Belle II Software light-2406-ragdoll
ParticleVertexFitterModule Class Reference

Vertex fitter module. More...

#include <ParticleVertexFitterModule.h>

Inheritance diagram for ParticleVertexFitterModule:
Collaboration diagram for ParticleVertexFitterModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ParticleVertexFitterModule ()
 Constructor.
 
virtual void initialize () override
 Initialize the Module.
 
virtual void beginRun () override
 Called when entering a new run.
 
virtual void event () override
 Event processor.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
virtual void endRun ()
 This method is called if the current run ends.
 
virtual void terminate ()
 This method is called at the end of the event processing.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

bool doVertexFit (Particle *p)
 Main steering routine.
 
bool doKVertexFit (Particle *p, bool ipProfileConstraint, bool ipTubeConstraint)
 Unconstrained vertex fit using KFit.
 
bool doKMassVertexFit (Particle *p)
 Mass-constrained vertex fit using KFit.
 
bool doKMassPointingVertexFit (Particle *p)
 Mass-constrained vertex fit with additional pointing constraint using KFit.
 
bool doKMassFit (Particle *p)
 Mass fit using KFit.
 
bool doKFourCFit (Particle *p)
 FourC fit using KFit.
 
bool doKMassFourCFit (Particle *p)
 MassFourC fit using KFit.
 
bool doKRecoilMassFit (Particle *p)
 RecoilMass fit using KFit.
 
bool makeKVertexMother (analysis::VertexFitKFit &kv, Particle *p)
 Update mother particle after unconstrained vertex fit using KFit.
 
bool makeKMassVertexMother (analysis::MassVertexFitKFit &kv, Particle *p)
 Update mother particle after mass-constrained vertex fit using KFit.
 
bool makeKMassPointingVertexMother (analysis::MassPointingVertexFitKFit &kv, Particle *p)
 Update mother particle after mass-constrained vertex fit with additional pointing constraint using KFit.
 
bool makeKMassMother (analysis::MassFitKFit &kv, Particle *p)
 Update mother particle after mass fit using KFit.
 
bool makeKFourCMother (analysis::FourCFitKFit &kv, Particle *p)
 Update mother particle after FourC fit using KFit.
 
bool makeMassKFourCMother (analysis::MassFourCFitKFit &kv, Particle *p)
 Update mother particle after MassFourC fit using KFit.
 
bool makeKRecoilMassMother (analysis::RecoilMassKFit &kf, Particle *p)
 Update mother particle after RecoilMass fit using KFit.
 
void updateMapOfTrackAndDaughter (unsigned &l, std::vector< std::vector< unsigned > > &pars, std::vector< unsigned > &pard, std::vector< Particle * > &allparticles, const Particle *daughter)
 update the map of daughter and tracks, find out which tracks belong to each daughter.
 
bool addChildofParticletoKFit (analysis::FourCFitKFit &kv, const Particle *particle)
 Adds given particle's child to the FourCFitKFit.
 
bool addChildofParticletoMassKFit (analysis::MassFourCFitKFit &kf, const Particle *particle, std::vector< unsigned > &particleId)
 Adds given particle's child to the MassFourCFitKFit.
 
void addIPProfileToKFit (analysis::VertexFitKFit &kv)
 Adds IPProfile constraint to the vertex fit using KFit.
 
void addIPTubeToKFit (analysis::VertexFitKFit &kv)
 Adds IPTube constraint to the vertex fit using KFit.
 
bool fillFitParticles (const Particle *mother, std::vector< const Particle * > &fitChildren, std::vector< const Particle * > &twoPhotonChildren)
 Fills valid particle's children (with valid error matrix) in the vector of Particles that will enter the fit.
 
bool fillNotFitParticles (const Particle *mother, std::vector< const Particle * > &notFitChildren, const std::vector< const Particle * > &fitChildren)
 Fills valid particle's children (with valid error matrix) in the vector of Particles that will not enter the fit.
 
bool redoTwoPhotonDaughterMassFit (Particle *postFit, const Particle *preFit, const analysis::VertexFitKFit &kv)
 Combines preFit particle and vertex information from vertex fit kv to create new postFit particle.
 
bool doRaveFit (Particle *mother)
 Fit using Rave.
 
bool allSelectedDaughters (const Particle *mother, const std::vector< const Particle * > &tracksVertex)
 check if all the Daughters (o grand-daughters) are selected for the vertex fit
 
void findConstraintBoost (double cut)
 calculate iptube constraint (quasi cylinder along boost direction) for RAVE fit
 
void smearBeamSpot (double width)
 smear beam spot covariance
 
double getChi2TracksLBoost (const analysis::VertexFitKFit &kv)
 calculate the chi2 using only lboost information of tracks
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

StoreObjPtr< ParticleListm_plist
 particle list
 
std::string m_listName
 particle list name
 
double m_confidenceLevel
 required fit confidence level
 
double m_Bfield
 magnetic field from data base
 
std::string m_vertexFitter
 Vertex Fitter name.
 
std::string m_fitType
 type of the kinematic fit
 
std::string m_withConstraint
 additional constraint on vertex
 
std::string m_decayString
 daughter particles selection
 
bool m_updateDaughters
 flag for daughters update
 
DecayDescriptor m_decaydescriptor
 Decay descriptor of decays to look for.
 
bool m_hasCovMatrix = false
 flag for mother covariance matrix (PseudoFitter)
 
B2Vector3D m_BeamSpotCenter
 Beam spot position.
 
TMatrixDSym m_beamSpotCov
 Beam spot covariance matrix.
 
DBObjPtr< BeamSpotm_beamSpotDB
 Beam spot database object.
 
double m_smearing
 smearing width applied to IP tube
 
double m_recoilMass
 recoil mass for constraint
 
std::vector< int > m_massConstraintList
 PDG codes of the particles to be mass constraint (massfourC)
 
std::vector< std::string > m_massConstraintListParticlename
 Name of the particles to be mass constraint (massfourC)
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Vertex fitter module.

Definition at line 51 of file ParticleVertexFitterModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ParticleVertexFitterModule()

Constructor.

Definition at line 54 of file ParticleVertexFitterModule.cc.

54 : Module(),
55 m_Bfield(0)
56{
57 // set module description (e.g. insert text)
58 setDescription("Vertex fitter for modular analysis");
60
61 // Add parameters
62 addParam("listName", m_listName, "name of particle list", string(""));
63 addParam("confidenceLevel", m_confidenceLevel,
64 "Confidence level to accept the fit. Particle candidates with "
65 "p-value less than confidenceLevel are removed from the particle "
66 "list. If set to -1, all candidates are kept; if set to 0, "
67 "the candidates failing the fit are removed.",
68 0.001);
69 addParam("vertexFitter", m_vertexFitter, "KFit or Rave", string("KFit"));
70 addParam("fitType", m_fitType, "type of the kinematic fit (vertex, massvertex, mass)", string("vertex"));
71 addParam("withConstraint", m_withConstraint,
72 "additional constraint on vertex: ipprofile, iptube, mother, iptubecut, pointing, btube",
73 string(""));
74 addParam("decayString", m_decayString, "specifies which daughter particles are included in the kinematic fit", string(""));
75 addParam("updateDaughters", m_updateDaughters, "true: update the daughters after the vertex fit", false);
76 addParam("smearing", m_smearing, "smear IP tube width by given length", 0.002);
77 addParam("recoilMass", m_recoilMass, "recoil invariant mass (GeV)", 0.);
78 addParam("massConstraintList", m_massConstraintList,
79 "Type::[int]. List of daughter particles to mass constrain with int = pdg code. (only for MassFourCKFit)", {});
80 addParam("massConstraintListParticlename", m_massConstraintListParticlename,
81 "Type::[string]. List of daughter particles to mass constrain with string = particle name. (only for MassFourCKFit)", {});
82}
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
Module()
Constructor.
Definition: Module.cc:30
std::string m_withConstraint
additional constraint on vertex
bool m_updateDaughters
flag for daughters update
std::string m_decayString
daughter particles selection
std::vector< std::string > m_massConstraintListParticlename
Name of the particles to be mass constraint (massfourC)
std::string m_listName
particle list name
std::vector< int > m_massConstraintList
PDG codes of the particles to be mass constraint (massfourC)
std::string m_vertexFitter
Vertex Fitter name.
double m_recoilMass
recoil mass for constraint
double m_confidenceLevel
required fit confidence level
double m_Bfield
magnetic field from data base
double m_smearing
smearing width applied to IP tube
std::string m_fitType
type of the kinematic fit
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

Member Function Documentation

◆ addChildofParticletoKFit()

bool addChildofParticletoKFit ( analysis::FourCFitKFit kv,
const Particle particle 
)
private

Adds given particle's child to the FourCFitKFit.

Parameters
kvreference to KFit FourCFit object
particlepointer to particle

Definition at line 1421 of file ParticleVertexFitterModule.cc.

1422{
1423 for (unsigned ichild = 0; ichild < particle->getNDaughters(); ichild++) {
1424 const Particle* child = particle->getDaughter(ichild);
1425 if (child->getNDaughters() > 0) addChildofParticletoKFit(kf, child);
1426 else {
1427 if (child->getPValue() < 0) return false; // error matrix not valid
1428
1429 kf.addParticle(child);
1430 }
1431 }
1432 return true;
1433}
bool addChildofParticletoKFit(analysis::FourCFitKFit &kv, const Particle *particle)
Adds given particle's child to the FourCFitKFit.
Class to store reconstructed particles.
Definition: Particle.h:75
double getPValue() const
Returns chi^2 probability of fit if done or -1.
Definition: Particle.h:667
unsigned getNDaughters(void) const
Returns number of daughter particles.
Definition: Particle.h:727
const Particle * getDaughter(unsigned i) const
Returns a pointer to the i-th daughter particle.
Definition: Particle.cc:631

◆ addChildofParticletoMassKFit()

bool addChildofParticletoMassKFit ( analysis::MassFourCFitKFit kf,
const Particle particle,
std::vector< unsigned > &  particleId 
)
private

Adds given particle's child to the MassFourCFitKFit.

Parameters
kfreference to KFit FourCFit object
particlepointer to particle
particleIdvector of daughters track id

Definition at line 1435 of file ParticleVertexFitterModule.cc.

1437{
1438 for (unsigned ichild = 0; ichild < particle->getNDaughters(); ichild++) {
1439 const Particle* child = particle->getDaughter(ichild);
1440 if (child->getNDaughters() > 0) {
1441 bool massconstraint = std::find(m_massConstraintList.begin(), m_massConstraintList.end(),
1442 std::abs(child->getPDGCode())) != m_massConstraintList.end();
1443 std::vector<unsigned> childId;
1444 addChildofParticletoMassKFit(kf, child, childId);
1445 if (massconstraint) kf.addMassConstraint(child->getPDGMass(), childId);
1446 particleId.insert(particleId.end(), childId.begin(), childId.end());
1447 } else {
1448 if (child->getPValue() < 0) return false; // error matrix not valid
1449 kf.addParticle(child);
1450 particleId.push_back(kf.getTrackCount() - 1);
1451 }
1452 }
1453 return true;
1454}
bool addChildofParticletoMassKFit(analysis::MassFourCFitKFit &kf, const Particle *particle, std::vector< unsigned > &particleId)
Adds given particle's child to the MassFourCFitKFit.
int getPDGCode(void) const
Returns PDG code.
Definition: Particle.h:454
double getPDGMass(void) const
Returns uncertainty on the invariant mass (requires valid momentum error matrix)
Definition: Particle.cc:604
enum KFitError::ECode addParticle(const Particle *particle)
Add a particle to the fitter.
Definition: KFitBase.cc:59
int getTrackCount(void) const
Get the number of added tracks.
Definition: KFitBase.cc:107
enum KFitError::ECode addMassConstraint(const double m, std::vector< unsigned > &childTrackId)
Set an invariant mass of daughter particle for the mass-four-momentum-constraint fit.

◆ addIPProfileToKFit()

void addIPProfileToKFit ( analysis::VertexFitKFit kv)
private

Adds IPProfile constraint to the vertex fit using KFit.

Definition at line 1456 of file ParticleVertexFitterModule.cc.

1457{
1458 HepPoint3D pos(0.0, 0.0, 0.0);
1459 CLHEP::HepSymMatrix covMatrix(3, 0);
1460
1461 for (int i = 0; i < 3; i++) {
1462 pos[i] = m_BeamSpotCenter(i);
1463 for (int j = 0; j < 3; j++) {
1464 covMatrix[i][j] = m_beamSpotCov(i, j);
1465 }
1466 }
1467
1468 kv.setIpProfile(pos, covMatrix);
1469}
TMatrixDSym m_beamSpotCov
Beam spot covariance matrix.
B2Vector3D m_BeamSpotCenter
Beam spot position.
enum KFitError::ECode setIpProfile(const HepPoint3D &ip, const CLHEP::HepSymMatrix &ipe)
Set an IP-ellipsoid shape for the vertex constraint fit.

◆ addIPTubeToKFit()

void addIPTubeToKFit ( analysis::VertexFitKFit kv)
private

Adds IPTube constraint to the vertex fit using KFit.

Definition at line 1471 of file ParticleVertexFitterModule.cc.

1472{
1473 CLHEP::HepSymMatrix err(7, 0);
1474
1475 for (int i = 0; i < 3; i++) {
1476 for (int j = 0; j < 3; j++) {
1477 err[i + 4][j + 4] = m_beamSpotCov(i, j);
1478 }
1479 }
1480
1482 ROOT::Math::PxPyPzEVector iptube_mom = T.getBeamFourMomentum();
1483
1485 ROOTToCLHEP::getHepLorentzVector(iptube_mom),
1486 ROOTToCLHEP::getPoint3DFromB2Vector(m_BeamSpotCenter),
1487 err,
1488 0.);
1489}
Class to hold Lorentz transformations from/to CMS and boost vector.
ROOT::Math::PxPyPzEVector getBeamFourMomentum() const
Returns LAB four-momentum of e+e-, i.e.
enum KFitError::ECode setIpTubeProfile(const CLHEP::HepLorentzVector &p, const HepPoint3D &x, const CLHEP::HepSymMatrix &e, const double q)
Set a virtual IP-tube track for the vertex constraint fit.

◆ allSelectedDaughters()

bool allSelectedDaughters ( const Particle mother,
const std::vector< const Particle * > &  tracksVertex 
)
private

check if all the Daughters (o grand-daughters) are selected for the vertex fit

Definition at line 1397 of file ParticleVertexFitterModule.cc.

1399{
1400 bool isAll = false;
1401 if (mother->getNDaughters() == 0) return false;
1402
1403 int nNotIncluded = mother->getNDaughters();
1404
1405 for (unsigned i = 0; i < mother->getNDaughters(); i++) {
1406 bool dauOk = false;
1407 for (auto& vi : tracksVertex) {
1408 if (vi == mother->getDaughter(i)) {
1409 nNotIncluded = nNotIncluded - 1;
1410 dauOk = true;
1411 }
1412 }
1413 if (!dauOk) {
1414 if (allSelectedDaughters(mother->getDaughter(i), tracksVertex)) nNotIncluded--;
1415 }
1416 }
1417 if (nNotIncluded == 0) isAll = true;
1418 return isAll;
1419}
bool allSelectedDaughters(const Particle *mother, const std::vector< const Particle * > &tracksVertex)
check if all the Daughters (o grand-daughters) are selected for the vertex fit

◆ beginRun()

void beginRun ( )
overridevirtual

Called when entering a new run.

Set run dependent things like run header parameters, alignment, etc.

Reimplemented from Module.

Definition at line 117 of file ParticleVertexFitterModule.cc.

118{
119 //TODO: set magnetic field for each run
120 //m_Bfield = BFieldMap::Instance().getBField(B2Vector3D(0,0,0)).Z();
121 //TODO: set IP spot size for each run
122}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ doKFourCFit()

bool doKFourCFit ( Particle p)
private

FourC fit using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 739 of file ParticleVertexFitterModule.cc.

740{
741 if (mother->getNDaughters() < 2) return false;
742
745
746 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
747 const Particle* child = mother->getDaughter(ichild);
748
749 if (child->getNDaughters() > 0) {
750 bool err = addChildofParticletoKFit(kf, child);
751 if (!err) return false;
752 } else {
753 if (child->getPValue() < 0) return false; // error matrix not valid
754
755 kf.addParticle(child);
756 }
757 }
758
759 // apply four momentum constraint
762
763 int err = kf.doFit();
764
765 if (err != 0) return false;
766
767 bool ok = makeKFourCMother(kf, mother);
768
769 return ok;
770}
bool makeKFourCMother(analysis::FourCFitKFit &kv, Particle *p)
Update mother particle after FourC fit using KFit.
FourCFitKFit is a derived class from KFitBase to perform 4 momentum-constraint kinematical fit.
Definition: FourCFitKFit.h:30
enum KFitError::ECode setFourMomentum(const ROOT::Math::PxPyPzEVector &m)
Set an 4 Momentum for the FourC-constraint fit.
Definition: FourCFitKFit.cc:77
enum KFitError::ECode doFit(void)
Perform a four momentum-constraint fit.
enum KFitError::ECode setMagneticField(const double mf)
Change a magnetic field from the default value KFitConst::kDefaultMagneticField.
Definition: KFitBase.cc:93

◆ doKMassFit()

bool doKMassFit ( Particle p)
private

Mass fit using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 712 of file ParticleVertexFitterModule.cc.

713{
714 if (mother->getNDaughters() < 2) return false;
715
718
719 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
720 const Particle* child = mother->getDaughter(ichild);
721
722 if (child->getPValue() < 0) return false; // error matrix not valid
723
724 km.addParticle(child);
725 }
726
727 // apply mass constraint
728 km.setInvariantMass(mother->getPDGMass());
729
730 int err = km.doFit();
731
732 if (err != 0) return false;
733
734 bool ok = makeKMassMother(km, mother);
735
736 return ok;
737}
bool makeKMassMother(analysis::MassFitKFit &kv, Particle *p)
Update mother particle after mass fit using KFit.
MassFitKFit is a derived class from KFitBase to perform mass-constraint kinematical fit.
Definition: MassFitKFit.h:33
enum KFitError::ECode doFit(void)
Perform a mass-constraint fit.
Definition: MassFitKFit.cc:280
enum KFitError::ECode setInvariantMass(const double m)
Set an invariant mass for the mass-constraint fit.
Definition: MassFitKFit.cc:68

◆ doKMassFourCFit()

bool doKMassFourCFit ( Particle p)
private

MassFourC fit using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 772 of file ParticleVertexFitterModule.cc.

773{
774 if (mother->getNDaughters() < 2) return false;
775
778
779 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
780 const Particle* child = mother->getDaughter(ichild);
781
782 if (child->getNDaughters() > 0) {
783 bool massconstraint = std::find(m_massConstraintList.begin(), m_massConstraintList.end(),
784 std::abs(child->getPDGCode())) != m_massConstraintList.end();
785 std::vector<unsigned> childId;
786 bool err = addChildofParticletoMassKFit(kf, child, childId);
787 if (massconstraint) kf.addMassConstraint(child->getPDGMass(), childId);
788 if (!err) return false;
789 } else {
790 if (child->getPValue() < 0) return false; // error matrix not valid
791 kf.addParticle(child);
792 }
793 }
794
795 // apply four momentum constraint
798
799 int err = kf.doFit();
800
801 if (err != 0) return false;
802
803 bool ok = makeMassKFourCMother(kf, mother);
804
805 return ok;
806}
bool makeMassKFourCMother(analysis::MassFourCFitKFit &kv, Particle *p)
Update mother particle after MassFourC fit using KFit.
MassFourCFitKFit is a derived class from KFitBase to perform mass and 4 momentum-constraint kinematic...
enum KFitError::ECode setFourMomentum(const ROOT::Math::PxPyPzEVector &m)
Set an 4 Momentum for the mass-four-constraint fit.
enum KFitError::ECode doFit(void)
Perform a mass-four-momentum-constraint fit.

◆ doKMassPointingVertexFit()

bool doKMassPointingVertexFit ( Particle p)
private

Mass-constrained vertex fit with additional pointing constraint using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 667 of file ParticleVertexFitterModule.cc.

668{
669 if (!(mother->hasExtraInfo("prodVertX") && mother->hasExtraInfo("prodVertY") && mother->hasExtraInfo("prodVertZ"))) {
670 return false;
671 }
672
673 if (mother->getNDaughters() < 2) return false;
674
675 std::vector<const Particle*> fitChildren;
676 std::vector<const Particle*> twoPhotonChildren;
677 bool validChildren = fillFitParticles(mother, fitChildren, twoPhotonChildren);
678
679 if (!validChildren)
680 return false;
681
682 if (twoPhotonChildren.size() > 0) {
683 B2FATAL("[ParticleVertexFitterModule::doKMassPointingVertexFit] MassPointingVertex fit using KFit does not support fit with two-photon daughters (yet).");
684 }
685
686 if (fitChildren.size() < 2) {
687 B2WARNING("[ParticleVertexFitterModule::doKMassPointingVertexFit] Number of particles with valid error matrix entering the vertex fit using KFit is less than 2.");
688 return false;
689 }
690
691 bool ok = false;
692 // Initialise the Fitter
695
696 for (auto child : fitChildren)
697 kmpv.addParticle(child);
698
699 kmpv.setInvariantMass(mother->getPDGMass());
700 HepPoint3D productionVertex(mother->getExtraInfo("prodVertX"),
701 mother->getExtraInfo("prodVertY"),
702 mother->getExtraInfo("prodVertZ"));
703 kmpv.setProductionVertex(productionVertex);
704 int err = kmpv.doFit();
705 if (err != 0) return false;
706
707 ok = makeKMassPointingVertexMother(kmpv, mother);
708
709 return ok;
710}
bool makeKMassPointingVertexMother(analysis::MassPointingVertexFitKFit &kv, Particle *p)
Update mother particle after mass-constrained vertex fit with additional pointing constraint using KF...
bool fillFitParticles(const Particle *mother, std::vector< const Particle * > &fitChildren, std::vector< const Particle * > &twoPhotonChildren)
Fills valid particle's children (with valid error matrix) in the vector of Particles that will enter ...
MassPointingVertexFitKFit is a derived class from KFitBase It performs a kinematical fit with three c...
enum KFitError::ECode doFit(void)
Perform a mass-vertex-pointing constraint fit.
enum KFitError::ECode setInvariantMass(const double m)
Set an invariant mass for the mass-vertex-pointing constraint fit.
enum KFitError::ECode setProductionVertex(const HepPoint3D &v)
Set the production vertex of the particle.

◆ doKMassVertexFit()

bool doKMassVertexFit ( Particle p)
private

Mass-constrained vertex fit using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 580 of file ParticleVertexFitterModule.cc.

581{
582 if (mother->getNDaughters() < 2) return false;
583
584 std::vector<const Particle*> fitChildren;
585 std::vector<const Particle*> twoPhotonChildren;
586 bool validChildren = fillFitParticles(mother, fitChildren, twoPhotonChildren);
587
588 if (!validChildren)
589 return false;
590
591 if (twoPhotonChildren.size() > 1) {
592 B2FATAL("[ParticleVertexFitterModule::doKVertexFit] MassVertex fit using KFit does not support fit with multiple particles decaying to two photons like pi0 (yet).");
593 }
594
595 if (fitChildren.size() < 2) {
596 B2WARNING("[ParticleVertexFitterModule::doKVertexFit] Number of particles with valid error matrix entering the vertex fit using KFit is less than 2.");
597 return false;
598 }
599
600 bool ok = false;
601 if (twoPhotonChildren.size() == 0) {
602 // Initialise the Fitter
605
606 if (mother->getV0()) {
607 HepPoint3D V0vertex_heppoint(mother->getV0()->getFittedVertexX(),
608 mother->getV0()->getFittedVertexY(),
609 mother->getV0()->getFittedVertexZ());
610 kmv.setInitialVertex(V0vertex_heppoint);
611 }
612
613 for (auto child : fitChildren)
614 kmv.addParticle(child);
615
616 kmv.setInvariantMass(mother->getPDGMass());
617 int err = kmv.doFit();
618 if (err != 0)
619 return false;
620
621 // in the case daughters do not include particles with two photon daughters like pi0 - this is it (fit done)
622 ok = makeKMassVertexMother(kmv, mother);
623 } else if (twoPhotonChildren.size() == 1) {
624 // there is a daughter reconstructed from two photons so without position information
625 // 1. determine vertex based on all other valid daughters
626 // 2. set position and error matrix of two-photon daughter to previously determined vertex
627 // 3. redo the fit using all particles (including two-photon particle this time)
628
631
632 for (auto child : fitChildren)
633 kv.addParticle(child);
634
635 // Perform vertex fit using only the particles with valid error matrices
636 int err = kv.doFit();
637 if (err != 0)
638 return false;
639
640 const Particle* twoPhotonDaughter = twoPhotonChildren[0];
641 Particle fixedTwoPhotonDaughter(twoPhotonDaughter->get4Vector(), twoPhotonDaughter->getPDGCode());
642 ok = redoTwoPhotonDaughterMassFit(&fixedTwoPhotonDaughter, twoPhotonDaughter, kv);
643 if (!ok)
644 return false;
645
646 // finally perform the fit using all daughter particles
649
650 for (auto child : fitChildren)
651 kmv2.addParticle(child);
652 kmv2.addParticle(&fixedTwoPhotonDaughter);
653
654 kmv2.setInvariantMass(mother->getPDGMass());
655 err = kmv2.doFit();
656
657 if (err != 0)
658 return false;
659
660 ok = makeKMassVertexMother(kmv2, mother);
661 }
662
663 return ok;
664
665}
bool redoTwoPhotonDaughterMassFit(Particle *postFit, const Particle *preFit, const analysis::VertexFitKFit &kv)
Combines preFit particle and vertex information from vertex fit kv to create new postFit particle.
bool makeKMassVertexMother(analysis::MassVertexFitKFit &kv, Particle *p)
Update mother particle after mass-constrained vertex fit using KFit.
ROOT::Math::PxPyPzEVector get4Vector() const
Returns Lorentz vector.
Definition: Particle.h:547
MassVertexFitKFit is a derived class from KFitBase to perform mass-vertex-constraint kinematical fit.
enum KFitError::ECode setInitialVertex(const HepPoint3D &v)
Set an initial vertex point for the mass-vertex constraint fit.
enum KFitError::ECode doFit(void)
Perform a mass-vertex-constraint fit.
enum KFitError::ECode setInvariantMass(const double m)
Set an invariant mass for the mass-vertex constraint fit.
VertexFitKFit is a derived class from KFitBase to perform vertex-constraint kinematical fit.
Definition: VertexFitKFit.h:34
enum KFitError::ECode doFit(void)
Perform a vertex-constraint fit.

◆ doKRecoilMassFit()

bool doKRecoilMassFit ( Particle p)
private

RecoilMass fit using KFit.

Parameters
ppointer to particle
Returns
true for successful fit

Definition at line 808 of file ParticleVertexFitterModule.cc.

809{
812
813 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
814 const Particle* child = mother->getDaughter(ichild);
815
816 if (child->getPValue() < 0) return false; // error matrix not valid
817
818 kf.addParticle(child);
819 }
820
821 // apply four momentum constraint
824
825 // apply recoil mass constraint
827
828 int err = kf.doFit();
829
830 if (err != 0) return false;
831
832 bool ok = makeKRecoilMassMother(kf, mother);
833
834 return ok;
835}
bool makeKRecoilMassMother(analysis::RecoilMassKFit &kf, Particle *p)
Update mother particle after RecoilMass fit using KFit.
RecoilMassKFit is a derived class from KFitBase to perform a kinematical fit with a recoil mass const...
enum KFitError::ECode setFourMomentum(const ROOT::Math::PxPyPzEVector &m)
Set a recoil mass .
enum KFitError::ECode setRecoilMass(const double m)
Set an invariant mass for the four momentum-constraint fit.
enum KFitError::ECode doFit(void)
Perform a recoil-mass constraint fit.

◆ doKVertexFit()

bool doKVertexFit ( Particle p,
bool  ipProfileConstraint,
bool  ipTubeConstraint 
)
private

Unconstrained vertex fit using KFit.

Parameters
ppointer to particle
ipProfileConstraintflag for IP profile constraint
ipTubeConstraintflag for IP tube constraint
Returns
true for successful fit

Definition at line 481 of file ParticleVertexFitterModule.cc.

482{
483 if ((mother->getNDaughters() < 2 && !ipTubeConstraint) || mother->getNDaughters() < 1) return false;
484
485 std::vector<const Particle*> fitChildren;
486 std::vector<const Particle*> twoPhotonChildren;
487 bool validChildren = fillFitParticles(mother, fitChildren, twoPhotonChildren);
488
489 if (!validChildren)
490 return false;
491
492 std::vector<const Particle*> notFitChildren;
493 fillNotFitParticles(mother, notFitChildren, fitChildren);
494
495
496 if (twoPhotonChildren.size() > 1) {
497 B2FATAL("[ParticleVertexFitterModule::doKVertexFit] Vertex fit using KFit does not support fit with multiple particles decaying to two photons like pi0 (yet).");
498 }
499
500 if ((fitChildren.size() < 2 && !ipTubeConstraint) || fitChildren.size() < 1) {
501 B2WARNING("[ParticleVertexFitterModule::doKVertexFit] Number of particles with valid error matrix entering the vertex fit using KFit is too low.");
502 return false;
503 }
504
505 // Initialise the Fitter
508
509 if (mother->getV0()) {
510 HepPoint3D V0vertex_heppoint(mother->getV0()->getFittedVertexX(),
511 mother->getV0()->getFittedVertexY(),
512 mother->getV0()->getFittedVertexZ());
513 kv.setInitialVertex(V0vertex_heppoint);
514 }
515
516 for (auto& child : fitChildren)
517 kv.addParticle(child);
518
519 if (ipProfileConstraint)
521
522 if (ipTubeConstraint)
523 addIPTubeToKFit(kv);
524
525 // Perform vertex fit using only the particles with valid error matrices
526 int err = kv.doFit();
527 if (err != 0)
528 return false;
529
530 double chi2_track = getChi2TracksLBoost(kv);
531 unsigned track_count = kv.getTrackCount();
532 mother->writeExtraInfo("chiSquared_trackL", chi2_track);
533 mother->writeExtraInfo("kFit_nTracks", track_count);
534
535 bool ok = false;
536 if (twoPhotonChildren.size() == 0)
537 // in the case daughters do not include pi0 - this is it (fit done)
538 ok = makeKVertexMother(kv, mother);
539 else if (twoPhotonChildren.size() == 1) {
540 // there is a daughter reconstructed from two photons so without position information
541 // 1. determine vertex based on all other valid daughters
542 // 2. set position and error matrix of two-photon daughter to previously determined vertex
543 // 3. redo the fit using all particles (including two-photon particle this time)
544
545 const Particle* twoPhotonDaughter = twoPhotonChildren[0];
546 Particle fixedTwoPhotonDaughter(twoPhotonDaughter->get4Vector(), twoPhotonDaughter->getPDGCode());
547 ok = redoTwoPhotonDaughterMassFit(&fixedTwoPhotonDaughter, twoPhotonDaughter, kv);
548 if (!ok)
549 return false;
550
551 // finally perform the fit using all daughter particles
554
555 for (auto& child : fitChildren)
556 kv2.addParticle(child);
557
558 kv2.addParticle(&fixedTwoPhotonDaughter);
559
560 if (ipProfileConstraint)
562
563 err = kv2.doFit();
564
565 if (err != 0)
566 return false;
567
568 ok = makeKVertexMother(kv2, mother);
569 }
570
571 // update 4-vector using not-fit-particles
572 ROOT::Math::PxPyPzEVector total4Vector(mother->get4Vector());
573 for (auto& child : notFitChildren)
574 total4Vector += child->get4Vector();
575 mother->set4Vector(total4Vector);
576
577 return ok;
578}
void addIPTubeToKFit(analysis::VertexFitKFit &kv)
Adds IPTube constraint to the vertex fit using KFit.
bool makeKVertexMother(analysis::VertexFitKFit &kv, Particle *p)
Update mother particle after unconstrained vertex fit using KFit.
bool fillNotFitParticles(const Particle *mother, std::vector< const Particle * > &notFitChildren, const std::vector< const Particle * > &fitChildren)
Fills valid particle's children (with valid error matrix) in the vector of Particles that will not en...
double getChi2TracksLBoost(const analysis::VertexFitKFit &kv)
calculate the chi2 using only lboost information of tracks
void addIPProfileToKFit(analysis::VertexFitKFit &kv)
Adds IPProfile constraint to the vertex fit using KFit.
enum KFitError::ECode setInitialVertex(const HepPoint3D &v)
Set an initial vertex point for the vertex-vertex constraint fit.

◆ doRaveFit()

bool doRaveFit ( Particle mother)
private

Fit using Rave.

Parameters
motherpointer to particle
Returns
true for successful fit and update of mother

Definition at line 1242 of file ParticleVertexFitterModule.cc.

1243{
1244 if ((m_decayString.empty() ||
1245 (m_withConstraint == "" && m_fitType != "mass")) && mother->getNDaughters() < 2) return false;
1247 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "mother"
1248 || m_withConstraint == "iptubecut" || m_withConstraint == "btube")
1250
1252 if (m_fitType == "mass") rf.setVertFit(false);
1253
1254 if (m_decayString.empty()) {
1255 rf.addMother(mother);
1256 } else {
1257 std::vector<const Particle*> tracksVertex = m_decaydescriptor.getSelectionParticles(mother);
1258 std::vector<std::string> tracksName = m_decaydescriptor.getSelectionNames();
1259
1260 if (allSelectedDaughters(mother, tracksVertex)) {
1261 for (auto& itrack : tracksVertex) {
1262 if (itrack != mother) rf.addTrack(itrack);
1263 }
1264 rf.setMother(mother);
1265 } else {
1266
1268 bool mothSel = false;
1269 int nTrk = 0;
1270 for (unsigned itrack = 0; itrack < tracksVertex.size(); itrack++) {
1271 if (tracksVertex[itrack] != mother) {
1272 rsf.addTrack(tracksVertex[itrack]);
1273 B2DEBUG(1, "ParticleVertexFitterModule: Adding particle " << tracksName[itrack] << " to vertex fit ");
1274 nTrk++;
1275 }
1276 if (tracksVertex[itrack] == mother) mothSel = true;
1277 }
1278
1279
1280 // Fit one particle constrained to originate from the beam spot
1281 bool mothIPfit = false;
1282 if (tracksVertex.size() == 1 && mothSel == true && m_withConstraint != "" && nTrk == 0) {
1283 rsf.addTrack(tracksVertex[0]);
1284 if (tracksVertex[0] != mother)
1285 B2FATAL("ParticleVertexFitterModule: FATAL Error in IP constrained mother fit");
1286 nTrk++;
1287 mothIPfit = true;
1288 }
1289
1290
1291 ROOT::Math::XYZVector pos;
1292 TMatrixDSym RerrMatrix(3);
1293 int nvert = 0;
1294
1295 // one track fit is not kinematic
1296 if (nTrk == 1) {
1298 for (auto& itrack : tracksVertex) {
1299 rsg.addTrack(itrack);
1300 nvert = rsg.fit("kalman");
1301 if (nvert > 0) {
1302 pos = rsg.getPos(0);
1303 RerrMatrix = rsg.getCov(0);
1304 double prob = rsg.getPValue(0);
1305 ROOT::Math::PxPyPzEVector mom(mother->get4Vector());
1306 TMatrixDSym errMatrix(7);
1307 for (int i = 0; i < 7; i++) {
1308 for (int j = 0; j < 7; j++) {
1309 if (i > 3 && j > 3) {errMatrix[i][j] = RerrMatrix[i - 4][j - 4];}
1310 else {errMatrix[i][j] = 0;}
1311 }
1312 }
1313 if (mothIPfit) {
1314 mother->writeExtraInfo("prodVertX", pos.X());
1315 mother->writeExtraInfo("prodVertY", pos.Y());
1316 mother->writeExtraInfo("prodVertZ", pos.Z());
1317 mother->writeExtraInfo("prodVertSxx", RerrMatrix[0][0]);
1318 mother->writeExtraInfo("prodVertSxy", RerrMatrix[0][1]);
1319 mother->writeExtraInfo("prodVertSxz", RerrMatrix[0][2]);
1320 mother->writeExtraInfo("prodVertSyx", RerrMatrix[1][0]);
1321 mother->writeExtraInfo("prodVertSyy", RerrMatrix[1][1]);
1322 mother->writeExtraInfo("prodVertSyz", RerrMatrix[1][2]);
1323 mother->writeExtraInfo("prodVertSzx", RerrMatrix[2][0]);
1324 mother->writeExtraInfo("prodVertSzy", RerrMatrix[2][1]);
1325 mother->writeExtraInfo("prodVertSzz", RerrMatrix[2][2]);
1326 } else {
1327 mother->updateMomentum(mom, pos, errMatrix, prob);
1328 }
1329 return true;
1330 } else {return false;}
1331 }
1332 } else {
1333 nvert = rsf.fit();
1334 }
1335
1336 if (nvert > 0) {
1337 pos = rsf.getPos();
1338 RerrMatrix = rsf.getVertexErrorMatrix();
1339 double prob = rsf.getPValue();
1340 ROOT::Math::PxPyPzEVector mom(mother->get4Vector());
1341 TMatrixDSym errMatrix(7);
1342 for (int i = 0; i < 7; i++) {
1343 for (int j = 0; j < 7; j++) {
1344 if (i > 3 && j > 3) {errMatrix[i][j] = RerrMatrix[i - 4][j - 4];}
1345 else {errMatrix[i][j] = 0;}
1346 }
1347 }
1348 mother->updateMomentum(mom, pos, errMatrix, prob);
1349 } else {return false;}
1350
1351
1352 if (mothSel && nTrk > 1) {
1353 analysis::RaveSetup::getInstance()->setBeamSpot(B2Vector3D(pos.x(), pos.y(), pos.z()), RerrMatrix);
1354 rf.addMother(mother);
1355 int nKfit = rf.fit();
1356 rf.updateMother();
1358
1359 if (nKfit > 0) {return true;}
1360 else return false;
1361 } else return true;
1362 }
1363 }
1364
1365 bool okFT = false;
1366 if (m_fitType == "vertex") {
1367 okFT = true;
1368 int nVert = rf.fit();
1369 rf.updateMother();
1370 if (m_decayString.empty() && m_updateDaughters == true) rf.updateDaughters();
1371 if (nVert != 1) return false;
1372 }
1373 if (m_fitType == "mass") {
1374 // add protection
1375 okFT = true;
1376 rf.setMassConstFit(true);
1377 rf.setVertFit(false);
1378 int nVert = rf.fit();
1379 rf.updateMother();
1380 if (nVert != 1) return false;
1381 };
1382 if (m_fitType == "massvertex") {
1383 okFT = true;
1384 rf.setMassConstFit(true);
1385 int nVert = rf.fit();
1386 rf.updateMother();
1387 if (m_decayString.empty() && m_updateDaughters == true) rf.updateDaughters();
1388 if (nVert != 1) return false;
1389 };
1390 if (!okFT) {
1391 B2FATAL("fitType : " << m_fitType << " ***invalid fit type ");
1392 }
1393
1394 return true;
1395}
std::vector< std::string > getSelectionNames()
Return list of human readable names of selected particles.
std::vector< const Particle * > getSelectionParticles(const Particle *particle)
Get a vector of pointers with selected daughters in the decay tree.
DecayDescriptor m_decaydescriptor
Decay descriptor of decays to look for.
void writeExtraInfo(const std::string &name, const double value)
Sets the user defined extraInfo.
Definition: Particle.cc:1308
void updateMomentum(const ROOT::Math::PxPyPzEVector &p4, const ROOT::Math::XYZVector &vertex, const TMatrixFSym &errMatrix, double pValue)
Sets Lorentz vector, position, 7x7 error matrix and p-value.
Definition: Particle.h:386
The RaveKinematicVertexFitter class is part of the RaveInterface together with RaveSetup.
void addMother(const Particle *aMotherParticlePtr)
All daughters of the argument of this function will be used as input for the vertex fit.
ROOT::Math::XYZVector getPos()
get the position of the fitted vertex.
void addTrack(const Particle *aParticlePtr)
add a track (in the format of a Belle2::Particle) to set of tracks that should be fitted to a vertex
void setMother(const Particle *aMotherParticlePtr)
Set Mother particle for Vertex/momentum update.
int fit()
do the kinematic vertex fit with all tracks previously added with the addTrack or addMother function.
void setVertFit(bool isVertFit=true)
Set vertex fit: set false in case of mass fit only.
void setMassConstFit(bool isConstFit=true)
Set mass constrained fit
double getPValue()
get the p value of the fitted vertex.
TMatrixDSym getVertexErrorMatrix()
get the covariance matrix (3x3) of the of the fitted vertex position.
void updateDaughters()
update the Daughters particles
void unsetBeamSpot()
unset beam spot constraint
Definition: RaveSetup.cc:80
static RaveSetup * getInstance()
get the pointer to the instance to get/set any of options stored in RaveSetup
Definition: RaveSetup.h:43
void setBeamSpot(const B2Vector3D &beamSpot, const TMatrixDSym &beamSpotCov)
The beam spot position and covariance is known you can set it here so that and a vertex in the beam s...
Definition: RaveSetup.cc:72
The RaveVertexFitter class is part of the RaveInterface together with RaveSetup.
TMatrixDSym getCov(VecSize vertexId=0) const
get the covariance matrix (3x3) of the of the fitted vertex position.
int fit(std::string options="default")
do the vertex fit with all tracks previously added with the addTrack or addMother function.
void addTrack(const Particle *const aParticlePtr)
add a track (in the format of a Belle2::Particle) to set of tracks that should be fitted to a vertex
B2Vector3D getPos(VecSize vertexId=0) const
get the position of the fitted vertex.
double getPValue(VecSize vertexId=0) const
get the p value of the fitted vertex.
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516

◆ doVertexFit()

bool doVertexFit ( Particle p)
private

Main steering routine.

Parameters
ppointer to particle
Returns
true for successful fit and prob(chi^2,ndf) > m_confidenceLevel

Definition at line 203 of file ParticleVertexFitterModule.cc.

204{
205 // steering starts here
206
207 if (m_Bfield == 0) {
208 B2FATAL("ParticleVertexFitter: No magnetic field");
209 }
210
211 if (m_withConstraint != "ipprofile" &&
212 m_withConstraint != "iptube" &&
213 m_withConstraint != "mother" &&
214 m_withConstraint != "iptubecut" &&
215 m_withConstraint != "pointing" &&
216 m_withConstraint != "btube" &&
217 m_withConstraint != "")
218 B2FATAL("ParticleVertexFitter: " << m_withConstraint << " ***invalid Constraint ");
219
220 bool ok = false;
221 // fits with KFit
222 if (m_vertexFitter == "KFit") {
223
224 if (m_decayString != "" and m_fitType != "vertex")
225 B2FATAL("ParticleVertexFitter: KFit does not support yet selection of daughters via decay string except for vertex fit!");
226
227 // vertex fit
228 if (m_fitType == "vertex") {
229 if (m_withConstraint == "ipprofile") {
230 ok = doKVertexFit(mother, true, false);
231 } else if (m_withConstraint == "iptube") {
232 ok = doKVertexFit(mother, false, true);
233 } else {
234 ok = doKVertexFit(mother, false, false);
235 }
236 }
237
238 // mass-constrained vertex fit
239 if (m_fitType == "massvertex") {
240 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "iptubecut") {
241 B2FATAL("ParticleVertexFitter: Invalid options - mass-constrained fit using KFit does not work with iptube or ipprofile constraint.");
242 } else if (m_withConstraint == "pointing") {
243 ok = doKMassPointingVertexFit(mother);
244 } else {
245 ok = doKMassVertexFit(mother);
246 }
247 }
248
249 // mass fit
250 if (m_fitType == "mass") {
251 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "iptubecut") {
252 B2FATAL("ParticleVertexFitter: Invalid options - mass fit using KFit does not work with iptube or ipprofile constraint.");
253 } else {
254 ok = doKMassFit(mother);
255 }
256 }
257
258 // four C fit
259 if (m_fitType == "fourC") {
260 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "iptubecut") {
261 B2FATAL("ParticleVertexFitter: Invalid options - four C fit using KFit does not work with iptube or ipprofile constraint.");
262 } else {
263 ok = doKFourCFit(mother);
264 }
265 }
266
267 // four mass C fit
268 if (m_fitType == "massfourC") {
269 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "iptubecut") {
270 B2FATAL("ParticleVertexFitter: Invalid options - four C fit using KFit does not work with iptube or ipprofile constraint.");
271 } else {
272 ok = doKMassFourCFit(mother);
273 }
274 }
275
276 // recoil mass C fit
277 if (m_fitType == "recoilmass") {
278 if (m_withConstraint == "ipprofile" || m_withConstraint == "iptube" || m_withConstraint == "iptubecut") {
279 B2FATAL("ParticleVertexFitter: Invalid options - recoil mass fit using KFit does not work with iptube or ipprofile constraint.");
280 } else {
281 ok = doKRecoilMassFit(mother);
282 }
283 }
284
285 // invalid KFit fit type
286 if (m_fitType != "vertex"
287 && m_fitType != "massvertex"
288 && m_fitType != "mass"
289 && m_fitType != "fourC"
290 && m_fitType != "massfourC"
291 && m_fitType != "recoilmass")
292 B2FATAL("ParticleVertexFitter: " << m_fitType << " ***invalid fit type for the vertex fitter ");
293 }
294
295 // fits using Rave
296 if (m_vertexFitter == "Rave") {
297 try {
298 ok = doRaveFit(mother);
299 } catch (const rave::CheckedFloatException&) {
300 B2ERROR("Invalid inputs (nan/inf)?");
301 ok = false;
302 }
303 }
304
305 // invalid fitter
306 if (m_vertexFitter != "KFit" && m_vertexFitter != "Rave")
307 B2FATAL("ParticleVertexFitter: " << m_vertexFitter << " ***invalid vertex fitter ");
308
309 if (!ok) return false;
310
311 // steering ends here
312
313 //if (mother->getPValue() < m_confidenceLevel) return false;
314 return true;
315
316}
bool doKMassPointingVertexFit(Particle *p)
Mass-constrained vertex fit with additional pointing constraint using KFit.
bool doKVertexFit(Particle *p, bool ipProfileConstraint, bool ipTubeConstraint)
Unconstrained vertex fit using KFit.
bool doKMassVertexFit(Particle *p)
Mass-constrained vertex fit using KFit.
bool doKFourCFit(Particle *p)
FourC fit using KFit.
bool doKRecoilMassFit(Particle *p)
RecoilMass fit using KFit.
bool doRaveFit(Particle *mother)
Fit using Rave.
bool doKMassFit(Particle *p)
Mass fit using KFit.
bool doKMassFourCFit(Particle *p)
MassFourC fit using KFit.

◆ endRun()

virtual void endRun ( )
inlinevirtualinherited

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( )
overridevirtual

Event processor.

Reimplemented from Module.

Definition at line 124 of file ParticleVertexFitterModule.cc.

125{
126 if (m_vertexFitter == "Rave")
128
129 m_BeamSpotCenter = m_beamSpotDB->getIPPosition();
130 m_beamSpotCov.ResizeTo(3, 3);
131 TMatrixDSym beamSpotCov(3);
132 if (m_withConstraint == "ipprofile") m_beamSpotCov = m_beamSpotDB->getCovVertex();
133 if (m_withConstraint == "iptube") {
134 if (m_smearing > 0 && m_vertexFitter == "KFit") {
136 } else {
138 }
139 }
140 if (m_withConstraint == "iptubecut") { // for development purpose only
141 m_BeamSpotCenter = B2Vector3D(0.001, 0., .013);
143 }
144 if ((m_vertexFitter == "Rave") && (m_withConstraint == "ipprofile" || m_withConstraint == "iptube"
145 || m_withConstraint == "mother" || m_withConstraint == "iptubecut" || m_withConstraint == "btube"))
147
148 std::vector<unsigned int> toRemove;
149 unsigned int nParticles = m_plist->getListSize();
150
151 for (unsigned iPart = 0; iPart < nParticles; iPart++) {
152 Particle* particle = m_plist->getParticle(iPart);
153 m_hasCovMatrix = false;
154 if (m_updateDaughters == true) {
155 if (m_decayString.empty() || m_vertexFitter == "KFit")
157 else B2ERROR("Daughters update works only when all daughters are selected. Daughters will not be updated");
158 }
159
160 if (m_withConstraint == "mother") {
161 m_BeamSpotCenter = B2Vector3D(particle->getVertex().x(), particle->getVertex().y(), particle->getVertex().z());
163 }
164
165 TMatrixFSym mother_errMatrix(7);
166 mother_errMatrix = particle->getMomentumVertexErrorMatrix();
167 for (int k = 0; k < 7; k++) {
168 for (int j = 0; j < 7; j++) {
169 if (mother_errMatrix[k][j] > 0) {
170 m_hasCovMatrix = true;
171 }
172 }
173 }
174
175 bool hasTube = true;
176 if (m_withConstraint == "btube") {
177 Btube* Ver = particle->getRelatedTo<Btube>();
178 if (!Ver) {
179 hasTube = false;
180 toRemove.push_back(particle->getArrayIndex());
181 } else {
182 m_BeamSpotCenter.SetXYZ(Ver->getTubeCenter()(0, 0), Ver->getTubeCenter()(1, 0), Ver->getTubeCenter()(2, 0));
184 }
185 }
186 bool ok = false;
187 if (hasTube) {
188 ok = doVertexFit(particle);
189 }
190 if (!ok)
191 particle->setPValue(-1);
192 if (particle->getPValue() < m_confidenceLevel)
193 toRemove.push_back(particle->getArrayIndex());
194
195 }
196 m_plist->removeParticles(toRemove);
197
198 //free memory allocated by rave. initialize() would be enough, except that we must clean things up before program end...
199 if (m_vertexFitter == "Rave")
201}
void SetXYZ(DataType x, DataType y, DataType z)
set all coordinates using data type
Definition: B2Vector3.h:464
For each MCParticle with hits in the CDC, this class stores some summarising information on those hit...
Definition: Btube.h:27
TMatrixFSym getTubeMatrix() const
Returns Btube matrix.
Definition: Btube.h:78
Eigen::Matrix< double, 3, 1 > getTubeCenter() const
Returns Btube center.
Definition: Btube.h:64
void smearBeamSpot(double width)
smear beam spot covariance
bool m_hasCovMatrix
flag for mother covariance matrix (PseudoFitter)
DBObjPtr< BeamSpot > m_beamSpotDB
Beam spot database object.
bool doVertexFit(Particle *p)
Main steering routine.
void findConstraintBoost(double cut)
calculate iptube constraint (quasi cylinder along boost direction) for RAVE fit
StoreObjPtr< ParticleList > m_plist
particle list
TMatrixFSym getVertexErrorMatrix() const
Returns the 3x3 position error sub-matrix.
Definition: Particle.cc:447
ROOT::Math::XYZVector getVertex() const
Returns vertex position (POCA for charged, IP for neutral FS particles)
Definition: Particle.h:631
void setPValue(double pValue)
Sets chi^2 probability of fit.
Definition: Particle.h:366
TMatrixFSym getMomentumVertexErrorMatrix() const
Returns 7x7 error matrix.
Definition: Particle.cc:420
int getArrayIndex() const
Returns this object's array index (in StoreArray), or -1 if not found.
TO * getRelatedTo(const std::string &name="", const std::string &namedRelation="") const
Get the object to which this object has a relation.
static void initialize(int verbosity=1, double MagneticField=1.5)
Set everything up so everything needed for vertex fitting is there.
Definition: RaveSetup.cc:33
void reset()
frees memory allocated by initialize().
Definition: RaveSetup.cc:58
void copyDaughters(Particle *mother)
Function copies all (grand-)^n-daughter particles of the argument mother Particle.
Definition: ParticleCopy.cc:56

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ fillFitParticles()

bool fillFitParticles ( const Particle mother,
std::vector< const Particle * > &  fitChildren,
std::vector< const Particle * > &  twoPhotonChildren 
)
private

Fills valid particle's children (with valid error matrix) in the vector of Particles that will enter the fit.

Particles formed from two photons (e.g. pi0) are treated separately so they are filled to another vector.

Definition at line 318 of file ParticleVertexFitterModule.cc.

320{
321 if (m_decayString.empty()) {
322 // if decayString is empty, just use all primary daughters
323 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
324 const Particle* child = mother->getDaughter(ichild);
325 // This if allows to skip the daughters, which cannot be used in the fits, particularly K_L0 from KLM.
326 // Useful for fully-inclusive particles.
327 if (mother->getProperty() == Particle::PropertyFlags::c_IsUnspecified and child->getPValue() < 0) {
328 continue;
329 }
330 fitChildren.push_back(child);
331 }
332 } else {
333 fitChildren = m_decaydescriptor.getSelectionParticles(mother);
334 }
335
336 auto itr = fitChildren.begin();
337 while (itr != fitChildren.end()) {
338 const Particle* child = *itr;
339
340 if (child->getPValue() < 0) {
341 B2WARNING("Daughter with PDG code " << child->getPDGCode() << " does not have a valid error matrix.");
342 return false; // error matrix not valid
343 }
344 bool isTwoPhotonParticle = false;
345 if (m_hasCovMatrix == false) {
346 if (child->getPDGCode() == Const::pi0.getPDGCode() or child->getPDGCode() == 221) { // pi0 or eta
347 if (child->getNDaughters() == 2) {
348 if (child->getDaughter(0)->getPDGCode() == Const::photon.getPDGCode()
349 && child->getDaughter(1)->getPDGCode() == Const::photon.getPDGCode()) {
350 isTwoPhotonParticle = true;
351 }
352 }
353 }
354 }
355 if (isTwoPhotonParticle) {
356 // move children from fitChildren to twoPhotonChildren
357 twoPhotonChildren.push_back(child);
358 itr = fitChildren.erase(itr);
359 } else {
360 itr++;
361 }
362 }
363
364 return true;
365}
int getPDGCode() const
PDG code.
Definition: Const.h:473
static const ParticleType pi0
neutral pion particle
Definition: Const.h:674
static const ParticleType photon
photon particle
Definition: Const.h:673
int getProperty() const
Returns particle property as a bit pattern The values are defined in the PropertyFlags enum and descr...
Definition: Particle.h:498
@ c_IsUnspecified
Ordinary particles.
Definition: Particle.h:118

◆ fillNotFitParticles()

bool fillNotFitParticles ( const Particle mother,
std::vector< const Particle * > &  notFitChildren,
const std::vector< const Particle * > &  fitChildren 
)
private

Fills valid particle's children (with valid error matrix) in the vector of Particles that will not enter the fit.

Definition at line 367 of file ParticleVertexFitterModule.cc.

369{
370 if (fitChildren.empty())
371 B2WARNING("[ParticleVertexFitterModule::fillNotFitParticles] fitChildren is empty! Please call fillFitParticles firstly");
372 if (!notFitChildren.empty())
373 B2WARNING("[ParticleVertexFitterModule::fillNotFitParticles] notFitChildren is NOT empty!"
374 << " The function should be called only once");
375
376 if (m_decayString.empty())
377 // if decayString is empty, just use all primary daughters
378 return true;
379
380 std::function<bool(const Particle*)> funcCheckInFit =
381 [&funcCheckInFit, &notFitChildren, fitChildren](const Particle * part) {
382
383 // check if the given particle in fitChildren
384 // if it is included, return true
385 if (std::find(fitChildren.begin(), fitChildren.end(), part) != fitChildren.end())
386 return true;
387
388 // if not, firstly check if particle has children
389 if (part->getNDaughters() == 0)
390 // if it has no children (=final-state-particle), return false
391 return false;
392
393 // here, the given particle is not in fitChildren and has children
394 bool isAnyChildrenInFit = false;
395 vector<const Particle*> notFitChildren_tmp;
396 for (unsigned ichild = 0; ichild < part->getNDaughters(); ichild++) {
397 // call funcCheckInFit recursively for all children
398 const Particle* child = part->getDaughter(ichild);
399 bool isChildrenInFit = funcCheckInFit(child);
400 isAnyChildrenInFit = isChildrenInFit or isAnyChildrenInFit;
401
402 // if the child is not in fitChildren, fill the child in a temporary vector
403 if (!isChildrenInFit)
404 notFitChildren_tmp.push_back(child);
405 }
406
407 // if there are a sister in fitChildren, the children in the temporary vector will be filled in notFitChildren
408 if (isAnyChildrenInFit)
409 notFitChildren.insert(notFitChildren.end(), notFitChildren_tmp.begin(), notFitChildren_tmp.end());
410
411 // if no children in fitChildren, the given particle should be filled instead of all children.
412
413 return isAnyChildrenInFit;
414 };
415
416
417 // call funcCheckInFit for all primary children
418 for (unsigned ichild = 0; ichild < mother->getNDaughters(); ichild++) {
419 const Particle* child = mother->getDaughter(ichild);
420 bool isGivenParticleOrAnyChildrenInFit = funcCheckInFit(child);
421 if (!isGivenParticleOrAnyChildrenInFit)
422 notFitChildren.push_back(child);
423 }
424
425 return true;
426}

◆ findConstraintBoost()

void findConstraintBoost ( double  cut)
private

calculate iptube constraint (quasi cylinder along boost direction) for RAVE fit

Definition at line 1491 of file ParticleVertexFitterModule.cc.

1492{
1494
1495 B2Vector3D boost = T.getBoostVector();
1496 B2Vector3D boostDir = boost.Unit();
1497
1498 TMatrixDSym beamSpotCov = m_beamSpotDB->getCovVertex();
1499 beamSpotCov(2, 2) = cut * cut;
1500 double thetab = boostDir.Theta();
1501 double phib = boostDir.Phi();
1502
1503 double stb = TMath::Sin(thetab);
1504 double ctb = TMath::Cos(thetab);
1505 double spb = TMath::Sin(phib);
1506 double cpb = TMath::Cos(phib);
1507
1508
1509 TMatrix rz(3, 3); rz(2, 2) = 1;
1510 rz(0, 0) = cpb; rz(0, 1) = spb;
1511 rz(1, 0) = -1 * spb; rz(1, 1) = cpb;
1512
1513 TMatrix ry(3, 3); ry(1, 1) = 1;
1514 ry(0, 0) = ctb; ry(0, 2) = -1 * stb;
1515 ry(2, 0) = stb; ry(2, 2) = ctb;
1516
1517 TMatrix r(3, 3); r.Mult(rz, ry);
1518 TMatrix rt(3, 3); rt.Transpose(r);
1519
1520 TMatrix TubePart(3, 3); TubePart.Mult(rt, beamSpotCov);
1521 TMatrix Tube(3, 3); Tube.Mult(TubePart, r);
1522
1523 m_beamSpotCov(0, 0) = Tube(0, 0); m_beamSpotCov(0, 1) = Tube(0, 1); m_beamSpotCov(0, 2) = Tube(0, 2);
1524 m_beamSpotCov(1, 0) = Tube(1, 0); m_beamSpotCov(1, 1) = Tube(1, 1); m_beamSpotCov(1, 2) = Tube(1, 2);
1525 m_beamSpotCov(2, 0) = Tube(2, 0); m_beamSpotCov(2, 1) = Tube(2, 1); m_beamSpotCov(2, 2) = Tube(2, 2);
1526}
DataType Phi() const
The azimuth angle.
Definition: B2Vector3.h:151
DataType Theta() const
The polar angle.
Definition: B2Vector3.h:153
B2Vector3< DataType > Unit() const
Unit vector parallel to this.
Definition: B2Vector3.h:269
B2Vector3D getBoostVector() const
Returns boost vector (beta=p/E)

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getChi2TracksLBoost()

double getChi2TracksLBoost ( const analysis::VertexFitKFit kv)
private

calculate the chi2 using only lboost information of tracks

Definition at line 1537 of file ParticleVertexFitterModule.cc.

1538{
1539 double chi2TrackL = 0;
1540
1541 for (int iTrack = 0; iTrack < kv.getTrackCount(); iTrack++) {
1542
1543 analysis::KFitTrack trk_i = kv.getTrack(iTrack); // KFitTrack contains parameters before/after fit.
1544
1545 TMatrixFSym err = CLHEPToROOT::getTMatrixFSym(trk_i.getError(analysis::KFitConst::kBeforeFit)); // px, py, pz, E, x, y, z
1546
1547 B2Vector3D x_before = CLHEPToROOT::getXYZVector(trk_i.getPosition(analysis::KFitConst::kBeforeFit));
1548 B2Vector3D x_after = CLHEPToROOT::getXYZVector(trk_i.getPosition());
1549 B2Vector3D dPos = x_after - x_before;
1550
1552 B2Vector3D boost3 = T.getBoostVector().Unit();
1553 TVectorD boostD(0, 6, 0., 0., 0., 0., boost3.X(), boost3.Y(), boost3.Z(), "END");
1554
1555 double dLBoost = dPos.Dot(boost3);
1556
1557 chi2TrackL += TMath::Power(dLBoost, 2) / err.Similarity(boostD);
1558 }
1559 return chi2TrackL;
1560}
DataType Z() const
access variable Z (= .at(2) without boundary check)
Definition: B2Vector3.h:435
DataType X() const
access variable X (= .at(0) without boundary check)
Definition: B2Vector3.h:431
DataType Y() const
access variable Y (= .at(1) without boundary check)
Definition: B2Vector3.h:433
DataType Dot(const B2Vector3< DataType > &p) const
Scalar product.
Definition: B2Vector3.h:290
const KFitTrack getTrack(const int id) const
Get a specified track object.
Definition: KFitBase.cc:175
KFitTrack is a container of the track information (Lorentz vector, position, and error matrix),...
Definition: KFitTrack.h:38
const CLHEP::HepSymMatrix getError(const int flag=KFitConst::kAfterFit) const
Get an error matrix of the track.
Definition: KFitTrack.cc:172
const HepPoint3D getPosition(const int flag=KFitConst::kAfterFit) const
Get a position of the track.
Definition: KFitTrack.cc:164
static const int kBeforeFit
Input parameter to specify before-fit when setting/getting a track attribute.
Definition: KFitConst.h:35

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( )
overridevirtual

Initialize the Module.

This method is called at the beginning of data processing.

Reimplemented from Module.

Definition at line 84 of file ParticleVertexFitterModule.cc.

85{
86 // Particle list with name m_listName has to exist
87 m_plist.isRequired(m_listName);
88
89 // magnetic field
90 m_Bfield = BFieldManager::getFieldInTesla(ROOT::Math::XYZVector(0, 0, 0)).Z();
91
92 // RAVE setup
93 if (m_vertexFitter == "Rave")
95
96 B2DEBUG(1, "ParticleVertexFitterModule : magnetic field = " << m_Bfield);
97
98
99 if (m_decayString != "")
101
102 if ((m_massConstraintList.size()) == 0 && (m_massConstraintListParticlename.size()) > 0) {
103 for (auto& containedParticle : m_massConstraintListParticlename) {
104 TParticlePDG* particletemp = TDatabasePDG::Instance()->GetParticle((containedParticle).c_str());
105 m_massConstraintList.push_back(particletemp->PdgCode());
106 }
107 }
108
109 B2INFO("ParticleVertexFitter: Performing " << m_fitType << " fit on " << m_listName << " using " << m_vertexFitter);
110 if (m_decayString != "")
111 B2INFO("ParticleVertexFitter: Using specified decay string: " << m_decayString);
112 if (m_withConstraint != "")
113 B2INFO("ParticleVertexFitter: Additional " << m_withConstraint << " will be applied");
114
115}
static ROOT::Math::XYZVector getFieldInTesla(const ROOT::Math::XYZVector &pos)
return the magnetic field at a given position in Tesla.
Definition: BFieldManager.h:61
bool init(const std::string &str)
Initialise the DecayDescriptor from given string.

◆ makeKFourCMother()

bool makeKFourCMother ( analysis::FourCFitKFit kv,
Particle p 
)
private

Update mother particle after FourC fit using KFit.

Parameters
kvreference to KFit MassFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 1055 of file ParticleVertexFitterModule.cc.

1056{
1057 enum analysis::KFitError::ECode fitError;
1058 fitError = kf.updateMother(mother);
1059 if (fitError != analysis::KFitError::kNoError)
1060 return false;
1061 mother->addExtraInfo("FourCFitProb", kf.getCHIsq());
1062 mother->addExtraInfo("FourCFitChi2", kf.getNDF());
1063 if (m_decayString.empty() && m_updateDaughters == true) {
1064 // update daughter momenta as well
1065 // the order of daughters in the *fitter is the same as in the mother Particle
1066
1067 std::vector<Particle*> daughters = mother->getDaughters();
1068
1069 const unsigned nd = daughters.size();
1070 unsigned l = 0;
1071 std::vector<std::vector<unsigned>> pars;
1072 std::vector<Particle*> allparticles;
1073 for (unsigned ichild = 0; ichild < nd; ichild++) {
1074 const Particle* daughter = mother->getDaughter(ichild);
1075 std::vector<unsigned> pard;
1076 if (daughter->getNDaughters() > 0) {
1077 updateMapOfTrackAndDaughter(l, pars, pard, allparticles, daughter);
1078 pars.push_back(pard);
1079 allparticles.push_back(daughters[ichild]);
1080 } else {
1081 pard.push_back(l);
1082 pars.push_back(pard);
1083 allparticles.push_back(daughters[ichild]);
1084 l++;
1085 }
1086 }
1087
1088 unsigned track_count = kf.getTrackCount();
1089 if (l != track_count)
1090 return false;
1091
1092 for (unsigned iDaug = 0; iDaug < allparticles.size(); iDaug++) {
1093 ROOT::Math::PxPyPzEVector childMoms;
1094 ROOT::Math::XYZVector childPoss;
1095 TMatrixFSym childErrMatrixs(7);
1096 for (unsigned int iChild : pars[iDaug]) {
1097 childMoms = childMoms +
1098 CLHEPToROOT::getLorentzVector(
1099 kf.getTrackMomentum(iChild));
1100 childPoss = childPoss +
1101 CLHEPToROOT::getXYZVector(
1102 kf.getTrackPosition(iChild));
1103 TMatrixFSym childErrMatrix =
1104 CLHEPToROOT::getTMatrixFSym(kf.getTrackError(iChild));
1105 childErrMatrixs = childErrMatrixs + childErrMatrix;
1106 }
1107 allparticles[iDaug]->set4Vector(childMoms);
1108 allparticles[iDaug]->setVertex(childPoss);
1109 allparticles[iDaug]->setMomentumVertexErrorMatrix(childErrMatrixs);
1110 }
1111 }
1112
1113 return true;
1114}
void updateMapOfTrackAndDaughter(unsigned &l, std::vector< std::vector< unsigned > > &pars, std::vector< unsigned > &pard, std::vector< Particle * > &allparticles, const Particle *daughter)
update the map of daughter and tracks, find out which tracks belong to each daughter.
ECode
ECode is a error code enumerate.
Definition: KFitError.h:34

◆ makeKMassMother()

bool makeKMassMother ( analysis::MassFitKFit kv,
Particle p 
)
private

Update mother particle after mass fit using KFit.

Parameters
kvreference to KFit MassFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 1015 of file ParticleVertexFitterModule.cc.

1017{
1018 enum analysis::KFitError::ECode fitError;
1019 fitError = km.updateMother(mother);
1020 if (fitError != analysis::KFitError::kNoError)
1021 return false;
1022 if (m_decayString.empty() && m_updateDaughters == true) {
1023 // update daughter momenta as well
1024 // the order of daughters in the *fitter is the same as in the mother Particle
1025
1026 std::vector<Particle*> daughters = mother->getDaughters();
1027
1028 unsigned track_count = km.getTrackCount();
1029 if (daughters.size() != track_count)
1030 return false;
1031
1032 for (unsigned iChild = 0; iChild < track_count; iChild++) {
1033 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughters[iChild]->getCharge();
1034 double dx = km.getVertex().x() - km.getTrackPosition(iChild).x();
1035 double dy = km.getVertex().y() - km.getTrackPosition(iChild).y();
1036
1037 ROOT::Math::PxPyPzEVector i4Vector(km.getTrackMomentum(iChild).x() - a * dy,
1038 km.getTrackMomentum(iChild).y() + a * dx,
1039 km.getTrackMomentum(iChild).z(),
1040 km.getTrackMomentum(iChild).t());
1041 daughters[iChild]->set4VectorDividingByMomentumScaling(i4Vector);
1042
1043 daughters[iChild]->setVertex(
1044 CLHEPToROOT::getXYZVector(km.getTrackPosition(iChild)));
1045 daughters[iChild]->setMomentumVertexErrorMatrix(
1046 CLHEPToROOT::getTMatrixFSym(km.getTrackError(iChild)));
1047 }
1048 }
1049
1050 return true;
1051}
static const double speedOfLight
[cm/ns]
Definition: Const.h:695

◆ makeKMassPointingVertexMother()

bool makeKMassPointingVertexMother ( analysis::MassPointingVertexFitKFit kv,
Particle p 
)
private

Update mother particle after mass-constrained vertex fit with additional pointing constraint using KFit.

Parameters
kvreference to KFit MassPointingVertexFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 974 of file ParticleVertexFitterModule.cc.

976{
977 enum analysis::KFitError::ECode fitError;
978 fitError = kmpv.updateMother(mother);
979 if (fitError != analysis::KFitError::kNoError) {
980 return false;
981 }
982
983 if (m_decayString.empty() && m_updateDaughters == true) {
984 // update daughter momenta as well
985 // the order of daughters in the *fitter is the same as in the mother Particle
986
987 std::vector<Particle*> daughters = mother->getDaughters();
988
989 unsigned track_count = kmpv.getTrackCount();
990 if (daughters.size() != track_count)
991 return false;
992
993 for (unsigned iChild = 0; iChild < track_count; iChild++) {
994 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughters[iChild]->getCharge();
995 double dx = kmpv.getVertex().x() - kmpv.getTrackPosition(iChild).x();
996 double dy = kmpv.getVertex().y() - kmpv.getTrackPosition(iChild).y();
997
998 ROOT::Math::PxPyPzEVector i4Vector(kmpv.getTrackMomentum(iChild).x() - a * dy,
999 kmpv.getTrackMomentum(iChild).y() + a * dx,
1000 kmpv.getTrackMomentum(iChild).z(),
1001 kmpv.getTrackMomentum(iChild).t());
1002 daughters[iChild]->set4VectorDividingByMomentumScaling(i4Vector);
1003
1004 daughters[iChild]->setVertex(
1005 CLHEPToROOT::getXYZVector(kmpv.getTrackPosition(iChild)));
1006 daughters[iChild]->setMomentumVertexErrorMatrix(
1007 CLHEPToROOT::getTMatrixFSym(kmpv.getTrackError(iChild)));
1008 }
1009 }
1010
1011 return true;
1012}

◆ makeKMassVertexMother()

bool makeKMassVertexMother ( analysis::MassVertexFitKFit kv,
Particle p 
)
private

Update mother particle after mass-constrained vertex fit using KFit.

Parameters
kvreference to KFit MassVertexFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 936 of file ParticleVertexFitterModule.cc.

938{
939 enum analysis::KFitError::ECode fitError;
940 fitError = kmv.updateMother(mother);
941 if (fitError != analysis::KFitError::kNoError)
942 return false;
943 if (m_decayString.empty() && m_updateDaughters == true) {
944 // update daughter momenta as well
945 // the order of daughters in the *fitter is the same as in the mother Particle
946
947 std::vector<Particle*> daughters = mother->getDaughters();
948
949 unsigned track_count = kmv.getTrackCount();
950 if (daughters.size() != track_count)
951 return false;
952
953 for (unsigned iChild = 0; iChild < track_count; iChild++) {
954 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughters[iChild]->getCharge();
955 double dx = kmv.getVertex().x() - kmv.getTrackPosition(iChild).x();
956 double dy = kmv.getVertex().y() - kmv.getTrackPosition(iChild).y();
957
958 ROOT::Math::PxPyPzEVector i4Vector(kmv.getTrackMomentum(iChild).x() - a * dy,
959 kmv.getTrackMomentum(iChild).y() + a * dx,
960 kmv.getTrackMomentum(iChild).z(),
961 kmv.getTrackMomentum(iChild).t());
962 daughters[iChild]->set4VectorDividingByMomentumScaling(i4Vector);
963
964 daughters[iChild]->setVertex(
965 CLHEPToROOT::getXYZVector(kmv.getTrackPosition(iChild)));
966 daughters[iChild]->setMomentumVertexErrorMatrix(
967 CLHEPToROOT::getTMatrixFSym(kmv.getTrackError(iChild)));
968 }
969 }
970
971 return true;
972}

◆ makeKRecoilMassMother()

bool makeKRecoilMassMother ( analysis::RecoilMassKFit kf,
Particle p 
)
private

Update mother particle after RecoilMass fit using KFit.

Parameters
kfreference to KFit MassFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 1178 of file ParticleVertexFitterModule.cc.

1179{
1180 enum analysis::KFitError::ECode fitError;
1181 fitError = kf.updateMother(mother);
1182 if (fitError != analysis::KFitError::kNoError)
1183 return false;
1184 mother->addExtraInfo("RecoilMassFitProb", TMath::Prob(kf.getCHIsq(), kf.getNDF()));
1185 mother->addExtraInfo("RecoilMassFitChi2", kf.getCHIsq());
1186 mother->addExtraInfo("RecoilMassFitNDF", kf.getNDF());
1187 if (m_decayString.empty() && m_updateDaughters == true) {
1188 // update daughter momenta as well
1189 // the order of daughters in the *fitter is the same as in the mother Particle
1190
1191 std::vector<Particle*> daughters = mother->getDaughters();
1192
1193 unsigned track_count = kf.getTrackCount();
1194 if (daughters.size() != track_count)
1195 return false;
1196
1197 for (unsigned iChild = 0; iChild < track_count; iChild++) {
1198 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughters[iChild]->getCharge();
1199 double dx = kf.getVertex().x() - kf.getTrackPosition(iChild).x();
1200 double dy = kf.getVertex().y() - kf.getTrackPosition(iChild).y();
1201
1202 ROOT::Math::PxPyPzEVector i4Vector(kf.getTrackMomentum(iChild).x() - a * dy,
1203 kf.getTrackMomentum(iChild).y() + a * dx,
1204 kf.getTrackMomentum(iChild).z(),
1205 kf.getTrackMomentum(iChild).t());
1206 daughters[iChild]->set4VectorDividingByMomentumScaling(i4Vector);
1207
1208 daughters[iChild]->setVertex(
1209 CLHEPToROOT::getXYZVector(kf.getTrackPosition(iChild)));
1210 daughters[iChild]->setMomentumVertexErrorMatrix(
1211 CLHEPToROOT::getTMatrixFSym(kf.getTrackError(iChild)));
1212 }
1213 }
1214
1215 return true;
1216}
const CLHEP::HepSymMatrix getTrackError(const int id) const
Get an error matrix of the track.
Definition: KFitBase.cc:168
const CLHEP::HepLorentzVector getTrackMomentum(const int id) const
Get a Lorentz vector of the track.
Definition: KFitBase.cc:154
const HepPoint3D getTrackPosition(const int id) const
Get a position of the track.
Definition: KFitBase.cc:161
virtual int getNDF(void) const
Get an NDF of the fit.
Definition: KFitBase.cc:114
double getCHIsq(void) const override
Get a chi-square of the fit.
enum KFitError::ECode updateMother(Particle *mother)
Update mother particle.
const HepPoint3D getVertex(const int flag=KFitConst::kAfterFit) const
Get a vertex position.

◆ makeKVertexMother()

bool makeKVertexMother ( analysis::VertexFitKFit kv,
Particle p 
)
private

Update mother particle after unconstrained vertex fit using KFit.

Parameters
kvreference to KFit VertexFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 837 of file ParticleVertexFitterModule.cc.

839{
840 enum analysis::KFitError::ECode fitError;
841 fitError = kv.updateMother(mother);
842 if (fitError != analysis::KFitError::kNoError)
843 return false;
844 if (m_decayString.empty() && m_updateDaughters == true) {
845 // update daughter momenta as well
846 // the order of daughters in the *fitter is the same as in the mother Particle
847
848 std::vector<Particle*> daughters = mother->getDaughters();
849
850 unsigned track_count = kv.getTrackCount();
851 if (daughters.size() != track_count)
852 return false;
853
854 for (unsigned iChild = 0; iChild < track_count; iChild++) {
855 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughters[iChild]->getCharge();
856 double dx = kv.getVertex().x() - kv.getTrackPosition(iChild).x();
857 double dy = kv.getVertex().y() - kv.getTrackPosition(iChild).y();
858
859 ROOT::Math::PxPyPzEVector i4Vector(kv.getTrackMomentum(iChild).x() - a * dy,
860 kv.getTrackMomentum(iChild).y() + a * dx,
861 kv.getTrackMomentum(iChild).z(),
862 kv.getTrackMomentum(iChild).t());
863 daughters[iChild]->set4VectorDividingByMomentumScaling(i4Vector);
864
865 daughters[iChild]->setVertex(
866 CLHEPToROOT::getXYZVector(kv.getTrackPosition(iChild)));
867 daughters[iChild]->setMomentumVertexErrorMatrix(
868 CLHEPToROOT::getTMatrixFSym(kv.getTrackError(iChild)));
869 }
870
871 } else if (m_updateDaughters == true) { // if decayString is not empty
872 // first, update only the fit children
873 std::vector<const Particle*> fitChildren = m_decaydescriptor.getSelectionParticles(mother);
874
875 unsigned track_count = kv.getTrackCount();
876 if (fitChildren.size() != track_count)
877 return false;
878
879 for (unsigned iChild = 0; iChild < track_count; iChild++) {
880 auto daughter = const_cast<Particle*>(fitChildren[iChild]);
881
882 double a = -1 * Belle2::Const::speedOfLight * 1e-4 * m_Bfield * daughter->getCharge();
883 double dx = kv.getVertex().x() - kv.getTrackPosition(iChild).x();
884 double dy = kv.getVertex().y() - kv.getTrackPosition(iChild).y();
885
886 ROOT::Math::PxPyPzEVector i4Vector(kv.getTrackMomentum(iChild).x() - a * dy,
887 kv.getTrackMomentum(iChild).y() + a * dx,
888 kv.getTrackMomentum(iChild).z(),
889 kv.getTrackMomentum(iChild).t());
890 daughter->set4VectorDividingByMomentumScaling(i4Vector);
891
892 daughter->setVertex(CLHEPToROOT::getXYZVector(kv.getTrackPosition(iChild)));
893 daughter->setMomentumVertexErrorMatrix(CLHEPToROOT::getTMatrixFSym(kv.getTrackError(iChild)));
894 }
895
896 // then, update other particles that have a fit-child in decay
897 std::function<bool(Particle*)> funcUpdateMomentum =
898 [&funcUpdateMomentum, fitChildren](Particle * part) {
899
900 if (part->getNDaughters() == 0) {
901 // check if part is included in fitChildren
902 if (std::find(fitChildren.begin(), fitChildren.end(), part) != fitChildren.end())
903 return true;
904 else
905 return false;
906 }
907
908 bool includeFitChildren = false;
909
910 // Update daughters' momentum
911 for (auto daughter : part->getDaughters())
912 includeFitChildren = funcUpdateMomentum(daughter) || includeFitChildren;
913
914 if (includeFitChildren) {
915 // Using updated daughters, update part's momentum
916 ROOT::Math::PxPyPzEVector sum4Vector;
917 for (auto daughter : part->getDaughters())
918 sum4Vector += daughter->get4Vector();
919
920 part->set4VectorDividingByMomentumScaling(sum4Vector);
921 }
922
923 return includeFitChildren;
924 };
925
926 // Update all daughters
927 for (auto daughter : mother->getDaughters())
928 funcUpdateMomentum(daughter);
929
930 }
931
932
933 return true;
934}
enum KFitError::ECode updateMother(Particle *mother)
Update mother particle.
const HepPoint3D getVertex(const int flag=KFitConst::kAfterFit) const
Get a vertex position.

◆ makeMassKFourCMother()

bool makeMassKFourCMother ( analysis::MassFourCFitKFit kv,
Particle p 
)
private

Update mother particle after MassFourC fit using KFit.

Parameters
kvreference to KFit MassFit object
ppointer to particle
Returns
true for successful construction of mother

Definition at line 1116 of file ParticleVertexFitterModule.cc.

1117{
1118 enum analysis::KFitError::ECode fitError;
1119 fitError = kf.updateMother(mother);
1120 if (fitError != analysis::KFitError::kNoError)
1121 return false;
1122 mother->addExtraInfo("MassFourCFitProb", TMath::Prob(kf.getCHIsq(), kf.getNDF()));
1123 mother->addExtraInfo("MassFourCFitChi2", kf.getCHIsq());
1124 mother->addExtraInfo("MassFourCFitNDF", kf.getNDF());
1125 if (m_decayString.empty() && m_updateDaughters == true) {
1126 // update daughter momenta as well
1127 // the order of daughters in the *fitter is the same as in the mother Particle
1128
1129 std::vector<Particle*> daughters = mother->getDaughters();
1130
1131 const unsigned nd = daughters.size();
1132 unsigned l = 0;
1133 std::vector<std::vector<unsigned>> pars;
1134 std::vector<Particle*> allparticles;
1135 for (unsigned ichild = 0; ichild < nd; ichild++) {
1136 const Particle* daughter = mother->getDaughter(ichild);
1137 std::vector<unsigned> pard;
1138 if (daughter->getNDaughters() > 0) {
1139 updateMapOfTrackAndDaughter(l, pars, pard, allparticles, daughter);
1140 pars.push_back(pard);
1141 allparticles.push_back(daughters[ichild]);
1142 } else {
1143 pard.push_back(l);
1144 pars.push_back(pard);
1145 allparticles.push_back(daughters[ichild]);
1146 l++;
1147 }
1148 }
1149
1150 unsigned track_count = kf.getTrackCount();
1151 if (l != track_count)
1152 return false;
1153
1154 for (unsigned iDaug = 0; iDaug < allparticles.size(); iDaug++) {
1155 ROOT::Math::PxPyPzEVector childMoms;
1156 ROOT::Math::XYZVector childPoss;
1157 TMatrixFSym childErrMatrixs(7);
1158 for (unsigned int iChild : pars[iDaug]) {
1159 childMoms = childMoms +
1160 CLHEPToROOT::getLorentzVector(
1161 kf.getTrackMomentum(iChild));
1162 childPoss = childPoss +
1163 CLHEPToROOT::getXYZVector(
1164 kf.getTrackPosition(iChild));
1165 TMatrixFSym childErrMatrix =
1166 CLHEPToROOT::getTMatrixFSym(kf.getTrackError(iChild));
1167 childErrMatrixs = childErrMatrixs + childErrMatrix;
1168 }
1169 allparticles[iDaug]->set4Vector(childMoms);
1170 allparticles[iDaug]->setVertex(childPoss);
1171 allparticles[iDaug]->setMomentumVertexErrorMatrix(childErrMatrixs);
1172 }
1173 }
1174
1175 return true;
1176}

◆ redoTwoPhotonDaughterMassFit()

bool redoTwoPhotonDaughterMassFit ( Particle postFit,
const Particle preFit,
const analysis::VertexFitKFit kv 
)
private

Combines preFit particle and vertex information from vertex fit kv to create new postFit particle.

A mass refit of this new particle is performed assuming that it originates from the point given by VertexFit.

Definition at line 428 of file ParticleVertexFitterModule.cc.

430{
431 // TODO: something like setGammaError is necessary
432 // this is just workaround for the moment
433
434 const Particle* g1Orig = preFit->getDaughter(0);
435 const Particle* g2Orig = preFit->getDaughter(1);
436 Particle g1Temp(g1Orig->get4Vector(), 22);
437 Particle g2Temp(g2Orig->get4Vector(), 22);
438
439 TMatrixFSym g1ErrMatrix = g1Orig->getMomentumVertexErrorMatrix();
440 TMatrixFSym g2ErrMatrix = g2Orig->getMomentumVertexErrorMatrix();
441
442 ROOT::Math::XYZVector pos(kv.getVertex().x(), kv.getVertex().y(), kv.getVertex().z());
443 CLHEP::HepSymMatrix posErrorMatrix = kv.getVertexError();
444
445 TMatrixFSym errMatrix(3);
446 for (int i = 0; i < 3; i++)
447 for (int j = 0; j < 3; j++)
448 errMatrix(i, j) = posErrorMatrix[i][j];
449
450 g1ErrMatrix.SetSub(4, errMatrix);
451 g2ErrMatrix.SetSub(4, errMatrix);
452
453 g1Temp.updateMomentum(g1Orig->get4Vector(), pos, g1ErrMatrix, 1.0);
454 g2Temp.updateMomentum(g2Orig->get4Vector(), pos, g2ErrMatrix, 1.0);
455
456 // perform the mass fit for the two-photon particle
459
460 km.addParticle(&g1Temp);
461 km.addParticle(&g2Temp);
462
463 km.setVertex(kv.getVertex());
465 km.setInvariantMass(preFit->getPDGMass());
466
467 int err = km.doFit();
468 if (err != 0) {
469 return false;
470 }
471
472 // The update of the daughters is disabled for this mass fit.
473 bool updateDaughters = m_updateDaughters;
474 m_updateDaughters = false;
475 bool ok = makeKMassMother(km, postFit);
476 m_updateDaughters = updateDaughters;
477
478 return ok;
479}
enum KFitError::ECode setVertex(const HepPoint3D &v)
Set an initial vertex position for the mass-constraint fit.
Definition: MassFitKFit.cc:44
enum KFitError::ECode setVertexError(const CLHEP::HepSymMatrix &e)
Set an initial vertex error matrix for the mass-constraint fit.
Definition: MassFitKFit.cc:52
const CLHEP::HepSymMatrix getVertexError(void) const
Get a fitted vertex error matrix.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ smearBeamSpot()

void smearBeamSpot ( double  width)
private

smear beam spot covariance

Definition at line 1528 of file ParticleVertexFitterModule.cc.

1529{
1530 TMatrixDSym beamSpotCov = m_beamSpotDB->getCovVertex();
1531 for (int i = 0; i < 3; i++)
1532 beamSpotCov(i, i) += width * width;
1533
1534 m_beamSpotCov = beamSpotCov;
1535}

◆ terminate()

◆ updateMapOfTrackAndDaughter()

void updateMapOfTrackAndDaughter ( unsigned &  l,
std::vector< std::vector< unsigned > > &  pars,
std::vector< unsigned > &  pard,
std::vector< Particle * > &  allparticles,
const Particle daughter 
)
private

update the map of daughter and tracks, find out which tracks belong to each daughter.

Parameters
lrepresent the tracks ID
parsmap of all parameters
pardvector of parameters
allparticlesvector of all particles
daughterpointer to particle

Definition at line 1219 of file ParticleVertexFitterModule.cc.

1221{
1222 std::vector <Belle2::Particle*> childs = daughter->getDaughters();
1223 for (unsigned ichild = 0; ichild < daughter->getNDaughters(); ichild++) {
1224 const Particle* child = daughter->getDaughter(ichild);
1225 std::vector<unsigned> pard;
1226 if (child->getNDaughters() > 0) {
1227 updateMapOfTrackAndDaughter(l, pars, pard, allparticles, child);
1228 parm.insert(parm.end(), pard.begin(), pard.end());
1229 pars.push_back(pard);
1230 allparticles.push_back(childs[ichild]);
1231 } else {
1232 pard.push_back(l);
1233 parm.push_back(l);
1234 pars.push_back(pard);
1235 allparticles.push_back(childs[ichild]);
1236 l++;
1237 }
1238 }
1239}

Member Data Documentation

◆ m_BeamSpotCenter

B2Vector3D m_BeamSpotCenter
private

Beam spot position.

Definition at line 90 of file ParticleVertexFitterModule.h.

◆ m_beamSpotCov

TMatrixDSym m_beamSpotCov
private

Beam spot covariance matrix.

Definition at line 91 of file ParticleVertexFitterModule.h.

◆ m_beamSpotDB

DBObjPtr<BeamSpot> m_beamSpotDB
private

Beam spot database object.

Definition at line 92 of file ParticleVertexFitterModule.h.

◆ m_Bfield

double m_Bfield
private

magnetic field from data base

Definition at line 82 of file ParticleVertexFitterModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_confidenceLevel

double m_confidenceLevel
private

required fit confidence level

Definition at line 81 of file ParticleVertexFitterModule.h.

◆ m_decaydescriptor

DecayDescriptor m_decaydescriptor
private

Decay descriptor of decays to look for.

Definition at line 88 of file ParticleVertexFitterModule.h.

◆ m_decayString

std::string m_decayString
private

daughter particles selection

Definition at line 86 of file ParticleVertexFitterModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_fitType

std::string m_fitType
private

type of the kinematic fit

Definition at line 84 of file ParticleVertexFitterModule.h.

◆ m_hasCovMatrix

bool m_hasCovMatrix = false
private

flag for mother covariance matrix (PseudoFitter)

Definition at line 89 of file ParticleVertexFitterModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_listName

std::string m_listName
private

particle list name

Definition at line 80 of file ParticleVertexFitterModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_massConstraintList

std::vector<int> m_massConstraintList
private

PDG codes of the particles to be mass constraint (massfourC)

Definition at line 95 of file ParticleVertexFitterModule.h.

◆ m_massConstraintListParticlename

std::vector<std::string> m_massConstraintListParticlename
private

Name of the particles to be mass constraint (massfourC)

Definition at line 96 of file ParticleVertexFitterModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_plist

StoreObjPtr<ParticleList> m_plist
private

particle list

Definition at line 79 of file ParticleVertexFitterModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_recoilMass

double m_recoilMass
private

recoil mass for constraint

Definition at line 94 of file ParticleVertexFitterModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_smearing

double m_smearing
private

smearing width applied to IP tube

Definition at line 93 of file ParticleVertexFitterModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_updateDaughters

bool m_updateDaughters
private

flag for daughters update

Definition at line 87 of file ParticleVertexFitterModule.h.

◆ m_vertexFitter

std::string m_vertexFitter
private

Vertex Fitter name.

Definition at line 83 of file ParticleVertexFitterModule.h.

◆ m_withConstraint

std::string m_withConstraint
private

additional constraint on vertex

Definition at line 85 of file ParticleVertexFitterModule.h.


The documentation for this class was generated from the following files: