Belle II Software development
TRGGRLDQMModule Class Reference
Inheritance diagram for TRGGRLDQMModule:
HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 TRGGRLDQMModule ()
 Costructor.
 
virtual ~TRGGRLDQMModule ()
 Destrunctor.
 
virtual void initialize () override
 initialize
 
virtual void beginRun () override
 begin Run
 
virtual void event () override
 Event.
 
virtual void endRun () override
 End Run.
 
virtual void terminate () override
 terminate
 
virtual void defineHisto () override
 Define Histogram.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * oldDir = nullptr
 TDirectory.
 
TDirectory * dirDQM = nullptr
 TDirectory.
 
TH1I * h_N_track = nullptr
 Number of tracks.
 
TH1F * h_phi_i = nullptr
 phi_i of CDC 2D tracks
 
TH1F * h_phi_CDC = nullptr
 phi_CDC, extrapolated phi at ECL of CDC 2D tracks
 
TH1F * h_sector_CDC = nullptr
 sector_CDC, extrapolated phi at KLM of CDC 2D tracks
 
TH1F * h_sector_KLM = nullptr
 sector map of KLM
 
TH1F * h_slot_CDC = nullptr
 slot_CDC, extrapolated phi at TOP of CDC 2D tracks
 
TH1F * h_slot_TOP = nullptr
 slot map of TOP
 
TH1F * h_E_ECL = nullptr
 ECL cluster energy.
 
TH1F * h_theta_ECL = nullptr
 ECL cluster theta.
 
TH1F * h_phi_ECL = nullptr
 ECL cluster phi.
 
TH1F * h_CDCL1 = nullptr
 Jitter of CDC 2D -> L1.
 
TH1F * h_ECLL1 = nullptr
 Jitter of ECL -> L1.
 
TH1F * h_ECLL1_2nd = nullptr
 Jitter of ECl 2nd input -> L1.
 
TH1F * h_TOPL1 = nullptr
 Jitter of TOP -> L1.
 
TH1F * h_KLML1 = nullptr
 Jitter of KLM -> L1.
 
TH1F * h_CDC3DL1 = nullptr
 Jitter of CDC 3D -> L1.
 
TH1F * h_CDCNNL1 = nullptr
 Jitter of CDC NN -> L1.
 
TH1F * h_TSFL1 = nullptr
 Jitter of Short track -> L1.
 
TH1F * h_B2LL1 = nullptr
 Jitter of B2L window -> L1.
 
TH1F * h_map_ST = nullptr
 Short track map.
 
TH1F * h_map_ST2 = nullptr
 Short track map.
 
TH1F * h_map_veto = nullptr
 Full track veto map.
 
TH1F * h_map_TSF0 = nullptr
 TSF0 map.
 
TH1F * h_map_TSF2 = nullptr
 TSF2 map.
 
TH1F * h_map_TSF4 = nullptr
 TSF4 map.
 
TH1F * h_map_TSF1 = nullptr
 TSF1 map.
 
TH1F * h_map_TSF3 = nullptr
 TSF3 map.
 
TH1F * h_wc_TSF0 = nullptr
 Wirecnt from TSF0.
 
TH1F * h_wc_TSF1 = nullptr
 Wirecnt from TSF1.
 
TH1F * h_wc_TSF2 = nullptr
 Wirecnt from TSF2.
 
TH1F * h_wc_TSF3 = nullptr
 Wirecnt from TSF3.
 
TH1F * h_wc_TSF4 = nullptr
 Wirecnt from TSF4.
 
TH1F * h_wc_TSF5 = nullptr
 Wirecnt from TSF5.
 
TH1F * h_wc_TSF6 = nullptr
 Wirecnt from TSF6.
 
TH1F * h_wc_sum = nullptr
 Wirecnt from all TSFs.
 
TH1F * h_wcsum_clean = nullptr
 Wirecnt from all TSFs from the injection BG clean region.
 
TH1F * h_wcsum_injHER = nullptr
 Wirecnt from all TSFs from the HER injection BG region.
 
TH1F * h_wcsum_injLER = nullptr
 Wirecnt from all TSFs from the LER injection BG region.
 
TH2F * h_wc0_injtime = nullptr
 2D plot: TSF0 cnt vs.
 
TH2F * h_wc1_injtime = nullptr
 2D plot: TSF1 cnt vs.
 
TH2F * h_wc2_injtime = nullptr
 2D plot: TSF2 cnt vs.
 
TH2F * h_wc3_injtime = nullptr
 2D plot: TSF3 cnt vs.
 
TH2F * h_wc4_injtime = nullptr
 2D plot: TSF4 cnt vs.
 
TH2F * h_wc5_injtime = nullptr
 2D plot: TSF5 cnt vs.
 
TH2F * h_wc6_injtime = nullptr
 2D plot: TSF6 cnt vs.
 
TH2F * h_wcsum_injtime = nullptr
 2D plot: all TSFs cnt vs.
 
StoreObjPtr< EventLevelTriggerTimeInfom_trgTime
 Array to access the event time information from the trigger and FTSW.
 
DBObjPtr< HardwareClockSettingsm_hwclkdb
 DB pointerto access the hardware clock information.
 

Private Member Functions

std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Definition at line 28 of file TRGGRLDQMModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ TRGGRLDQMModule()

Costructor.

Definition at line 27 of file TRGGRLDQMModule.cc.

27 : HistoModule()
28{
29
30 setDescription("DQM for GRL Trigger system");
32
33}
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208

◆ ~TRGGRLDQMModule()

virtual ~TRGGRLDQMModule ( )
inlinevirtual

Destrunctor.

Definition at line 34 of file TRGGRLDQMModule.h.

34{}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

begin Run

Reimplemented from HistoModule.

Definition at line 152 of file TRGGRLDQMModule.cc.

153{
154
155 dirDQM->cd();
156
157 h_N_track->Reset();
158 h_phi_i->Reset();
159 h_phi_CDC->Reset();
160 h_sector_CDC->Reset();
161 h_sector_KLM->Reset();
162 h_slot_CDC->Reset();
163 h_slot_TOP->Reset();
164 h_E_ECL->Reset();
165 h_theta_ECL->Reset();
166 h_phi_ECL->Reset();
167 h_CDCL1->Reset();
168 h_ECLL1->Reset();
169 h_TOPL1->Reset();
170 h_KLML1->Reset();
171 h_CDC3DL1->Reset();
172 h_CDCNNL1->Reset();
173 h_TSFL1->Reset();
174 h_B2LL1->Reset();
175 h_map_ST->Reset();
176 h_map_ST2->Reset();
177 h_map_veto->Reset();
178 h_map_TSF0->Reset();
179 h_map_TSF2->Reset();
180 h_map_TSF4->Reset();
181 h_map_TSF1->Reset();
182 h_map_TSF3->Reset();
183
184 h_wc_TSF0->Reset();
185 h_wc_TSF1->Reset();
186 h_wc_TSF2->Reset();
187 h_wc_TSF3->Reset();
188 h_wc_TSF4->Reset();
189 h_wc_TSF5->Reset();
190 h_wc_TSF6->Reset();
191 h_wc_sum->Reset();
192 h_wcsum_clean->Reset();
193 h_wcsum_injHER->Reset();
194 h_wcsum_injLER->Reset();
195 h_wc0_injtime->Reset();
196 h_wc1_injtime->Reset();
197 h_wc2_injtime->Reset();
198 h_wc3_injtime->Reset();
199 h_wc4_injtime->Reset();
200 h_wc5_injtime->Reset();
201 h_wc6_injtime->Reset();
202 h_wcsum_injtime->Reset();
203
204 oldDir->cd();
205}
TH1F * h_phi_CDC
phi_CDC, extrapolated phi at ECL of CDC 2D tracks
TH1F * h_map_TSF3
TSF3 map.
TH2F * h_wc2_injtime
2D plot: TSF2 cnt vs.
TH1F * h_wcsum_injLER
Wirecnt from all TSFs from the LER injection BG region.
TH1F * h_wc_TSF6
Wirecnt from TSF6.
TH1F * h_map_TSF4
TSF4 map.
TH2F * h_wc1_injtime
2D plot: TSF1 cnt vs.
TH2F * h_wc6_injtime
2D plot: TSF6 cnt vs.
TH1F * h_wc_TSF3
Wirecnt from TSF3.
TH1F * h_map_TSF1
TSF1 map.
TDirectory * oldDir
TDirectory.
TH1F * h_CDC3DL1
Jitter of CDC 3D -> L1.
TH1F * h_KLML1
Jitter of KLM -> L1.
TH1F * h_phi_i
phi_i of CDC 2D tracks
TH1F * h_E_ECL
ECL cluster energy.
TH2F * h_wc4_injtime
2D plot: TSF4 cnt vs.
TH1F * h_map_TSF0
TSF0 map.
TH1F * h_ECLL1
Jitter of ECL -> L1.
TH1F * h_wc_sum
Wirecnt from all TSFs.
TH1F * h_wc_TSF5
Wirecnt from TSF5.
TH1F * h_wc_TSF2
Wirecnt from TSF2.
TH1F * h_wcsum_injHER
Wirecnt from all TSFs from the HER injection BG region.
TH1F * h_TOPL1
Jitter of TOP -> L1.
TH1F * h_CDCNNL1
Jitter of CDC NN -> L1.
TH1F * h_B2LL1
Jitter of B2L window -> L1.
TH1F * h_map_ST2
Short track map.
TH1I * h_N_track
Number of tracks.
TH1F * h_map_TSF2
TSF2 map.
TH1F * h_CDCL1
Jitter of CDC 2D -> L1.
TH1F * h_phi_ECL
ECL cluster phi.
TH1F * h_wc_TSF4
Wirecnt from TSF4.
TH1F * h_TSFL1
Jitter of Short track -> L1.
TH1F * h_sector_KLM
sector map of KLM
TH1F * h_theta_ECL
ECL cluster theta.
TH1F * h_slot_CDC
slot_CDC, extrapolated phi at TOP of CDC 2D tracks
TDirectory * dirDQM
TDirectory.
TH1F * h_wc_TSF0
Wirecnt from TSF0.
TH2F * h_wc5_injtime
2D plot: TSF5 cnt vs.
TH2F * h_wc0_injtime
2D plot: TSF0 cnt vs.
TH2F * h_wc3_injtime
2D plot: TSF3 cnt vs.
TH1F * h_sector_CDC
sector_CDC, extrapolated phi at KLM of CDC 2D tracks
TH1F * h_map_veto
Full track veto map.
TH1F * h_slot_TOP
slot map of TOP
TH1F * h_wc_TSF1
Wirecnt from TSF1.
TH2F * h_wcsum_injtime
2D plot: all TSFs cnt vs.
TH1F * h_map_ST
Short track map.
TH1F * h_wcsum_clean
Wirecnt from all TSFs from the injection BG clean region.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
overridevirtual

Define Histogram.

Reimplemented from HistoModule.

Definition at line 35 of file TRGGRLDQMModule.cc.

36{
37 oldDir = gDirectory;
38 dirDQM = NULL;
39 dirDQM = oldDir->mkdir("TRGGRL");
40 dirDQM->cd();
41
42 h_N_track = new TH1I("h_N_track", "CDCTRG 2D N_track", 8, 0, 8);
43 h_N_track->GetXaxis()->SetTitle("CDCTRG 2D N_track");
44
45 h_phi_i = new TH1F("h_phi_i", "phi_i CDCTRG 2D [10 degrees]", 36, 0, 360);
46 h_phi_i->GetXaxis()->SetTitle("#phi_{i} CDCTRG 2D [10 degrees]");
47 h_phi_CDC = new TH1F("h_phi_CDC", "phi_CDC CDCTRG 2D [10 degrees]", 36, 0, 360);
48 h_phi_CDC->GetXaxis()->SetTitle("#phi_{CDC} CDCTRG 2D [10 degrees]");
49 h_sector_CDC = new TH1F("h_sector_CDC", "Sector_CDC CDCTRG 2D [45 degrees]", 8, -22.5, 337.5);
50 h_sector_CDC->GetXaxis()->SetTitle("Sector_{CDC} CDCTRG 2D [45 degrees]");
51 h_sector_KLM = new TH1F("h_sector_KLM", "Sector_KLM [45 degrees]", 8, -22.5, 337.5);
52 h_sector_KLM->GetXaxis()->SetTitle("Sector_{KLM} [45 degrees]");
53 h_slot_CDC = new TH1F("h_slot_CDC", "Slot_CDC CDCTRG 2D [22.5 degrees]", 16, 0, 360);
54 h_slot_CDC->GetXaxis()->SetTitle("Slot_{CDC} CDCTRG 2D [22.5 degrees]");
55 h_slot_TOP = new TH1F("h_slot_TOP", "Slot_TOP [22.5 degrees]", 16, 0, 360);
56 h_slot_TOP->GetXaxis()->SetTitle("Slot_{TOP} [22.5 degrees]");
57
58 h_E_ECL = new TH1F("h_E_ECL", "ECL cluster energy [5 MeV]", 2048, 0, 10.24);
59 h_E_ECL->GetXaxis()->SetTitle("ECL cluster energy [5 MeV]");
60 h_theta_ECL = new TH1F("h_theta_ECL", "ECL cluster theta [1.4 degrees]", 128, 0, 180);
61 h_theta_ECL->GetXaxis()->SetTitle("ECL cluster #theta [1.4 degrees]");
62 h_phi_ECL = new TH1F("h_phi_ECL", "ECL cluster phi [1.4 degrees]", 256, 0, 360);
63 h_phi_ECL->GetXaxis()->SetTitle("ECL cluster #phi [1.4 degrees]");
64
65 h_CDCL1 = new TH1F("h_CDCL1", "CDCTRG 2D -> L1 trg [ns]", 320, -320 * 7.8, 0);
66 h_CDCL1->GetXaxis()->SetTitle("CDCTRG 2D -> L1 trg [ns]");
67 h_ECLL1 = new TH1F("h_ECLL1", "ECLTRG -> L1 trg [ns]", 320, -320 * 7.8, 0);
68 h_ECLL1->GetXaxis()->SetTitle("ECLTRG -> L1 trg [ns]");
69 h_TOPL1 = new TH1F("h_TOPL1", "TOPTRG -> L1 trg [ns]", 320, -320 * 7.8, 0);
70 h_TOPL1->GetXaxis()->SetTitle("TOPTRG -> L1 trg [ns]");
71 h_KLML1 = new TH1F("h_KLML1", "KLMTRG -> L1 trg [ns]", 320, -320 * 7.8, 0);
72 h_KLML1->GetXaxis()->SetTitle("KLMTRG -> L1 trg [ns]");
73 h_ECLL1_2nd = new TH1F("h_ECLL1_2nd", "ECLTRG 2nd input-> L1 trg [ns]", 320, -320 * 7.8, 0);
74 h_ECLL1_2nd->GetXaxis()->SetTitle("ECLTRG 2nd input -> L1 trg [ns]");
75 h_CDC3DL1 = new TH1F("h_CDC3DL1", "CDCTRG 3D -> L1 trg [ns]", 320, -320 * 7.8, 0);
76 h_CDC3DL1->GetXaxis()->SetTitle("CDCTRG 3D -> L1 trg [ns]");
77 h_CDCNNL1 = new TH1F("h_CDCNNL1", "CDCTRG NN -> L1 trg [ns]", 320, -320 * 7.8, 0);
78 h_CDCNNL1->GetXaxis()->SetTitle("CDCTRG NN -> L1 trg [ns]");
79 h_TSFL1 = new TH1F("h_TSFL1", "CDCTRG TSF -> L1 trg [ns]", 320, -320 * 7.8, 0);
80 h_TSFL1->GetXaxis()->SetTitle("CDCTRG TSF -> L1 trg [ns]");
81 h_B2LL1 = new TH1F("h_B2LL1", "B2L window -> L1 trg [ns]", 320, -320 * 7.8, 0);
82 h_B2LL1->GetXaxis()->SetTitle("B2L window -> L1 trg [ns]");
83
84 h_map_ST = new TH1F("h_map_ST", "CDCTRG short track map [5.625 degrees]", 64, 0, 360);
85 h_map_ST->GetXaxis()->SetTitle("CDCTRG short track map [5.625 degrees]");
86 h_map_ST2 = new TH1F("h_map_ST2", "CDCTRG short track map [5.625 degrees]", 64, 0, 360);
87 h_map_ST2->GetXaxis()->SetTitle("CDCTRG short track map [5.625 degrees]");
88 h_map_veto = new TH1F("h_map_veto", "CDCTRG 2D veto map [5.625 degrees]", 64, 0, 360);
89 h_map_veto->GetXaxis()->SetTitle("CDCTRG 2D veto map [5.625 degrees]");
90 h_map_TSF0 = new TH1F("h_map_TSF0", "CDCTRG TSF0 map [5.625 degrees]", 64, 0, 360);
91 h_map_TSF0->GetXaxis()->SetTitle("CDCTRG TSF0 map [5.625 degrees]");
92 h_map_TSF2 = new TH1F("h_map_TSF2", "CDCTRG TSF2 map [5.625 degrees]", 64, 0, 360);
93 h_map_TSF2->GetXaxis()->SetTitle("CDCTRG TSF2 map [5.625 degrees]");
94 h_map_TSF4 = new TH1F("h_map_TSF4", "CDCTRG TSF4 map [5.625 degrees]", 64, 0, 360);
95 h_map_TSF4->GetXaxis()->SetTitle("CDCTRG TSF4 map [5.625 degrees]");
96 h_map_TSF1 = new TH1F("h_map_TSF1", "CDCTRG TSF1 map [5.625 degrees]", 64, 0, 360);
97 h_map_TSF1->GetXaxis()->SetTitle("CDCTRG TSF1 map [5.625 degrees]");
98 h_map_TSF3 = new TH1F("h_map_TSF3", "CDCTRG TSF3 map [5.625 degrees]", 64, 0, 360);
99 h_map_TSF3->GetXaxis()->SetTitle("CDCTRG TSF3 map [5.625 degrees]");
100
101 h_wc_TSF0 = new TH1F("h_wirecnt_TSF0", "The wire counter from TSF 0", 2001, 0, 2000);
102 h_wc_TSF0->GetXaxis()->SetTitle("Number of wires for TSF 0 input");
103 h_wc_TSF1 = new TH1F("h_wirecnt_TSF1", "The wire counter from TSF 1", 2001, 0, 2000);
104 h_wc_TSF1->GetXaxis()->SetTitle("Number of wires for TSF 1 input");
105 h_wc_TSF2 = new TH1F("h_wirecnt_TSF2", "The wire counter from TSF 2", 2001, 0, 2000);
106 h_wc_TSF2->GetXaxis()->SetTitle("Number of wires for TSF 2 input");
107 h_wc_TSF3 = new TH1F("h_wirecnt_TSF3", "The wire counter from TSF 3", 2001, 0, 2000);
108 h_wc_TSF3->GetXaxis()->SetTitle("Number of wires for TSF 3 input");
109 h_wc_TSF4 = new TH1F("h_wirecnt_TSF4", "The wire counter from TSF 4", 2001, 0, 2000);
110 h_wc_TSF4->GetXaxis()->SetTitle("Number of wires for TSF 4 input");
111 h_wc_TSF5 = new TH1F("h_wirecnt_TSF5", "The wire counter from TSF 5", 2001, 0, 2000);
112 h_wc_TSF5->GetXaxis()->SetTitle("Number of wires for TSF 5 input");
113 h_wc_TSF6 = new TH1F("h_wirecnt_TSF6", "The wire counter from TSF 6", 2001, 0, 2000);
114 h_wc_TSF6->GetXaxis()->SetTitle("Number of wires for TSF 6 input");
115 h_wc_sum = new TH1F("h_wirecnt_sum", "The wire counter from TSF0-6", 20001, 0, 20000);
116 h_wc_sum->GetXaxis()->SetTitle("Summation of the number of wires for TSF0-6 inputs");
117 h_wcsum_clean = new TH1F("h_wirecnt_sum_clean", "The wire counter from TSF0-6 (Injection BG Clean)", 20001, 0, 20000);
118 h_wcsum_clean->GetXaxis()->SetTitle("Summation of the number of wires for TSF0-6 inputs");
119 h_wcsum_injHER = new TH1F("h_wirecnt_sum_injHER", "The wire counter from TSF0-6 (HER Injection BG)", 20001, 0, 20000);
120 h_wcsum_injHER->GetXaxis()->SetTitle("Summation of the number of wires for TSF0-6 inputs");
121 h_wcsum_injLER = new TH1F("h_wirecnt_sum_injLER", "The wire counter from TSF0-6 (LER Injection BG)", 20001, 0, 20000);
122 h_wcsum_injLER->GetXaxis()->SetTitle("Summation of the number of wires for TSF0-6 inputs");
123
124 h_wc0_injtime = new TH2F("h_wirecnt0_injtime", "The wire counter from TSF 0", 201, 0, 1000, 100, 0, 50);
125 h_wc0_injtime->GetXaxis()->SetTitle("Number of wires for TSF 0 input");
126 h_wc0_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
127 h_wc1_injtime = new TH2F("h_wirecnt1_injtime", "The wire counter from TSF 1", 201, 0, 1000, 100, 0, 50);
128 h_wc1_injtime->GetXaxis()->SetTitle("Number of wires for TSF 1 input");
129 h_wc1_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
130 h_wc2_injtime = new TH2F("h_wirecnt2_injtime", "The wire counter from TSF 2", 201, 0, 1000, 100, 0, 50);
131 h_wc2_injtime->GetXaxis()->SetTitle("Number of wires for TSF 2 input");
132 h_wc2_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
133 h_wc3_injtime = new TH2F("h_wirecnt3_injtime", "The wire counter from TSF 3", 201, 0, 1000, 100, 0, 50);
134 h_wc3_injtime->GetXaxis()->SetTitle("Number of wires for TSF 3 input");
135 h_wc3_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
136 h_wc4_injtime = new TH2F("h_wirecnt4_injtime", "The wire counter from TSF 4", 201, 0, 1000, 100, 0, 50);
137 h_wc4_injtime->GetXaxis()->SetTitle("Number of wires for TSF 4 input");
138 h_wc4_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
139 h_wc5_injtime = new TH2F("h_wirecnt5_injtime", "The wire counter from TSF 5", 201, 0, 1000, 100, 0, 50);
140 h_wc5_injtime->GetXaxis()->SetTitle("Number of wires for TSF 5 input");
141 h_wc5_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
142 h_wc6_injtime = new TH2F("h_wirecnt6_injtime", "The wire counter from TSF 6", 201, 0, 1000, 100, 0, 50);
143 h_wc6_injtime->GetXaxis()->SetTitle("Number of wires for TSF 6 input");
144 h_wc6_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
145 h_wcsum_injtime = new TH2F("h_wirecntsum_injtime", "The wire counter from TSF0-6", 601, 0, 6000, 100, 0, 50);
146 h_wcsum_injtime->GetXaxis()->SetTitle("Summation of the number of wires for TSF0-6 inputs");
147 h_wcsum_injtime->GetYaxis()->SetTitle("Time since injection [ms]");
148
149 oldDir->cd();
150}
TH1F * h_ECLL1_2nd
Jitter of ECl 2nd input -> L1.

◆ endRun()

void endRun ( void  )
overridevirtual

End Run.

Reimplemented from HistoModule.

Definition at line 213 of file TRGGRLDQMModule.cc.

214{
215}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event.

Reimplemented from HistoModule.

Definition at line 217 of file TRGGRLDQMModule.cc.

218{
219 StoreObjPtr<TRGGRLUnpackerStore> evtinfo("TRGGRLUnpackerStore");
220 if (!evtinfo) return;
221
222 int N_track = evtinfo->get_N_track();
223 int bin = h_N_track->GetBinContent(N_track + 1);
224 h_N_track->SetBinContent(N_track + 1, bin + 1);
225
226 for (int i = 0; i < 36; i++) {
227 if (evtinfo->get_phi_i(i)) {
228 h_phi_i->Fill(5 + i * 10);
229 }
230 if (evtinfo->get_phi_CDC(i)) {
231 h_phi_CDC->Fill(5 + i * 10);
232 }
233 }
234 for (int i = 0; i < 8; i++) {
235 if (evtinfo->get_sector_CDC(i)) {
236 h_sector_CDC->Fill(i * 45);
237 }
238 if (evtinfo->get_sector_KLM(i)) {
239 h_sector_KLM->Fill(i * 45);
240 }
241 }
242 for (int i = 0; i < 16; i++) {
243 if (evtinfo->get_slot_CDC(i)) {
244 h_slot_CDC->Fill(11.25 + i * 22.5);
245 }
246 if (evtinfo->get_slot_TOP(i)) {
247 h_slot_TOP->Fill(11.25 + i * 22.5);
248 }
249 }
250
251 int N_cluster = evtinfo->get_N_cluster();
252 for (int i = 0; i < N_cluster; i++) {
253 h_E_ECL->Fill(evtinfo->get_E_ECL(i) * 0.005 + 0.0025);
254 h_theta_ECL->Fill(evtinfo->get_theta_ECL(i) * 1.40625 + 1.40625 * 0.5);
255 h_phi_ECL->Fill(evtinfo->get_phi_ECL(i) * 1.40625 + 1.40625 * 0.5);
256 }
257
258 int timeL1 = evtinfo->get_coml1() - evtinfo->get_revoclk();
259
260 if (evtinfo->get_CDCL1_count() != 0) {
261 h_CDCL1->Fill((evtinfo->get_CDCL1_count() + timeL1 - 0.5) * (-7.8));
262 }
263 if (evtinfo->get_ECLL1_count() != 0) {
264 h_ECLL1->Fill((evtinfo->get_ECLL1_count() + timeL1 - 0.5) * (-7.8));
265 }
266 if (evtinfo->get_ECLL1_count() != 0 && evtinfo->get_N_cluster_1() != 0) {
267 h_ECLL1_2nd->Fill((evtinfo->get_ECLL1_count() + timeL1 - 0.5) * (-7.8) + 7.8 * 16);
268 }
269 if (evtinfo->get_TOPL1_count() != 0) {
270 h_TOPL1->Fill((evtinfo->get_TOPL1_count() + timeL1 - 0.5) * (-7.8));
271 }
272 if (evtinfo->get_KLML1_count() != 0) {
273 h_KLML1->Fill((evtinfo->get_KLML1_count() + timeL1 - 0.5) * (-7.8));
274 }
275 if (evtinfo->get_CDC3DL1_count() != 0) {
276 h_CDC3DL1->Fill((evtinfo->get_CDC3DL1_count() + timeL1 - 0.5) * (-7.8));
277 }
278 if (evtinfo->get_CDCNNL1_count() != 0) {
279 h_CDCNNL1->Fill((evtinfo->get_CDCNNL1_count() + timeL1 - 0.5) * (-7.8));
280 }
281 if (evtinfo->get_TSFL1_count() != 0) {
282 h_TSFL1->Fill((evtinfo->get_TSFL1_count() + timeL1 - 0.5) * (-7.8));
283 }
284 if (timeL1 != 0) {
285 h_B2LL1->Fill((timeL1 - 0.5) * (-7.8));
286 }
287
288 for (int i = 0; i < 64; i++) {
289 if (evtinfo->get_map_ST(i)) {
290 h_map_ST->Fill(2.8 + i * 360.0 / 64.0);
291 }
292 if (evtinfo->get_map_ST2(i)) {
293 h_map_ST2->Fill(2.8 + i * 360.0 / 64.0);
294 }
295 if (evtinfo->get_map_veto(i)) {
296 h_map_veto->Fill(2.8 + i * 360.0 / 64.0);
297 }
298 if (evtinfo->get_map_TSF0(i)) {
299 h_map_TSF0->Fill(2.8 + i * 360.0 / 64.0);
300 }
301 if (evtinfo->get_map_TSF2(i)) {
302 h_map_TSF2->Fill(2.8 + i * 360.0 / 64.0);
303 }
304 if (evtinfo->get_map_TSF4(i)) {
305 h_map_TSF4->Fill(2.8 + i * 360.0 / 64.0);
306 }
307 if (evtinfo->get_map_TSF1(i)) {
308 h_map_TSF1->Fill(2.8 + i * 360.0 / 64.0);
309 }
310 if (evtinfo->get_map_TSF3(i)) {
311 h_map_TSF3->Fill(2.8 + i * 360.0 / 64.0);
312 }
313 }
314
315 int wcsum = 0, nowcnt;
316
317 const double revotime_in_us = 5.120 / m_hwclkdb->getAcceleratorRF();
318
319 double diff_in_ms, diff_in_us;
320 diff_in_us = m_trgTime->getTimeSinceLastInjectionInMicroSeconds();
321 diff_in_ms = diff_in_us / 1000.;
322
323 nowcnt = evtinfo->get_wirecnt_tsf0();
324 h_wc_TSF0->Fill(nowcnt);
325 h_wc0_injtime->Fill(nowcnt, diff_in_ms);
326 wcsum += nowcnt;
327
328 nowcnt = evtinfo->get_wirecnt_tsf1();
329 h_wc_TSF1->Fill(nowcnt);
330 h_wc1_injtime->Fill(nowcnt, diff_in_ms);
331 wcsum += nowcnt;
332
333 nowcnt = evtinfo->get_wirecnt_tsf2();
334 h_wc_TSF2->Fill(nowcnt);
335 h_wc2_injtime->Fill(nowcnt, diff_in_ms);
336 wcsum += nowcnt;
337
338 nowcnt = evtinfo->get_wirecnt_tsf3();
339 h_wc_TSF3->Fill(nowcnt);
340 h_wc3_injtime->Fill(nowcnt, diff_in_ms);
341 wcsum += nowcnt;
342
343 nowcnt = evtinfo->get_wirecnt_tsf4();
344 h_wc_TSF4->Fill(nowcnt);
345 h_wc4_injtime->Fill(nowcnt, diff_in_ms);
346 wcsum += nowcnt;
347
348 nowcnt = evtinfo->get_wirecnt_tsf5();
349 h_wc_TSF5->Fill(nowcnt);
350 h_wc5_injtime->Fill(nowcnt, diff_in_ms);
351 wcsum += nowcnt;
352
353 nowcnt = evtinfo->get_wirecnt_tsf6();
354 h_wc_TSF6->Fill(nowcnt);
355 h_wc6_injtime->Fill(nowcnt, diff_in_ms);
356 wcsum += nowcnt;
357
358 h_wc_sum->Fill(wcsum);
359 h_wcsum_injtime->Fill(wcsum, diff_in_ms);
360
361 int quotient;
362 double running_in_us;
363 quotient = diff_in_us / revotime_in_us;
364 running_in_us = diff_in_us - quotient * revotime_in_us;
365
366 bool cond_clean, cond_injHER, cond_injLER;
367
368 cond_clean = (6 < running_in_us && running_in_us < 8) && (50 < diff_in_ms && diff_in_ms < 70);
369
370 cond_injHER = m_trgTime->isHER() && ((diff_in_ms < 0.5) || ((diff_in_ms < 20) && (2 < running_in_us && running_in_us < 3)));
371 cond_injLER = !m_trgTime->isHER() && ((diff_in_ms < 0.5) || ((diff_in_ms < 20) && (1 < running_in_us && running_in_us < 2)));
372
373 if (cond_clean) {
374 h_wcsum_clean->Fill(wcsum);
375 } else if (cond_injHER) {
376 h_wcsum_injHER->Fill(wcsum);
377 } else if (cond_injLER) {
378 h_wcsum_injLER->Fill(wcsum);
379 }
380}
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
DBObjPtr< HardwareClockSettings > m_hwclkdb
DB pointerto access the hardware clock information.
StoreObjPtr< EventLevelTriggerTimeInfo > m_trgTime
Array to access the event time information from the trigger and FTSW.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

initialize

Reimplemented from HistoModule.

Definition at line 207 of file TRGGRLDQMModule.cc.

208{
209 // calls back the defineHisto() function, but the HistoManager module has to be in the path
210 REG_HISTOGRAM
211}

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

virtual void terminate ( void  )
inlineoverridevirtual

terminate

Reimplemented from HistoModule.

Definition at line 46 of file TRGGRLDQMModule.h.

46{}

Member Data Documentation

◆ dirDQM

TDirectory* dirDQM = nullptr
protected

TDirectory.

Definition at line 54 of file TRGGRLDQMModule.h.

◆ h_B2LL1

TH1F* h_B2LL1 = nullptr
protected

Jitter of B2L window -> L1.

Definition at line 96 of file TRGGRLDQMModule.h.

◆ h_CDC3DL1

TH1F* h_CDC3DL1 = nullptr
protected

Jitter of CDC 3D -> L1.

Definition at line 90 of file TRGGRLDQMModule.h.

◆ h_CDCL1

TH1F* h_CDCL1 = nullptr
protected

Jitter of CDC 2D -> L1.

Definition at line 80 of file TRGGRLDQMModule.h.

◆ h_CDCNNL1

TH1F* h_CDCNNL1 = nullptr
protected

Jitter of CDC NN -> L1.

Definition at line 92 of file TRGGRLDQMModule.h.

◆ h_E_ECL

TH1F* h_E_ECL = nullptr
protected

ECL cluster energy.

Definition at line 73 of file TRGGRLDQMModule.h.

◆ h_ECLL1

TH1F* h_ECLL1 = nullptr
protected

Jitter of ECL -> L1.

Definition at line 82 of file TRGGRLDQMModule.h.

◆ h_ECLL1_2nd

TH1F* h_ECLL1_2nd = nullptr
protected

Jitter of ECl 2nd input -> L1.

Definition at line 84 of file TRGGRLDQMModule.h.

◆ h_KLML1

TH1F* h_KLML1 = nullptr
protected

Jitter of KLM -> L1.

Definition at line 88 of file TRGGRLDQMModule.h.

◆ h_map_ST

TH1F* h_map_ST = nullptr
protected

Short track map.

Definition at line 99 of file TRGGRLDQMModule.h.

◆ h_map_ST2

TH1F* h_map_ST2 = nullptr
protected

Short track map.

Definition at line 101 of file TRGGRLDQMModule.h.

◆ h_map_TSF0

TH1F* h_map_TSF0 = nullptr
protected

TSF0 map.

Definition at line 105 of file TRGGRLDQMModule.h.

◆ h_map_TSF1

TH1F* h_map_TSF1 = nullptr
protected

TSF1 map.

Definition at line 111 of file TRGGRLDQMModule.h.

◆ h_map_TSF2

TH1F* h_map_TSF2 = nullptr
protected

TSF2 map.

Definition at line 107 of file TRGGRLDQMModule.h.

◆ h_map_TSF3

TH1F* h_map_TSF3 = nullptr
protected

TSF3 map.

Definition at line 113 of file TRGGRLDQMModule.h.

◆ h_map_TSF4

TH1F* h_map_TSF4 = nullptr
protected

TSF4 map.

Definition at line 109 of file TRGGRLDQMModule.h.

◆ h_map_veto

TH1F* h_map_veto = nullptr
protected

Full track veto map.

Definition at line 103 of file TRGGRLDQMModule.h.

◆ h_N_track

TH1I* h_N_track = nullptr
protected

Number of tracks.

Definition at line 57 of file TRGGRLDQMModule.h.

◆ h_phi_CDC

TH1F* h_phi_CDC = nullptr
protected

phi_CDC, extrapolated phi at ECL of CDC 2D tracks

Definition at line 62 of file TRGGRLDQMModule.h.

◆ h_phi_ECL

TH1F* h_phi_ECL = nullptr
protected

ECL cluster phi.

Definition at line 77 of file TRGGRLDQMModule.h.

◆ h_phi_i

TH1F* h_phi_i = nullptr
protected

phi_i of CDC 2D tracks

Definition at line 60 of file TRGGRLDQMModule.h.

◆ h_sector_CDC

TH1F* h_sector_CDC = nullptr
protected

sector_CDC, extrapolated phi at KLM of CDC 2D tracks

Definition at line 64 of file TRGGRLDQMModule.h.

◆ h_sector_KLM

TH1F* h_sector_KLM = nullptr
protected

sector map of KLM

Definition at line 66 of file TRGGRLDQMModule.h.

◆ h_slot_CDC

TH1F* h_slot_CDC = nullptr
protected

slot_CDC, extrapolated phi at TOP of CDC 2D tracks

Definition at line 68 of file TRGGRLDQMModule.h.

◆ h_slot_TOP

TH1F* h_slot_TOP = nullptr
protected

slot map of TOP

Definition at line 70 of file TRGGRLDQMModule.h.

◆ h_theta_ECL

TH1F* h_theta_ECL = nullptr
protected

ECL cluster theta.

Definition at line 75 of file TRGGRLDQMModule.h.

◆ h_TOPL1

TH1F* h_TOPL1 = nullptr
protected

Jitter of TOP -> L1.

Definition at line 86 of file TRGGRLDQMModule.h.

◆ h_TSFL1

TH1F* h_TSFL1 = nullptr
protected

Jitter of Short track -> L1.

Definition at line 94 of file TRGGRLDQMModule.h.

◆ h_wc0_injtime

TH2F* h_wc0_injtime = nullptr
protected

2D plot: TSF0 cnt vs.

time since injection (ms)

Definition at line 139 of file TRGGRLDQMModule.h.

◆ h_wc1_injtime

TH2F* h_wc1_injtime = nullptr
protected

2D plot: TSF1 cnt vs.

time since injection (ms)

Definition at line 141 of file TRGGRLDQMModule.h.

◆ h_wc2_injtime

TH2F* h_wc2_injtime = nullptr
protected

2D plot: TSF2 cnt vs.

time since injection (ms)

Definition at line 143 of file TRGGRLDQMModule.h.

◆ h_wc3_injtime

TH2F* h_wc3_injtime = nullptr
protected

2D plot: TSF3 cnt vs.

time since injection (ms)

Definition at line 145 of file TRGGRLDQMModule.h.

◆ h_wc4_injtime

TH2F* h_wc4_injtime = nullptr
protected

2D plot: TSF4 cnt vs.

time since injection (ms)

Definition at line 147 of file TRGGRLDQMModule.h.

◆ h_wc5_injtime

TH2F* h_wc5_injtime = nullptr
protected

2D plot: TSF5 cnt vs.

time since injection (ms)

Definition at line 149 of file TRGGRLDQMModule.h.

◆ h_wc6_injtime

TH2F* h_wc6_injtime = nullptr
protected

2D plot: TSF6 cnt vs.

time since injection (ms)

Definition at line 151 of file TRGGRLDQMModule.h.

◆ h_wc_sum

TH1F* h_wc_sum = nullptr
protected

Wirecnt from all TSFs.

Definition at line 130 of file TRGGRLDQMModule.h.

◆ h_wc_TSF0

TH1F* h_wc_TSF0 = nullptr
protected

Wirecnt from TSF0.

Definition at line 116 of file TRGGRLDQMModule.h.

◆ h_wc_TSF1

TH1F* h_wc_TSF1 = nullptr
protected

Wirecnt from TSF1.

Definition at line 118 of file TRGGRLDQMModule.h.

◆ h_wc_TSF2

TH1F* h_wc_TSF2 = nullptr
protected

Wirecnt from TSF2.

Definition at line 120 of file TRGGRLDQMModule.h.

◆ h_wc_TSF3

TH1F* h_wc_TSF3 = nullptr
protected

Wirecnt from TSF3.

Definition at line 122 of file TRGGRLDQMModule.h.

◆ h_wc_TSF4

TH1F* h_wc_TSF4 = nullptr
protected

Wirecnt from TSF4.

Definition at line 124 of file TRGGRLDQMModule.h.

◆ h_wc_TSF5

TH1F* h_wc_TSF5 = nullptr
protected

Wirecnt from TSF5.

Definition at line 126 of file TRGGRLDQMModule.h.

◆ h_wc_TSF6

TH1F* h_wc_TSF6 = nullptr
protected

Wirecnt from TSF6.

Definition at line 128 of file TRGGRLDQMModule.h.

◆ h_wcsum_clean

TH1F* h_wcsum_clean = nullptr
protected

Wirecnt from all TSFs from the injection BG clean region.

Definition at line 132 of file TRGGRLDQMModule.h.

◆ h_wcsum_injHER

TH1F* h_wcsum_injHER = nullptr
protected

Wirecnt from all TSFs from the HER injection BG region.

Definition at line 134 of file TRGGRLDQMModule.h.

◆ h_wcsum_injLER

TH1F* h_wcsum_injLER = nullptr
protected

Wirecnt from all TSFs from the LER injection BG region.

Definition at line 136 of file TRGGRLDQMModule.h.

◆ h_wcsum_injtime

TH2F* h_wcsum_injtime = nullptr
protected

2D plot: all TSFs cnt vs.

time since injection (ms)

Definition at line 153 of file TRGGRLDQMModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_hwclkdb

DBObjPtr<HardwareClockSettings> m_hwclkdb
protected

DB pointerto access the hardware clock information.

Definition at line 159 of file TRGGRLDQMModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_trgTime

StoreObjPtr<EventLevelTriggerTimeInfo> m_trgTime
protected

Array to access the event time information from the trigger and FTSW.

Definition at line 156 of file TRGGRLDQMModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ oldDir

TDirectory* oldDir = nullptr
protected

TDirectory.

Definition at line 52 of file TRGGRLDQMModule.h.


The documentation for this class was generated from the following files: