2, 0.05);
435 h_profileFirstPulser->Fit("pulser1", "R Q");
436 m_firstPulserTime = pulser1.GetParameter(1);
437 m_firstPulserSigma = pulser1.GetParameter(2);
438 h_profileFirstPulser->Write();
439 } else {
440 m_firstPulserTime = -999;
441 m_firstPulserSigma = -999;
442 }
443
444 maxpos = h_profileSecondPulser->GetBinCenter(h_profileSecondPulser->GetMaximumBin());
445 h_profileSecondPulser->GetXaxis()->SetRangeUser(maxpos - 1, maxpos + 1.);
446 if (h_profileSecondPulser->Integral() > 1000) {
447 TF1 pulser2 = TF1("pulser2", "[0]*TMath::Gaus(x, [1], [2], kTRUE)", maxpos - 1, maxpos + 1.);
448 pulser2.SetParameter(0, 1.);
449 pulser2.SetParameter(1, maxpos);
450 pulser2.SetParameter(2, 0.05);
451 h_profileSecondPulser->Fit("pulser2", "R Q");
452 m_secondPulserTime = pulser2.GetParameter(1);
453 m_secondPulserSigma = pulser2.GetParameter(2);
454 h_profileSecondPulser->Write();
455 } else {
456 m_secondPulserTime = -999;
457 m_secondPulserSigma = -999;
458 }
459 return;
460}
float m_secondPulserSigma
Time resolution from the fit of the first electronic pulse, from a Gaussian fit.
float m_firstPulserSigma
Time resolution from the fit of the first electronic pulse, from a Gaussian fit.
float m_secondPulserTime
Average time of the second electronic pulse respect to the reference pulse, from a gaussian fit.
float m_firstPulserTime
Average time of the first electronic pulse respect to the reference pulse, from a Gaussian fit.

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ loadMCInfoTrees()

void loadMCInfoTrees ( )
protected

loads the TTS parameters and the MC truth info

Definition at line 113 of file TOPLocalCalFitter.cc.

114{
115 m_inputTTS = TFile::Open(m_TTSData.c_str());
116 m_inputConstraints = TFile::Open(m_fitConstraints.c_str());
117
118 B2INFO("Getting the TTS parameters from " << m_TTSData);
119 m_inputTTS->cd();
120 m_inputTTS->GetObject("tree", m_treeTTS);
121 m_treeTTS->SetBranchAddress("mean2", &m_mean2);
122 m_treeTTS->SetBranchAddress("sigma1", &m_sigma1);
123 m_treeTTS->SetBranchAddress("sigma2", &m_sigma2);
124 m_treeTTS->SetBranchAddress("fraction1", &m_f1);
125 m_treeTTS->SetBranchAddress("fraction2", &m_f2);
126 m_treeTTS->SetBranchAddress("pixelRow", &m_pixelRow);
127 m_treeTTS->SetBranchAddress("pixelCol", &m_pixelCol);
128
129 if (m_fitterMode == "MC")
130 std::cout << "Running in MC mode, not constraints will be set" << std::endl;
131 else {
132 B2INFO("Getting the laser fit parameters from " << m_fitConstraints);
133 m_inputConstraints->cd();
134 m_inputConstraints->GetObject("fitTree", m_treeConstraints);
135 m_treeConstraints->SetBranchAddress("peakTime", &m_peakTimeConstraints);
136 m_treeConstraints->SetBranchAddress("deltaT", &m_deltaTConstraints);
137 m_treeConstraints->SetBranchAddress("fraction", &m_fractionConstraints);
138 if (m_fitterMode == "monitoring") {
139 m_treeConstraints->SetBranchAddress("timeExtra", &m_timeExtraConstraints);
140 m_treeConstraints->SetBranchAddress("sigmaExtra", &m_sigmaExtraConstraints);
141 m_treeConstraints->SetBranchAddress("alphaExtra", &m_alphaExtraConstraints);
142 m_treeConstraints->SetBranchAddress("nExtra", &m_nExtraConstraints);
143 m_treeConstraints->SetBranchAddress("timeBackground", &m_timeBackgroundConstraints);
144 m_treeConstraints->SetBranchAddress("sigmaBackground", &m_sigmaBackgroundConstraints);
145 }
146 }
147 return;
148}
std::string m_TTSData
File with the Fit constraints and MC info.
std::string m_fitConstraints
File with the TTS parametrization.
TFile * m_inputTTS
File containing m_treeTTS.
float m_f2
Fraction of the second gaussian on the TTS parametrization.
TFile * m_inputConstraints
File containing m_treeConstraints.

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setFitConstraintsFileName()

void setFitConstraintsFileName ( const std::string &  fitConstraints)
inline

Sets the name of the root file containing the laser MC time corrections and the fit constraints.

If the monitoringFit option is used (low statistics sample), this file must be the result of an high-statistics fit.

Definition at line 51 of file TOPLocalCalFitter.h.

52 {
53 m_fitConstraints = fitConstraints;
54 }

◆ setFitMode()

void setFitMode ( const std::string &  fitterMode)
inline

Sets the fitter mode.

The options are 'calibration' (default), 'monitoring' or 'MC'. The mode affects the number of parameters that are fixed. Use calibration if you are fitting a large sample (1 M events or more) to derive a set of channelT0 calibrations. Use monitoring if you are fitting a smaller sample. The light path fractions and the tail parameters will be constrained according to the constraint file you passed to the fitter (usually teh result fo a high-statistics fit). Use MC to fit the MC sample and calculate a new set of prism corrections. No parameter is fixed, but the tail components are removed form the fit.

Definition at line 70 of file TOPLocalCalFitter.h.

71 {
72 if (fitterMode == "calibration")
73 B2INFO("Fitter set to calibration mode");
74 else if (fitterMode == "monitoring")
75 B2INFO("Fitter set to monitoring mode");
76 else if (fitterMode == "MC")
77 B2INFO("Fitter set to MC mode");
78 else
79 B2ERROR("Unknown fitter type " << fitterMode << ". The valid options are calibration, monitoring or MC");
80
81 m_fitterMode = fitterMode;
82 }

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMinEntries()

void setMinEntries ( int  minEntries)
inline

Sets the minimum number of entries to perform the calibration in one channel.

Definition at line 37 of file TOPLocalCalFitter.h.

38 {
39 m_minEntries = minEntries;
40 }
int m_minEntries
Minimum number of entries to perform the fit.

◆ setOutputFileName()

void setOutputFileName ( const std::string &  output)
inline

Sets the name of the output root file.

Definition at line 43 of file TOPLocalCalFitter.h.

44 {
45 m_output = output;
46 }
std::string m_output
Name of the output file.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setTTSFileName()

void setTTSFileName ( const std::string &  TTSData)
inline

Sets the name of the root file containing the TTS parameters.

Definition at line 57 of file TOPLocalCalFitter.h.

58 {
59 m_TTSData = TTSData;
60 }

◆ setupOutputTreeAndFile()

void setupOutputTreeAndFile ( )
protected

prepares the output tree

Definition at line 151 of file TOPLocalCalFitter.cc.

152{
153 m_histFile = new TFile(m_output.c_str(), "recreate");
154 m_histFile->cd();
155 m_fitTree = new TTree("fitTree", "fitTree");
156 m_fitTree->Branch<short>("channel", &m_channel);
157 m_fitTree->Branch<short>("slot", &m_slot);
158 m_fitTree->Branch<short>("row", &m_row);
159 m_fitTree->Branch<short>("col", &m_col);
160 m_fitTree->Branch<float>("peakTime", &m_peakTime);
161 m_fitTree->Branch<float>("peakTimeErr", &m_peakTimeErr);
162 m_fitTree->Branch<float>("deltaT", &m_deltaT);
163 m_fitTree->Branch<float>("deltaTErr", &m_deltaTErr);
164 m_fitTree->Branch<float>("sigma", &m_sigma);
165 m_fitTree->Branch<float>("sigmaErr", &m_sigmaErr);
166 m_fitTree->Branch<float>("fraction", &m_fraction);
167 m_fitTree->Branch<float>("fractionErr", &m_fractionErr);
168 m_fitTree->Branch<float>("yieldLaser", &m_yieldLaser);
169 m_fitTree->Branch<float>("yieldLaserErr", &m_yieldLaserErr);
170 m_fitTree->Branch<float>("timeExtra", &m_timeExtra);
171 m_fitTree->Branch<float>("sigmaExtra", &m_sigmaExtra);
172 m_fitTree->Branch<float>("nExtra", &m_nExtra);
173 m_fitTree->Branch<float>("alphaExtra", &m_alphaExtra);
174 m_fitTree->Branch<float>("yieldLaserExtra", &m_yieldLaserExtra);
175 m_fitTree->Branch<float>("timeBackground", &m_timeBackground);
176 m_fitTree->Branch<float>("sigmaBackground", &m_sigmaBackground);
177 m_fitTree->Branch<float>("yieldLaserBackground", &m_yieldLaserBackground);
178
179 m_fitTree->Branch<float>("fractionMC", &m_fractionMC);
180 m_fitTree->Branch<float>("deltaTMC", &m_deltaTMC);
181 m_fitTree->Branch<float>("peakTimeMC", &m_peakTimeMC);
182 m_fitTree->Branch<float>("firstPulserTime", &m_firstPulserTime);
183 m_fitTree->Branch<float>("firstPulserSigma", &m_firstPulserSigma);
184 m_fitTree->Branch<float>("secondPulserTime", &m_secondPulserTime);
185 m_fitTree->Branch<float>("secondPulserSigma", &m_secondPulserSigma);
186 m_fitTree->Branch<short>("fitStatus", &m_fitStatus);
187
188 m_fitTree->Branch<float>("chi2", &m_chi2);
189 m_fitTree->Branch<float>("rms", &m_rms);
190
191
193 m_timewalkTree = new TTree("timewalkTree", "timewalkTree");
194
195 m_timewalkTree->Branch<float>("binLowerEdge", &m_binLowerEdge);
196 m_timewalkTree->Branch<float>("binUpperEdge", &m_binUpperEdge);
197 m_timewalkTree->Branch<short>("channel", &m_channel);
198 m_timewalkTree->Branch<short>("slot", &m_slot);
199 m_timewalkTree->Branch<short>("row", &m_row);
200 m_timewalkTree->Branch<short>("col", &m_col);
201 m_timewalkTree->Branch<float>("histoIntegral", &m_histoIntegral);
202 m_timewalkTree->Branch<float>("peakTime", &m_peakTime);
203 m_timewalkTree->Branch<float>("peakTimeErr", &m_peakTimeErr);
204 m_timewalkTree->Branch<float>("deltaT", &m_deltaT);
205 m_timewalkTree->Branch<float>("deltaTErr", &m_deltaTErr);
206 m_timewalkTree->Branch<float>("sigma", &m_sigma);
207 m_timewalkTree->Branch<float>("sigmaErr", &m_sigmaErr);
208 m_timewalkTree->Branch<float>("fraction", &m_fraction);
209 m_timewalkTree->Branch<float>("fractionErr", &m_fractionErr);
210 m_timewalkTree->Branch<float>("yieldLaser", &m_yieldLaser);
211 m_timewalkTree->Branch<float>("yieldLaserErr", &m_yieldLaserErr);
212 m_timewalkTree->Branch<float>("timeExtra", &m_timeExtra);
213 m_timewalkTree->Branch<float>("sigmaExtra", &m_sigmaExtra);
214 m_timewalkTree->Branch<float>("nExtra", &m_nExtra);
215 m_timewalkTree->Branch<float>("alphaExtra", &m_alphaExtra);
216 m_timewalkTree->Branch<float>("yieldLaserExtra", &m_yieldLaserExtra);
217 m_timewalkTree->Branch<float>("timeBackground", &m_timeBackground);
218 m_timewalkTree->Branch<float>("sigmaBackground", &m_sigmaBackground);
219 m_timewalkTree->Branch<float>("yieldLaserBackground", &m_yieldLaserBackground);
220
221 m_timewalkTree->Branch<float>("fractionMC", &m_fractionMC);
222 m_timewalkTree->Branch<float>("deltaTMC", &m_deltaTMC);
223 m_timewalkTree->Branch<float>("peakTimeMC", &m_peakTimeMC);
224 m_timewalkTree->Branch<float>("firstPulserTime", &m_firstPulserTime);
225 m_timewalkTree->Branch<float>("firstPulserSigma", &m_firstPulserSigma);
226 m_timewalkTree->Branch<float>("secondPulserTime", &m_secondPulserTime);
227 m_timewalkTree->Branch<float>("secondPulserSigma", &m_secondPulserSigma);
228 m_timewalkTree->Branch<short>("fitStatus", &m_fitStatus);
229
230 m_timewalkTree->Branch<float>("chi2", &m_chi2);
231 m_timewalkTree->Branch<float>("rms", &m_rms);
232
233 }
234
235 return;
236}
float m_rms
RMS of the histogram used for the fit.

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_alphaExtra

float m_alphaExtra = 0.
private

alpha parameter of the tail of the extra peak.

Definition at line 185 of file TOPLocalCalFitter.h.

◆ m_alphaExtraConstraints

float m_alphaExtraConstraints = 0.
private

alpha parameter of the tail of the extra peak.

Definition at line 155 of file TOPLocalCalFitter.h.

◆ m_binEdges

std::vector<float> m_binEdges = {50, 100, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400, 430, 460, 490, 520, 550, 580, 610, 640, 670, 700, 800, 900, 1000, 1200, 1500, 2000}
private

Amplitude bins.

Definition at line 127 of file TOPLocalCalFitter.h.

◆ m_binLowerEdge

float m_binLowerEdge = 0
private

Lower edge of the amplitude bin in which this fit is performed.

Definition at line 162 of file TOPLocalCalFitter.h.

◆ m_binUpperEdge

float m_binUpperEdge = 0
private

Upper edge of the amplitude bin in which this fit is performed.

Definition at line 163 of file TOPLocalCalFitter.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_channel

short m_channel = 0
private

Channel number (0-511)

Definition at line 164 of file TOPLocalCalFitter.h.

◆ m_channelT0

float m_channelT0
private
Initial value:
=
0.

Raw, channelT0 calibration, defined as peakTime-peakTimeMC.

This constant is not yet normalized to the average constant in the slot, since that part is currently done by the DB importer. When the DB import functionalities will be added to this module, it will be set to the proper channeT0

Definition at line 200 of file TOPLocalCalFitter.h.

◆ m_channelT0Err

float m_channelT0Err = 0.
private

Statistical error on channelT0.

Definition at line 202 of file TOPLocalCalFitter.h.

◆ m_chi2

float m_chi2 = 0
private

Reduced chi2 of the fit.

Definition at line 197 of file TOPLocalCalFitter.h.

◆ m_col

short m_col = 0
private

Pixel column.

Definition at line 167 of file TOPLocalCalFitter.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_deltaT

float m_deltaT
private
Initial value:
=
0

Time difference between the main peak and the secondary peak.

Can be either fixed to the MC value or fitted.

Definition at line 169 of file TOPLocalCalFitter.h.

◆ m_deltaTConstraints

float m_deltaTConstraints = 0
private

Distance between the main and the secondary laser peak.

Definition at line 151 of file TOPLocalCalFitter.h.

◆ m_deltaTErr

float m_deltaTErr = 0
private

Statistical error on deltaT.

Definition at line 177 of file TOPLocalCalFitter.h.

◆ m_deltaTMC

float m_deltaTMC = 0.
private

Time difference between the main peak and the secondary peak in the MC simulation.

Definition at line 193 of file TOPLocalCalFitter.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_f1

float m_f1 = 0
private

Fraction of the first gaussian on the TTS parametrization.

Definition at line 144 of file TOPLocalCalFitter.h.

◆ m_f2

float m_f2 = 0
private

Fraction of the second gaussian on the TTS parametrization.

Definition at line 145 of file TOPLocalCalFitter.h.

◆ m_firstPulserSigma

float m_firstPulserSigma = 0.
private

Time resolution from the fit of the first electronic pulse, from a Gaussian fit.

Definition at line 205 of file TOPLocalCalFitter.h.

◆ m_firstPulserTime

float m_firstPulserTime = 0.
private

Average time of the first electronic pulse respect to the reference pulse, from a Gaussian fit.

Definition at line 204 of file TOPLocalCalFitter.h.

◆ m_fitConstraints

std::string m_fitConstraints
private
Initial value:
=
"/group/belle2/group/detector/TOP/calibration/MCreferences/LaserMCParameters.root"

File with the TTS parametrization.

Definition at line 121 of file TOPLocalCalFitter.h.

◆ m_fitStatus

short m_fitStatus = 1
private

Fit quality flag, propagated to the constants.

1 if fit did not converge, 0 if it is fine.

Definition at line 211 of file TOPLocalCalFitter.h.

◆ m_fitterMode

std::string m_fitterMode = "calibration"
private

Fit mode.

Can be 'calibration', 'monitoring' or 'MC'

Definition at line 125 of file TOPLocalCalFitter.h.

◆ m_fitTree

TTree* m_fitTree = nullptr
private

Output of the fitter.

The tree containg the fit results.

Definition at line 135 of file TOPLocalCalFitter.h.

◆ m_fraction

float m_fraction = 0.
private

Fraction of events in the secondary peak.

Definition at line 172 of file TOPLocalCalFitter.h.

◆ m_fractionConstraints

float m_fractionConstraints = 0
private

Fraction of the main peak.

Definition at line 152 of file TOPLocalCalFitter.h.

◆ m_fractionErr

float m_fractionErr = 0.
private

Statistical error on fraction.

Definition at line 179 of file TOPLocalCalFitter.h.

◆ m_fractionMC

float m_fractionMC = 0.
private

Fraction of events in the secondary peak form the MC simulation.

Definition at line 192 of file TOPLocalCalFitter.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_histFile

TFile* m_histFile = nullptr
private

Output of the fitter.

The file containing the output trees and histograms

Definition at line 134 of file TOPLocalCalFitter.h.

◆ m_histoIntegral

float m_histoIntegral = 0.
private

Integral of the fitted histogram.

Definition at line 174 of file TOPLocalCalFitter.h.

◆ m_inputConstraints

TFile* m_inputConstraints = nullptr
private

File containing m_treeConstraints.

Definition at line 129 of file TOPLocalCalFitter.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_inputTTS

TFile* m_inputTTS = nullptr
private

File containing m_treeTTS.

Definition at line 128 of file TOPLocalCalFitter.h.

◆ m_isFitInAmplitudeBins

bool m_isFitInAmplitudeBins = false
private

Enables the fit in amplitude bins.

Definition at line 126 of file TOPLocalCalFitter.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_mean2

float m_mean2 = 0
private

Position of the second gaussian of the TTS parametrization with respect to the first one.

Definition at line 141 of file TOPLocalCalFitter.h.

◆ m_minEntries

int m_minEntries = 50
private

Minimum number of entries to perform the fit.

Currently not used

Definition at line 119 of file TOPLocalCalFitter.h.

◆ m_nExtra

float m_nExtra = 0.
private

parameter n of the tail of the extra peak

Definition at line 186 of file TOPLocalCalFitter.h.

◆ m_nExtraConstraints

float m_nExtraConstraints = 0.
private

parameter n of the tail of the extra peak

Definition at line 156 of file TOPLocalCalFitter.h.

◆ m_output

std::string m_output = "laserFitResult.root"
private

Name of the output file.

Definition at line 120 of file TOPLocalCalFitter.h.

◆ m_peakTime

float m_peakTime = 0
private

Fitted time of the main (i.e.

latest) peak

Definition at line 168 of file TOPLocalCalFitter.h.

◆ m_peakTimeConstraints

float m_peakTimeConstraints = 0
private

Time of the main laser peak in the MC simulation (aka MC correction)

Definition at line 150 of file TOPLocalCalFitter.h.

◆ m_peakTimeErr

float m_peakTimeErr = 0
private

Statistical error on peakTime.

Definition at line 176 of file TOPLocalCalFitter.h.

◆ m_peakTimeMC

float m_peakTimeMC
private
Initial value:
=
0.

Time of the main peak in teh MC simulation, i.e.

time of propagation of the light in the prism. This factor is used to get the channelT0 calibration

Definition at line 194 of file TOPLocalCalFitter.h.

◆ m_pixelCol

short m_pixelCol = 0
private

Pixel column.

Definition at line 147 of file TOPLocalCalFitter.h.

◆ m_pixelRow

short m_pixelRow = 0
private

Pixel row.

Definition at line 146 of file TOPLocalCalFitter.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_rms

float m_rms = 0
private

RMS of the histogram used for the fit.

Definition at line 198 of file TOPLocalCalFitter.h.

◆ m_row

short m_row = 0
private

Pixel row.

Definition at line 166 of file TOPLocalCalFitter.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_secondPulserSigma

float m_secondPulserSigma = 0.
private

Time resolution from the fit of the first electronic pulse, from a Gaussian fit.

Definition at line 209 of file TOPLocalCalFitter.h.

◆ m_secondPulserTime

float m_secondPulserTime
private
Initial value:
=
0.

Average time of the second electronic pulse respect to the reference pulse, from a gaussian fit.

Definition at line 207 of file TOPLocalCalFitter.h.

◆ m_sigma

float m_sigma = 0.
private

Gaussian time resolution, fitted.

Definition at line 171 of file TOPLocalCalFitter.h.

◆ m_sigma1

float m_sigma1 = 0
private

Width of the first gaussian on the TTS parametrization.

Definition at line 142 of file TOPLocalCalFitter.h.

◆ m_sigma2

float m_sigma2 = 0
private

Width of the second gaussian on the TTS parametrization.

Definition at line 143 of file TOPLocalCalFitter.h.

◆ m_sigmaBackground

float m_sigmaBackground = 0.
private

Sigma of the gaussian used to describe the background.

Definition at line 189 of file TOPLocalCalFitter.h.

◆ m_sigmaBackgroundConstraints

float m_sigmaBackgroundConstraints = 0.
private

Sigma of the gaussian used to describe the background.

Definition at line 158 of file TOPLocalCalFitter.h.

◆ m_sigmaErr

float m_sigmaErr = 0.
private

Statistical error on sigma.

Definition at line 178 of file TOPLocalCalFitter.h.

◆ m_sigmaExtra

float m_sigmaExtra = 0.
private

Gaussian sigma of the extra peak in the timing tail

Definition at line 183 of file TOPLocalCalFitter.h.

◆ m_sigmaExtraConstraints

float m_sigmaExtraConstraints = 0
private

Width of the guassian used to describe the extra peak on the timing distribution tail.

Definition at line 154 of file TOPLocalCalFitter.h.

◆ m_slot

short m_slot = 0
private

Slot ID (1-16)

Definition at line 165 of file TOPLocalCalFitter.h.

◆ m_timeBackground

float m_timeBackground = 0.
private

Position of the gaussian used to describe the background, w/ respect to peakTime.

Definition at line 188 of file TOPLocalCalFitter.h.

◆ m_timeBackgroundConstraints

float m_timeBackgroundConstraints = 0.
private

Position of the gaussian used to describe the background, w/ respect to peakTime.

Definition at line 157 of file TOPLocalCalFitter.h.

◆ m_timeExtra

float m_timeExtra = 0.
private

Position of the extra peak seen in the timing tail, w/ respect to peakTime.

Definition at line 182 of file TOPLocalCalFitter.h.

◆ m_timeExtraConstraints

float m_timeExtraConstraints = 0
private

Position of the guassian used to describe the extra peak on the timing distribution tail.

Definition at line 153 of file TOPLocalCalFitter.h.

◆ m_timewalkTree

TTree* m_timewalkTree
private
Initial value:
=
nullptr

Output of the fitter.

The tree containg the fit results to be used to study timewalk and asymptotic time resolution.

Definition at line 136 of file TOPLocalCalFitter.h.

◆ m_treeConstraints

TTree* m_treeConstraints
private
Initial value:
=
nullptr

Input to the fitter.

A tree containing the laser MC corrections and all the paraeters to be fixed in the fit

Definition at line 132 of file TOPLocalCalFitter.h.

◆ m_treeTTS

TTree* m_treeTTS = nullptr
private

Input to the fitter.

A tree containing the TTS parametrization for each channel

Definition at line 131 of file TOPLocalCalFitter.h.

◆ m_TTSData

std::string m_TTSData
private
Initial value:
=
"/group/belle2/group/detector/TOP/calibration/MCreferences/TTSParametrization.root"

File with the Fit constraints and MC info.

Definition at line 123 of file TOPLocalCalFitter.h.

◆ m_yieldLaser

float m_yieldLaser = 0.
private

Total number of laser hits from the fitting function integral.

Definition at line 173 of file TOPLocalCalFitter.h.

◆ m_yieldLaserBackground

float m_yieldLaserBackground = 0.
private

Integral of the background gaussian.

Definition at line 190 of file TOPLocalCalFitter.h.

◆ m_yieldLaserErr

float m_yieldLaserErr = 0.
private

Statistical error on yield.

Definition at line 180 of file TOPLocalCalFitter.h.

◆ m_yieldLaserExtra

float m_yieldLaserExtra = 0.
private

Integral of the extra peak.

Definition at line 184 of file TOPLocalCalFitter.h.


The documentation for this class was generated from the following files: