Belle II Software  release-08-01-10
CDCSimpleSimulation.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <tracking/trackFindingCDC/sim/CDCSimpleSimulation.h>
10 
11 #include <tracking/trackFindingCDC/eventdata/tracks/CDCTrack.h>
12 
13 #include <tracking/trackFindingCDC/eventdata/hits/CDCRecoHit3D.h>
14 #include <tracking/trackFindingCDC/eventdata/hits/CDCRLWireHit.h>
15 #include <tracking/trackFindingCDC/eventdata/hits/CDCWireHit.h>
16 
17 #include <tracking/trackFindingCDC/topology/CDCWire.h>
18 #include <tracking/trackFindingCDC/topology/CDCWireLayer.h>
19 #include <tracking/trackFindingCDC/topology/CDCWireTopology.h>
20 
21 #include <tracking/trackFindingCDC/utilities/VectorRange.h>
22 
23 #include <framework/gearbox/Const.h>
24 #include <framework/logging/Logger.h>
25 
26 #include <TRandom.h>
27 
28 #include <algorithm>
29 
30 using namespace Belle2;
31 using namespace TrackFindingCDC;
32 
34 {
35  if (m_sharedWireHits) {
36  return {m_sharedWireHits->begin(), m_sharedWireHits->end()};
37  } else {
39  }
40 }
41 
43 {
44  return std::move(simulate(std::vector<CDCTrajectory3D>(1, trajectory3D)).front());
45 }
46 
47 
48 std::vector<CDCTrack> CDCSimpleSimulation::simulate(const std::vector<CDCTrajectory3D>& trajectories3D)
49 {
50  std::vector<SimpleSimHit> simpleSimHits;
51  const size_t nMCTracks = trajectories3D.size();
52 
53  for (size_t iMCTrack = 0; iMCTrack < nMCTracks; ++iMCTrack) {
54  const CDCTrajectory3D& trajectory3D = trajectories3D[iMCTrack];
55 
56  const UncertainHelix& localHelix = trajectory3D.getLocalHelix();
57  const Vector3D& localOrigin = trajectory3D.getLocalOrigin();
58 
59  Helix globalHelix = localHelix;
60  const double arcLength2DOffset = globalHelix.passiveMoveBy(-localOrigin);
61  std::vector<SimpleSimHit> simpleSimHitsForTrajectory = createHits(globalHelix, arcLength2DOffset);
62 
63  for (SimpleSimHit& simpleSimHit : simpleSimHitsForTrajectory) {
64  simpleSimHit.m_iMCTrack = iMCTrack;
65  simpleSimHits.push_back(simpleSimHit);
66  }
67  }
68 
69  std::vector<CDCTrack> mcTracks = constructMCTracks(nMCTracks, std::move(simpleSimHits));
70 
72  for (size_t iMCTrack = 0; iMCTrack < nMCTracks; ++iMCTrack) {
73  CDCTrack& mcTrack = mcTracks[iMCTrack];
74  CDCTrajectory3D mcTrajectory = trajectories3D[iMCTrack];
75  if (not mcTrack.empty()) {
76  mcTrajectory.setLocalOrigin(mcTrack.front().getRecoPos3D());
77  mcTrack.setStartTrajectory3D(mcTrajectory);
78  mcTrajectory.setLocalOrigin(mcTrack.back().getRecoPos3D());
79  mcTrack.setEndTrajectory3D(mcTrajectory);
80  } else {
81  mcTrack.setStartTrajectory3D(mcTrajectory);
82  mcTrack.setEndTrajectory3D(mcTrajectory);
83  }
84  }
85  return mcTracks;
86 }
87 
88 std::vector<CDCTrack>
89 CDCSimpleSimulation::constructMCTracks(int nMCTracks, std::vector<SimpleSimHit> simpleSimHits)
90 {
91 
92  // Sort the hits along side their wire hits
93  std::stable_sort(simpleSimHits.begin(), simpleSimHits.end(),
94  [](const SimpleSimHit & lhs, const SimpleSimHit & rhs) -> bool {
95  return lhs.m_wireHit < rhs.m_wireHit;
96  });
97 
98  // Discard multiple hits on the same wire up to the maximal exceeding the maximal desired number
99  if (m_maxNHitOnWire > 0) {
100  const CDCWire* lastWire = nullptr;
101  size_t nSameWire = 0;
102  const size_t maxNHitOnWire = m_maxNHitOnWire;
103 
104  auto exceedsMaxNHitOnWire =
105  [&lastWire, &nSameWire, maxNHitOnWire](const SimpleSimHit & simpleSimHit) -> bool {
106 
107  if (&(simpleSimHit.m_wireHit.getWire()) == lastWire)
108  {
109  ++nSameWire;
110  } else {
111  nSameWire = 1;
112  lastWire = &(simpleSimHit.m_wireHit.getWire());
113  }
114  return nSameWire > maxNHitOnWire ? true : false;
115  };
116 
117  auto itLast = std::remove_if(simpleSimHits.begin(), simpleSimHits.end(), exceedsMaxNHitOnWire);
118  simpleSimHits.erase(itLast, simpleSimHits.end());
119  }
120 
121  // Write the created hits and move them to the their storage place.
122  {
123  std::vector<CDCWireHit> wireHits;
124  wireHits.reserve(simpleSimHits.size());
125  for (SimpleSimHit& simpleSimHit : simpleSimHits) {
126  wireHits.push_back(simpleSimHit.m_wireHit);
127  }
128 
129  B2ASSERT("WireHits should be sorted as a result from sorting the SimpleSimHits. "
130  "Algorithms may relay on the sorting o the WireHits",
131  std::is_sorted(wireHits.begin(), wireHits.end()));
132 
133  m_sharedWireHits.reset(new const std::vector<CDCWireHit>(std::move(wireHits)));
134  }
135 
136  // TODO: Decide if the EventMeta should be incremented after write.
137 
138  // Now construct the tracks.
139  std::vector<CDCTrack> mcTracks;
140  mcTracks.resize(nMCTracks);
142  const size_t nWireHits = wireHits.size();
143 
144  for (size_t iWireHit = 0; iWireHit < nWireHits; ++iWireHit) {
145  const CDCWireHit& wireHit = wireHits[iWireHit];
146  const SimpleSimHit& simpleSimHit = simpleSimHits[iWireHit];
147 
148  CDCTrack& mcTrack = mcTracks[simpleSimHit.m_iMCTrack];
149 
150  CDCRLWireHit rlWireHit(&wireHit, simpleSimHit.m_rlInfo);
151  CDCRecoHit3D recoHit3D(rlWireHit, simpleSimHit.m_pos3D, simpleSimHit.m_arcLength2D);
152  mcTrack.push_back(recoHit3D);
153  }
154 
156  for (CDCTrack& mcTrack : mcTracks) {
157  mcTrack.sortByArcLength2D();
158  }
159 
160  return mcTracks;
161 }
162 
163 
164 
165 std::vector<CDCSimpleSimulation::SimpleSimHit>
167  double arcLength2DOffset) const
168 {
169 
170  std::vector<SimpleSimHit> simpleSimHits;
171 
173  const double outerWallCylinderR = wireTopology.getOuterCylindricalR();
174 
175  const double minR = globalHelix.minimalCylindricalR();
176  const double maxR = globalHelix.maximalCylindricalR();
177 
178  const double globalArcLength2DToOuterWall = globalHelix.arcLength2DToCylindricalR(outerWallCylinderR);
179  const double localArcLength2DToOuterWall = arcLength2DOffset + globalArcLength2DToOuterWall;
180 
181  if (localArcLength2DToOuterWall < 0) {
182  // Trajectory starts outside the CDC and initially flys away from it
183  // Do not try to createHit hits for it
184  B2WARNING("Simple simulation got trajectory outside CDC that moves away from the detector.");
185  return simpleSimHits;
186  }
187 
188  // Two dimensional arc length where the trajectory
189  // * leaves the outer wall of the CDC or
190  // * made a full circle (cut off for curlers)
191  const bool isCurler = std::isnan(localArcLength2DToOuterWall);
192  const double perimeterXY = globalHelix.perimeterXY();
193  const double maxArcLength2D = isCurler ? fabs(perimeterXY) : localArcLength2DToOuterWall;
194 
195  if (isCurler) {
196  B2INFO("Simulating curler");
197  }
198 
199  for (const CDCWireLayer& wireLayer : wireTopology.getWireLayers()) {
200  double outerR = wireLayer.getOuterCylindricalR();
201  double innerR = wireLayer.getInnerCylindricalR();
202 
203  if ((maxR < innerR) or (outerR < minR)) {
204  // Trajectory does not reaching the layer
205  continue;
206  }
207 
208  double centerR = (std::min(outerR, maxR) + std::max(innerR, minR)) / 2;
209 
210  double globalArcLength2D = globalHelix.arcLength2DToCylindricalR(centerR);
211  double localArcLength2D = arcLength2DOffset + globalArcLength2D;
212 
213 
214  std::vector<SimpleSimHit> simpleSimHitsInLayer;
215  if (localArcLength2D > 0 and localArcLength2D < maxArcLength2D) {
216 
217  Vector3D pos3DAtLayer = globalHelix.atArcLength2D(globalArcLength2D);
218  const CDCWire& closestWire = wireLayer.getClosestWire(pos3DAtLayer);
219 
220  simpleSimHitsInLayer = createHitsForLayer(closestWire, globalHelix, arcLength2DOffset);
221 
222  for (SimpleSimHit& simpleSimHit : simpleSimHitsInLayer) {
223  if (simpleSimHit.m_arcLength2D < maxArcLength2D) {
224  simpleSimHits.push_back(simpleSimHit);
225  }
226  }
227  } else {
228  B2INFO("Arc length to long");
229  }
230 
231  bool oneSegment = outerR > maxR or innerR < minR;
232  if (not oneSegment) {
233 
234  // Check the second branch for more hits
235  double secondGlobalArcLength2D = -globalArcLength2D;
236  double secondArcLength2DOffset = arcLength2DOffset;
237  double secondLocalArcLength2D = secondArcLength2DOffset + secondGlobalArcLength2D;
238 
239  if (isCurler and secondLocalArcLength2D < 0) {
240  secondLocalArcLength2D += perimeterXY;
241  secondArcLength2DOffset += perimeterXY;
242  secondGlobalArcLength2D += perimeterXY;
243  }
244 
245  if (secondLocalArcLength2D > 0 and secondLocalArcLength2D < maxArcLength2D) {
246  Vector3D pos3DAtLayer = globalHelix.atArcLength2D(secondGlobalArcLength2D);
247  const CDCWire& closestWire = wireLayer.getClosestWire(pos3DAtLayer);
248 
249  // Check again if the wire has been hit before
250  bool wireAlreadyHit = false;
251  for (const SimpleSimHit& simpleSimHit : simpleSimHits) {
252  if (simpleSimHit.m_wireHit.isOnWire(closestWire)) {
253  wireAlreadyHit = true;
254  }
255  }
256  if (not wireAlreadyHit) {
257  std::vector<SimpleSimHit> secondSimpleSimHitsInLayer =
258  createHitsForLayer(closestWire, globalHelix, secondArcLength2DOffset);
259 
260  for (SimpleSimHit& simpleSimHit : secondSimpleSimHitsInLayer) {
261  if (simpleSimHit.m_arcLength2D < maxArcLength2D) {
262  simpleSimHits.push_back(simpleSimHit);
263  }
264  }
265  }
266  }
267  }
268  }
269 
270  return simpleSimHits;
271 }
272 
273 std::vector<CDCSimpleSimulation::SimpleSimHit>
275  const Helix& globalHelix,
276  double arcLength2DOffset) const
277 {
278  std::vector<SimpleSimHit> result;
279 
280  SimpleSimHit simpleSimHit = createHitForCell(nearWire, globalHelix, arcLength2DOffset);
281  if (not std::isnan(simpleSimHit.m_wireHit.getRefDriftLength())) {
282  result.push_back(simpleSimHit);
283  }
284 
286  const CDCWire* ccwWire = nearWire.getNeighborCCW();
287  while (true) {
288  SimpleSimHit simpleSimHitForWire = createHitForCell(*ccwWire, globalHelix, arcLength2DOffset);
289  if (std::isnan(simpleSimHitForWire.m_arcLength2D) or
290  std::isnan(simpleSimHitForWire.m_trueDriftLength)) {
291  break;
292  }
293  result.push_back(simpleSimHitForWire);
294  ccwWire = ccwWire->getNeighborCCW();
295  }
296 
298  const CDCWire* cwWire = nearWire.getNeighborCW();
299  while (true) {
300  SimpleSimHit simpleSimHitForWire = createHitForCell(*cwWire, globalHelix, arcLength2DOffset);
301  if (std::isnan(simpleSimHitForWire.m_arcLength2D) or
302  std::isnan(simpleSimHitForWire.m_trueDriftLength)) {
303  break;
304  }
305  result.push_back(simpleSimHitForWire);
306  cwWire = cwWire->getNeighborCW();
307  }
308 
309  return result;
310 }
311 
312 
315  const Helix& globalHelix,
316  double arcLength2DOffset) const
317 {
318  double arcLength2D = globalHelix.arcLength2DToXY(wire.getRefPos2D());
319  if ((arcLength2D + arcLength2DOffset) < 0) {
320  arcLength2D += globalHelix.perimeterXY();
321  }
322 
323  Vector3D pos3D = globalHelix.atArcLength2D(arcLength2D);
324 
325  Vector3D correctedPos3D = pos3D;
326  Vector2D correctedWirePos(wire.getWirePos2DAtZ(correctedPos3D.z()));
327  double correctedArcLength2D = arcLength2D;
328 
329  for (int c_Iter = 0; c_Iter < 2; c_Iter++) {
330  // Iterate the extrapolation to the stereo shifted position.
331  correctedWirePos = wire.getWirePos2DAtZ(correctedPos3D.z());
332  correctedArcLength2D = globalHelix.arcLength2DToXY(correctedWirePos);
333 
334  if ((correctedArcLength2D + arcLength2DOffset) < 0) {
335  correctedArcLength2D += globalHelix.perimeterXY();
336  }
337  correctedPos3D = globalHelix.atArcLength2D(correctedArcLength2D);
338  }
339 
340  const double trueDriftLength = wire.getDriftLength(correctedPos3D);
341  const double smearedDriftLength = trueDriftLength + gRandom->Gaus(0, m_driftLengthSigma);
342 
343  double delayTime = getEventTime();
344  if (m_addTOFDelay) {
345  double arcLength3D = hypot2(1, globalHelix.tanLambda()) * (correctedArcLength2D + arcLength2DOffset);
346  delayTime += arcLength3D / Const::speedOfLight;
347  }
348 
350  double backwardZ = wire.getBackwardZ();
351  // Position where wire has been hit
352  Vector3D wirePos = wire.getClosest(correctedPos3D);
353  double distanceToBack = (wirePos.z() - backwardZ) * hypot2(1, wire.getTanStereoAngle());
354 
355  delayTime += distanceToBack / m_propSpeed;
356  }
357 
358  double measuredDriftLength = smearedDriftLength + delayTime * m_driftSpeed;
359 
360  ERightLeft rlInfo = globalHelix.circleXY().isRightOrLeft(correctedWirePos);
361 
362  // if (not std::isnan(trueDriftLength)){
363  // B2INFO("Delay time " << delayTime);
364  // B2INFO("True dirft length " << trueDriftLength);
365  // B2INFO("Measured drift length " << measuredDriftLength);
366  // B2INFO("Absolute deviation " << measuredDriftLength - trueDriftLength);
367  // B2INFO("Relative deviation " << (measuredDriftLength / trueDriftLength - 1) * 100 << "%");
368  // }
369 
370  return SimpleSimHit{
371  CDCWireHit(wire.getWireID(), measuredDriftLength, m_driftLengthVariance),
372  0,
373  rlInfo,
374  correctedPos3D,
375  correctedArcLength2D,
376  trueDriftLength
377  };
378 }
379 
380 
381 std::vector<CDCTrack>
383 {
384  const size_t nMCTracks = 2;
385  std::vector<SimpleSimHit> simpleSimHits;
386  simpleSimHits.reserve(128 + 64); // First plus second mc track
387 
388  // First MC track
390  size_t iMCTrack = 0;
391 
392  // SL 6
393  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 4, 251), 0.104), iMCTrack, ERightLeft::c_Left});
394  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 4, 250), 0.272), iMCTrack, ERightLeft::c_Left});
395  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 4, 249), 0.488), iMCTrack, ERightLeft::c_Left});
396  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 4, 248), 0.764), iMCTrack, ERightLeft::c_Left});
397  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 247), 0.9), iMCTrack, ERightLeft::c_Right});
398  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 4, 247), 1.024), iMCTrack, ERightLeft::c_Left});
399  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 246), 0.64), iMCTrack, ERightLeft::c_Right});
400  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 245), 0.304), iMCTrack, ERightLeft::c_Right});
401  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 244), 0.012), iMCTrack, ERightLeft::c_Right});
402  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 243), 0.352), iMCTrack, ERightLeft::c_Left});
403  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 3, 242), 0.74), iMCTrack, ERightLeft::c_Left});
404  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 241), 0.46), iMCTrack, ERightLeft::c_Right});
405  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 240), 0.02), iMCTrack, ERightLeft::c_Right});
406  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 239), 0.46), iMCTrack, ERightLeft::c_Left});
407  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 238), 0.884), iMCTrack, ERightLeft::c_Left});
408  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 238), 1.104), iMCTrack, ERightLeft::c_Right});
409  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 237), 0.612), iMCTrack, ERightLeft::c_Right});
410  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 236), 0.12), iMCTrack, ERightLeft::c_Right});
411  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 235), 0.356), iMCTrack, ERightLeft::c_Left});
412  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 234), 0.884), iMCTrack, ERightLeft::c_Left});
413  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 0, 235), 1.032), iMCTrack, ERightLeft::c_Right});
414  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 0, 234), 0.52), iMCTrack, ERightLeft::c_Right});
415  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 0, 233), 0.06), iMCTrack, ERightLeft::c_Left});
416  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 0, 232), 0.62), iMCTrack, ERightLeft::c_Left});
417 
418  // SL 5
419  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 5, 206), 1.116), iMCTrack, ERightLeft::c_Right});
420  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 5, 205), 0.464), iMCTrack, ERightLeft::c_Right});
421  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 5, 204), 0.168), iMCTrack, ERightLeft::c_Right});
422  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 4, 204), 1.08), iMCTrack, ERightLeft::c_Right});
423  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 4, 203), 0.392), iMCTrack, ERightLeft::c_Right});
424  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 4, 202), 0.304), iMCTrack, ERightLeft::c_Left});
425  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 3, 201), 0.968), iMCTrack, ERightLeft::c_Right});
426  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 3, 200), 0.252), iMCTrack, ERightLeft::c_Right});
427  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 3, 199), 0.476), iMCTrack, ERightLeft::c_Left});
428  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 2, 199), 0.736), iMCTrack, ERightLeft::c_Right});
429  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 2, 198), 0.008), iMCTrack, ERightLeft::c_Left});
430  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 2, 197), 0.788), iMCTrack, ERightLeft::c_Left});
431  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 1, 197), 1.188), iMCTrack, ERightLeft::c_Right});
432  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 1, 196), 0.404), iMCTrack, ERightLeft::c_Right});
433  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 1, 195), 0.356), iMCTrack, ERightLeft::c_Left});
434  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 0, 195), 0.74), iMCTrack, ERightLeft::c_Right});
435  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 0, 194), 0.04), iMCTrack, ERightLeft::c_Left});
436  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 0, 193), 0.832), iMCTrack, ERightLeft::c_Left});
437 
438  // SL 4
439  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 5, 173), 0.692), iMCTrack, ERightLeft::c_Right});
440  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 5, 172), 0.22), iMCTrack, ERightLeft::c_Left});
441  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 5, 171), 1.132), iMCTrack, ERightLeft::c_Left});
442  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 4, 172), 0.816), iMCTrack, ERightLeft::c_Right});
443  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 4, 171), 0.136), iMCTrack, ERightLeft::c_Left});
444  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 4, 170), 1.048), iMCTrack, ERightLeft::c_Left});
445  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 3, 170), 0.884), iMCTrack, ERightLeft::c_Right});
446  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 3, 169), 0.032), iMCTrack, ERightLeft::c_Left});
447  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 3, 168), 0.96), iMCTrack, ERightLeft::c_Left});
448  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 2, 169), 0.972), iMCTrack, ERightLeft::c_Right});
449  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 2, 168), 0.044), iMCTrack, ERightLeft::c_Right});
450  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 2, 167), 0.872), iMCTrack, ERightLeft::c_Left});
451  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 1, 167), 1.004), iMCTrack, ERightLeft::c_Right});
452  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 1, 166), 0.1), iMCTrack, ERightLeft::c_Right});
453  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 1, 165), 0.828), iMCTrack, ERightLeft::c_Left});
454  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 0, 166), 1.004), iMCTrack, ERightLeft::c_Right});
455  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 0, 165), 0.084), iMCTrack, ERightLeft::c_Right});
456  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 0, 164), 0.82), iMCTrack, ERightLeft::c_Left});
457 
458  // SL 3
459  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 5, 145), 0.508), iMCTrack, ERightLeft::c_Right});
460  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 5, 144), 0.5), iMCTrack, ERightLeft::c_Left});
461  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 4, 145), 1.348), iMCTrack, ERightLeft::c_Right});
462  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 4, 144), 0.292), iMCTrack, ERightLeft::c_Right});
463  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 4, 143), 0.68), iMCTrack, ERightLeft::c_Left});
464  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 3, 143), 1.136), iMCTrack, ERightLeft::c_Right});
465  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 3, 142), 0.12), iMCTrack, ERightLeft::c_Right});
466  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 3, 141), 0.872), iMCTrack, ERightLeft::c_Left});
467  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 2, 142), 0.96), iMCTrack, ERightLeft::c_Right});
468  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 2, 141), 0.036), iMCTrack, ERightLeft::c_Left});
469  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 1, 140), 0.756), iMCTrack, ERightLeft::c_Right});
470  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 1, 139), 0.204), iMCTrack, ERightLeft::c_Left});
471  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 0, 139), 0.588), iMCTrack, ERightLeft::c_Right});
472  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 0, 138), 0.332), iMCTrack, ERightLeft::c_Left});
473 
474  // SL 2
475  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 5, 116), 1.1), iMCTrack, ERightLeft::c_Right});
476  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 5, 115), 0.008), iMCTrack, ERightLeft::c_Left});
477  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 5, 114), 1.048), iMCTrack, ERightLeft::c_Left});
478  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 4, 115), 0.712), iMCTrack, ERightLeft::c_Right});
479  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 4, 114), 0.316), iMCTrack, ERightLeft::c_Left});
480  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 3, 113), 0.428), iMCTrack, ERightLeft::c_Right});
481  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 3, 112), 0.572), iMCTrack, ERightLeft::c_Left});
482  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 2, 112), 0.188), iMCTrack, ERightLeft::c_Right});
483  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 2, 111), 0.776), iMCTrack, ERightLeft::c_Left});
484  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 1, 111), 0.92), iMCTrack, ERightLeft::c_Right});
485  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 1, 110), 0.024), iMCTrack, ERightLeft::c_Left});
486  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 1, 109), 0.928), iMCTrack, ERightLeft::c_Left});
487  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 0, 110), 0.776), iMCTrack, ERightLeft::c_Right});
488  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 0, 109), 0.116), iMCTrack, ERightLeft::c_Left});
489  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 0, 108), 0.992), iMCTrack, ERightLeft::c_Left});
490 
491  // SL 1
492  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 5, 87), 0.664), iMCTrack, ERightLeft::c_Right});
493  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 5, 86), 0.3), iMCTrack, ERightLeft::c_Left});
494  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 4, 86), 0.504), iMCTrack, ERightLeft::c_Right});
495  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 4, 85), 0.424), iMCTrack, ERightLeft::c_Left});
496  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 3, 85), 1.256), iMCTrack, ERightLeft::c_Right});
497  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 3, 84), 0.388), iMCTrack, ERightLeft::c_Right});
498  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 3, 83), 0.5), iMCTrack, ERightLeft::c_Left});
499  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 2, 84), 1.128), iMCTrack, ERightLeft::c_Right});
500  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 2, 83), 0.28), iMCTrack, ERightLeft::c_Right});
501  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 2, 82), 0.532), iMCTrack, ERightLeft::c_Left});
502  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 1, 82), 1.084), iMCTrack, ERightLeft::c_Right});
503  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 1, 81), 0.3), iMCTrack, ERightLeft::c_Right});
504  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 1, 80), 0.472), iMCTrack, ERightLeft::c_Left});
505  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 81), 1.124), iMCTrack, ERightLeft::c_Right});
506  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 80), 0.428), iMCTrack, ERightLeft::c_Right});
507  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 79), 0.296), iMCTrack, ERightLeft::c_Left});
508  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 78), 0.972), iMCTrack, ERightLeft::c_Left});
509 
510  // SL 0
511  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 7, 81), 0.192), iMCTrack, ERightLeft::c_Right});
512  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 7, 80), 0.452), iMCTrack, ERightLeft::c_Left});
513  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 6, 80), 0.596), iMCTrack, ERightLeft::c_Right});
514  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 6, 79), 0.024), iMCTrack, ERightLeft::c_Left});
515  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 6, 78), 0.66), iMCTrack, ERightLeft::c_Left});
516  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 5, 79), 0.388), iMCTrack, ERightLeft::c_Right});
517  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 5, 78), 0.184), iMCTrack, ERightLeft::c_Left});
518  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 4, 77), 0.296), iMCTrack, ERightLeft::c_Right});
519  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 4, 76), 0.244), iMCTrack, ERightLeft::c_Left});
520  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 3, 76), 0.268), iMCTrack, ERightLeft::c_Right});
521  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 3, 75), 0.212), iMCTrack, ERightLeft::c_Left});
522  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 2, 74), 0.316), iMCTrack, ERightLeft::c_Right});
523  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 2, 73), 0.112), iMCTrack, ERightLeft::c_Right});
524  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 2, 72), 0.588), iMCTrack, ERightLeft::c_Left});
525  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 1, 73), 0.464), iMCTrack, ERightLeft::c_Right});
526  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 1, 72), 0.028), iMCTrack, ERightLeft::c_Left});
527  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 0, 70), 0.284), iMCTrack, ERightLeft::c_Right});
528  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 0, 69), 0.088), iMCTrack, ERightLeft::c_Left});
529  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 0, 68), 0.416), iMCTrack, ERightLeft::c_Left});
530 
531  // Second MC track
533  iMCTrack = 1;
534 
535  // SL 0
536  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 1, 140), 0.308), iMCTrack, ERightLeft::c_Left});
537  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 2, 139), 0.08), iMCTrack, ERightLeft::c_Left});
538  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 3, 139), 0.16), iMCTrack, ERightLeft::c_Right});
539  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 4, 139), 0.404), iMCTrack, ERightLeft::c_Left});
540  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 4, 138), 0.38), iMCTrack, ERightLeft::c_Right});
541  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 5, 139), 0.132), iMCTrack, ERightLeft::c_Left});
542  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 6, 138), 0.108), iMCTrack, ERightLeft::c_Right});
543  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 7, 139), 0.48), iMCTrack, ERightLeft::c_Left});
544  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(0, 7, 138), 0.424), iMCTrack, ERightLeft::c_Right});
545 
546  // SL 1
547  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 136), 0.532), iMCTrack, ERightLeft::c_Left});
548  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 0, 135), 0.452), iMCTrack, ERightLeft::c_Right});
549  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 1, 135), 0.396), iMCTrack, ERightLeft::c_Left});
550  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 2, 135), 0.26), iMCTrack, ERightLeft::c_Left});
551  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 1, 134), 0.64), iMCTrack, ERightLeft::c_Right});
552  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 3, 134), 0.092), iMCTrack, ERightLeft::c_Left});
553  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 4, 134), 0.16), iMCTrack, ERightLeft::c_Right});
554  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(1, 5, 133), 0.524), iMCTrack, ERightLeft::c_Right});
555 
556  // SL 2
557  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 0, 163), 0.228), iMCTrack, ERightLeft::c_Right});
558  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 1, 162), 0.356), iMCTrack, ERightLeft::c_Right});
559  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 2, 163), 0.776), iMCTrack, ERightLeft::c_Left});
560  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 2, 162), 0.46), iMCTrack, ERightLeft::c_Right});
561  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 3, 162), 0.744), iMCTrack, ERightLeft::c_Left});
562  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 3, 161), 0.58), iMCTrack, ERightLeft::c_Right});
563  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 4, 162), 0.656), iMCTrack, ERightLeft::c_Left});
564  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 4, 161), 0.68), iMCTrack, ERightLeft::c_Right});
565  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 5, 161), 0.568), iMCTrack, ERightLeft::c_Left});
566  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(2, 5, 160), 0.812), iMCTrack, ERightLeft::c_Right});
567 
568  // SL 3
569  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 0, 190), 0.54), iMCTrack, ERightLeft::c_Left});
570  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 1, 188), 0.688), iMCTrack, ERightLeft::c_Right});
571  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 2, 188), 0.656), iMCTrack, ERightLeft::c_Right});
572  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 3, 188), 0.664), iMCTrack, ERightLeft::c_Left});
573  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 3, 187), 0.68), iMCTrack, ERightLeft::c_Right});
574  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 4, 188), 0.724), iMCTrack, ERightLeft::c_Left});
575  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 4, 187), 0.656), iMCTrack, ERightLeft::c_Right});
576  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(3, 5, 186), 0.676), iMCTrack, ERightLeft::c_Right});
577 
578  // SL 4
579  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 0, 211), 0.42), iMCTrack, ERightLeft::c_Left});
580  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 0, 210), 0.872), iMCTrack, ERightLeft::c_Right});
581  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 1, 210), 0.548), iMCTrack, ERightLeft::c_Left});
582  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 1, 209), 0.796), iMCTrack, ERightLeft::c_Right});
583  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 2, 210), 0.716), iMCTrack, ERightLeft::c_Left});
584  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 2, 209), 0.656), iMCTrack, ERightLeft::c_Right});
585  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 3, 209), 0.856), iMCTrack, ERightLeft::c_Left});
586  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 4, 209), 1.056), iMCTrack, ERightLeft::c_Left});
587  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 4, 208), 0.36), iMCTrack, ERightLeft::c_Right});
588  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(4, 5, 207), 0.232), iMCTrack, ERightLeft::c_Right});
589 
590  // SL 5
591  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 0, 231), 0.224), iMCTrack, ERightLeft::c_Left});
592  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 0, 230), 1.088), iMCTrack, ERightLeft::c_Right});
593  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 1, 230), 0.452), iMCTrack, ERightLeft::c_Left});
594  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 1, 229), 0.912), iMCTrack, ERightLeft::c_Right});
595  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 2, 230), 0.72), iMCTrack, ERightLeft::c_Left});
596  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 2, 229), 0.632), iMCTrack, ERightLeft::c_Right});
597  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 3, 229), 1.016), iMCTrack, ERightLeft::c_Left});
598  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 3, 228), 0.34), iMCTrack, ERightLeft::c_Right});
599  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 4, 228), 0.04), iMCTrack, ERightLeft::c_Right});
600  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 5, 227), 0.22), iMCTrack, ERightLeft::c_Left});
601  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(5, 5, 226), 1.196), iMCTrack, ERightLeft::c_Right});
602 
603  // SL 6
604  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 0, 254), 0.104), iMCTrack, ERightLeft::c_Left});
605  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 253), 0.504), iMCTrack, ERightLeft::c_Left});
606  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 1, 252), 0.78), iMCTrack, ERightLeft::c_Right});
607  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 253), 0.968), iMCTrack, ERightLeft::c_Left});
608  simpleSimHits.push_back(SimpleSimHit{CDCWireHit(WireID(6, 2, 252), 0.332), iMCTrack, ERightLeft::c_Right});
609 
610  std::vector<CDCTrack> mcTracks = constructMCTracks(nMCTracks, std::move(simpleSimHits));
611  return mcTracks;
612 }
static const double speedOfLight
[cm/ns]
Definition: Const.h:686
Class representing an oriented hit wire including a hypotheses whether the causing track passes left ...
Definition: CDCRLWireHit.h:41
Class representing a three dimensional reconstructed hit.
Definition: CDCRecoHit3D.h:52
ConstVectorRange< CDCWireHit > getWireHits() const
Getter for the wire hits created in the simulation.
std::vector< CDCTrack > constructMCTracks(int nMCTracks, std::vector< SimpleSimHit > simpleSimHits)
Creates CDCWireHits and uses them to construct the true CDCTracks.
std::vector< CDCTrack > simulate(const std::vector< CDCTrajectory3D > &trajectories3D)
Propagates the trajectories through the CDC as without energy loss until they first leave the CDC.
bool m_addInWireSignalDelay
Switch to activate the in wire signal delay.
double m_propSpeed
Electrical current propagation speed in the wires.
std::shared_ptr< const std::vector< CDCWireHit > > m_sharedWireHits
Space for the memory of the generated wire hits.
double getEventTime() const
Getter for a global event time offset.
double m_driftLengthVariance
Variance by which the drift length should be smeared.
std::vector< SimpleSimHit > createHitsForLayer(const CDCWire &nearWire, const Helix &globalHelix, double arcLength2DOffset) const
Generate connected hits for wires in the same layer close to the given wire.
bool m_addTOFDelay
Switch to activate the addition of the time of flight.
SimpleSimHit createHitForCell(const CDCWire &wire, const Helix &globalHelix, double arcLength2DOffset) const
Generate a hit for the given wire.
int m_maxNHitOnWire
Maximal number of hits allowed on each wire (0 means all).
double m_driftLengthSigma
Standard deviation by which the drift length should be smeared.
std::vector< CDCTrack > loadPreparedEvent()
Fills the wire hits with a hard coded event from the real simulation.
double m_driftSpeed
Electron drift speed in the cdc gas.
std::vector< SimpleSimHit > createHits(const Helix &globalHelix, double arcLength2DOffset) const
Generate hits for the given helix in starting from the two dimensional arc length.
Class representing a sequence of three dimensional reconstructed hits.
Definition: CDCTrack.h:41
void setStartTrajectory3D(const CDCTrajectory3D &startTrajectory3D)
Setter for the two dimensional trajectory.
Definition: CDCTrack.h:98
void sortByArcLength2D()
Sort the recoHits according to their perpS information.
Definition: CDCTrack.cc:412
void setEndTrajectory3D(const CDCTrajectory3D &endTrajectory3D)
Setter for the three dimensional trajectory.
Definition: CDCTrack.h:105
Particle full three dimensional trajectory.
double setLocalOrigin(const Vector3D &localOrigin)
Setter for the origin of the local coordinate system.
const UncertainHelix & getLocalHelix() const
Getter for the helix in local coordinates.
const Vector3D & getLocalOrigin() const
Getter for the origin of the local coordinate system.
Class representing a hit wire in the central drift chamber.
Definition: CDCWireHit.h:55
double getRefDriftLength() const
Getter for the drift length at the reference position of the wire.
Definition: CDCWireHit.h:224
Class representating a sense wire layer in the central drift chamber.
Definition: CDCWireLayer.h:42
Class representating the sense wire arrangement in the whole of the central drift chamber.
static CDCWireTopology & getInstance()
Getter for the singleton instance of the wire topology.
double getOuterCylindricalR() const
Getter for the outer radius of the outer most wire layer.
const std::vector< Belle2::TrackFindingCDC::CDCWireLayer > & getWireLayers() const
Getter for the underlying storing layer vector.
Class representing a sense wire in the central drift chamber.
Definition: CDCWire.h:58
double getDriftLength(const Vector3D &pos3D) const
Calculates the straight drift length from the position to the wire This is essentially the same as th...
Definition: CDCWire.h:214
Vector2D getWirePos2DAtZ(const double z) const
Gives the xy projected position of the wire at the given z coordinate.
Definition: CDCWire.h:192
Vector3D getClosest(const Vector3D &pos3D) const
Calculates the closest approach in the wire to the position.
Definition: CDCWire.h:204
MayBePtr< const CDCWire > getNeighborCCW() const
Gives the closest neighbor in the counterclockwise direction - always exists.
Definition: CDCWire.cc:159
const Vector2D & getRefPos2D() const
Getter for the wire reference position for 2D tracking Gives the wire's reference position projected ...
Definition: CDCWire.h:229
const WireID & getWireID() const
Getter for the wire id.
Definition: CDCWire.h:122
MayBePtr< const CDCWire > getNeighborCW() const
Gives the closest neighbor in the clockwise direction - always exists.
Definition: CDCWire.cc:164
double getTanStereoAngle() const
Getter for the tangents of the stereo angle of the wire.
Definition: CDCWire.h:240
double getBackwardZ() const
Getter for the z coordinate at the backward joint points of the wires.
Definition: CDCWire.h:280
Extension of the generalized circle also caching the perigee coordinates.
Definition: Helix.h:28
double minimalCylindricalR() const
Gives the minimal cylindrical radius the circle reaches (unsigned)
Definition: Helix.h:192
double perimeterXY() const
Getter for the perimeter of the circle in the xy projection.
Definition: Helix.h:271
double arcLength2DToXY(const Vector2D &point) const
Calculates the two dimensional arc length that is closest to two dimensional point in the xy projecti...
Definition: Helix.h:102
double tanLambda() const
Getter for the proportinality factor from arc length in xy space to z.
Definition: Helix.h:240
double maximalCylindricalR() const
Gives the maximal cylindrical radius the circle reaches.
Definition: Helix.h:198
double arcLength2DToCylindricalR(double cylindricalR) const
Calculates the two dimensional arc length that first reaches a cylindrical radius on the helix Return...
Definition: Helix.h:112
Vector3D atArcLength2D(double s) const
Calculates the point, which lies at the give perpendicular travel distance (counted from the perigee)
Definition: Helix.h:174
double passiveMoveBy(const Vector3D &by)
Moves the coordinates system by the given vector.
Definition: Helix.h:147
const PerigeeCircle & circleXY() const
Getter for the projection into xy space.
Definition: Helix.h:320
ERightLeft isRightOrLeft(const Vector2D &point) const
Indicates if the point is on the right or left side of the circle.
A pair of iterators usable with the range base for loop.
Definition: Range.h:25
std::size_t size() const
Returns the total number of objects in this range.
Definition: Range.h:76
A general helix class including a covariance matrix.
A two dimensional vector which is equipped with functions for correct handeling of orientation relat...
Definition: Vector2D.h:35
A three dimensional vector.
Definition: Vector3D.h:33
double z() const
Getter for the z coordinate.
Definition: Vector3D.h:496
Class to identify a wire inside the CDC.
Definition: WireID.h:34
ERightLeft
Enumeration to represent the distinct possibilities of the right left passage.
Definition: ERightLeft.h:25
Abstract base class for different kinds of events.
Structure to accomdate information about the individual hits during the simluation.
Vector3D m_pos3D
Memory for the true position on the track closest to the wire.
double m_arcLength2D
Memory for the true two dimensional arc length on the helix to this hit.
CDCWireHit m_wireHit
Memory for the wire hit instance that will be given to the reconstruction.
ERightLeft m_rlInfo
Memory for the true right left passage information.
double m_trueDriftLength
Memory for the true drift length from the true position to the wire.
size_t m_iMCTrack
Memory for the true index of the track this hit is contained in.