Belle II Software  release-08-01-10
ECLDigitizerModule.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 /* Own header. */
10 #include <ecl/modules/eclDigitizer/ECLDigitizerModule.h>
11 
12 /* ECL headers. */
13 #include <ecl/dataobjects/ECLDigit.h>
14 #include <ecl/dataobjects/ECLDsp.h>
15 #include <ecl/dataobjects/ECLDspWithExtraMCInfo.h>
16 #include <ecl/dataobjects/ECLHit.h>
17 #include <ecl/dataobjects/ECLSimHit.h>
18 #include <ecl/dataobjects/ECLTrig.h>
19 #include <ecl/dataobjects/ECLWaveforms.h>
20 #include <ecl/dbobjects/ECLWaveformData.h>
21 #include <ecl/digitization/BitStream.h>
22 #include <ecl/digitization/ECLCompress.h>
23 #include <ecl/digitization/shaperdsp.h>
24 #include <ecl/geometry/ECLGeometryPar.h>
25 #include <ecl/utility/ECLDspUtilities.h>
26 
27 /* Basf2 headers. */
28 #include <framework/gearbox/Unit.h>
29 #include <framework/logging/Logger.h>
30 #include <framework/utilities/FileSystem.h>
31 
32 /* ROOT headers. */
33 #include <TFile.h>
34 #include <TRandom.h>
35 #include <TTree.h>
36 
37 using namespace std;
38 using namespace Belle2;
39 using namespace ECL;
40 
41 //-----------------------------------------------------------------
42 // Register the Module
43 //-----------------------------------------------------------------
44 REG_MODULE(ECLDigitizer);
45 
46 //-----------------------------------------------------------------
47 // Implementation
48 //-----------------------------------------------------------------
49 
50 ECLDigitizerModule::ECLDigitizerModule() : Module(), m_waveformParametersMC("ECLDigitWaveformParametersForMC"),
51  m_waveformParameters("ECLWFParameters"),
52  m_algoParameters("ECLWFAlgoParams"),
53  m_noiseParameters("ECLWFNoiseParams")
54 {
55  //Set module properties
56  setDescription("Creates ECLDigiHits from ECLHits.");
58  addParam("TriggerTime", m_trigTime,
59  "Flag to use crate trigger times from beam background overlay if there are any (default: false)", false);
60  addParam("Background", m_background, "Flag to use the Digitizer configuration with backgrounds (default: false)", false);
61  addParam("Calibration", m_calibration, "Flag to use the Digitizer for Waveform fit Covariance Matrix calibration (default: false)",
62  false);
63  addParam("DiodeDeposition", m_inter,
64  "Flag to take into account energy deposition in photodiodes; Default diode is sensitive detector (default: true)", true);
65  addParam("WaveformMaker", m_waveformMaker, "Flag to produce background waveform digits (default: false)", false);
66  addParam("CompressionAlgorithm", m_compAlgo, "Waveform compression algorithm (default: 0u)", 0u);
67  addParam("eclWaveformsName", m_eclWaveformsName, "Name of the output/input collection (digitized waveforms)", string(""));
68  addParam("HadronPulseShapes", m_HadronPulseShape, "Flag to include hadron component in pulse shape construction (default: true)",
69  true);
70  addParam("ADCThreshold", m_ADCThreshold, "ADC threshold for waveform fits (default: 25)", 25);
71  addParam("WaveformThresholdOverride", m_WaveformThresholdOverride,
72  "If gt 0 value is applied to all crystals for waveform saving threshold. If lt 0 dbobject is used. (GeV)", -1.0);
73  addParam("StoreDspWithExtraMCInfo", m_storeDspWithExtraMCInfo,
74  "Flag to store Dsp with extra MC information in addition to normal Dsp (default: false)", false);
75  addParam("DspWithExtraMCInfoThreshold", m_DspWithExtraMCInfoThreshold,
76  "Threshold above with to store Dsp with extra MC information [GeV]",
77  0.02);
78  addParam("DspDataTest", m_dspDataTest,
79  "Use DSP coefficients from the database for the processing. This "
80  "will significantly reduce performance so this option is to be "
81  "used for testing only.", false);
82  addParam("useWaveformParameters", m_useWaveformParameters,
83  "Use ECLWF{Parameters,AlgoParams,NoiseParams} payloads", true);
84  addParam("unitscale", m_unitscale,
85  "Normalization coefficient for ECL signal shape. "
86  "If positive, use same static value for all ECL channels. "
87  "If negative, calculate dynamically at beginRun().", -1.0);
88 
89 }
90 
92 {
93 }
94 
96 {
97  m_eclDsps.registerInDataStore();
98  if (m_storeDspWithExtraMCInfo) m_eclDspsWithExtraMCInfo.registerInDataStore();
99  m_eclDigits.registerInDataStore();
100  m_eclTrigs.registerInDataStore();
101 
102  if (m_HadronPulseShape) {
103  B2DEBUG(20,
104  "Hadron pulse shapes for ECL simulations are enabled. Pulse shape simulations use techniques validated with test beam data documented in: S. Longo and J. M. Roney 2018 JINST 13 P03018");
105  } else {
106  B2DEBUG(20, "Hadron pulse shapes for ECL simulations are disabled.");
107  }
108 
109  if (m_inter) {
110  B2DEBUG(20, "Diode-crossing pulse shapes for ECL simulations are enabled.");
111  } else {
112  B2DEBUG(20, "Diode-crossing pulse shapes for ECL simulations are disabled.");
113  }
114 
115  m_eclDiodeHits.registerInDataStore("ECLDiodeHits");
116 
117  m_eclDsps.registerRelationTo(m_eclDigits);
119  m_eclDspsWithExtraMCInfo.registerRelationTo(m_eclDigits);
120  m_eclDigits.registerRelationTo(m_eclHits);
121  if (m_waveformMaker)
122  m_eclWaveforms.registerInDataStore(m_eclWaveformsName);
123 
125 
127 }
128 
130 {
132  double ns_per_tick = 1.0 / (4.0 * ec.getRF()) * 1e3;// ~0.49126819903043308239 ns/tick
133 
135  readDSPDB();
136  m_loadOnce = false;
137  }
138 
139  calibration_t def = {1, 0};
141 
142  if (m_CrystalElectronics.isValid()) {
143  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
144  m_calib[i].ascale /= m_CrystalElectronics->getCalibVector()[i];
145  }
146  if (m_CrystalEnergy.isValid()) {
147  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
148  m_calib[i].ascale /= m_CrystalEnergy->getCalibVector()[i] * 20000.0;
149  }
150  if (m_CrystalElectronicsTime.isValid()) {
151  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
152  m_calib[i].tshift += m_CrystalElectronicsTime->getCalibVector()[i] * ns_per_tick;
153  }
154  if (m_CrystalTimeOffset.isValid()) {
155  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
156  m_calib[i].tshift += m_CrystalTimeOffset->getCalibVector()[i] * ns_per_tick;
157  }
158  if (m_CrateTimeOffset.isValid()) {
159  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
160  m_calib[i].tshift += m_CrateTimeOffset->getCalibVector()[i] * ns_per_tick;
161  }
162  if (m_MCTimeOffset.isValid()) {
163  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
164  m_calib[i].tshift += m_MCTimeOffset->getCalibVector()[i] * ns_per_tick;
165  }
167  if (m_WaveformThresholdOverride < 0) {
168  if (m_FPGAWaveform.isValid()) {
169  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
170  m_Awave[i] = m_FPGAWaveform->getCalibVector()[i];
171  }
172  } else {
173  //If m_WaveformThresholdOverride > 0 override ECL_FPGA_StoreWaveform;
174  for (int i = 0; i < ECLElementNumbers::c_NCrystals; i++)
175  m_Awave[i] = m_WaveformThresholdOverride * m_calib[i].ascale; // convert GeV to ADC
176  }
177 
178  if (m_HadronPulseShape)
180 
181  // Initialize channel mapper at run start to account for possible
182  // changes in ECL mapping between runs.
183  if (!m_eclMapper.initFromDB()) {
184  B2FATAL("ECLDigitizer: Can't initialize eclChannelMapper!");
185  }
186 }
187 
188 // interface to C shape fitting function function
189 void ECLDigitizerModule::shapeFitterWrapper(const int j, const int* FitA, const int ttrig,
190  int& m_lar, int& m_ltr, int& m_lq, int& m_chi) const
191 {
192  const crystallinks_t& t = m_tbl[j]; //lookup table [0,8735]
193  const fitparams_t& r = m_fitparams[t.ifunc];
194 
195  ECLShapeFit result;
196 
197  if (!m_dspDataTest) {
198  short int* id = (short int*)m_idn[t.idn].id;
199 
200  int A0 = (int) * (id + 0) - 128;
201  int Askip = (int) * (id + 1) - 128;
202 
203  int Ahard = (int) * (id + 2);
204  int k_a = (int) * ((unsigned char*)id + 26);
205  int k_b = (int) * ((unsigned char*)id + 27);
206  int k_c = (int) * ((unsigned char*)id + 28);
207  int k_16 = (int) * ((unsigned char*)id + 29);
208  int k1_chi = (int) * ((unsigned char*)id + 24);
209  int k2_chi = (int) * ((unsigned char*)id + 25);
210 
211  int chi_thres = (int) * (id + 15);
212 
213  int trg_time = ttrig;
214 
215  result = lftda_((int*)r.f, (int*)r.f1, (int*)r.fg41, (int*)r.fg43,
216  (int*)r.fg31, (int*)r.fg32, (int*)r.fg33, (int*)FitA,
217  trg_time, A0, Ahard, Askip, k_a, k_b, k_c, k_16, k1_chi,
218  k2_chi, chi_thres);
219  } else {
220  std::vector<int> adc(31);
221  for (int i = 0; i < 31; i++) adc[i] = FitA[i];
222  // NOTE: ttrig_packed is any even number in set {8*Z, 8*Z + 2, 8*Z + 4}
223  // where Z is an integer number in 0..23 range
224  // ttrig = ttrig_packed - 2 * (ttrig_packed / 8);
225  // ttrig = 6*Z + q
226  int ttrig_packed = ttrig / 6 * 8 + ttrig % 6;
227  result = ECLDspUtilities::shapeFitter(j + 1, adc, ttrig_packed);
228  }
229 
230  m_lar = result.amp;
231  m_ltr = result.time;
232  m_lq = result.quality;
233  m_chi = result.chi2;
234 
235  //== Set precision of chi^2 to be the same as in the raw data.
236  int discarded_bits = 0;
237  if ((m_chi & 0x7800000) != 0) {
238  m_chi = 0x7800000;
239  } else if ((m_chi & 0x0600000) != 0) {
240  discarded_bits = 14;
241  } else if ((m_chi & 0x0180000) != 0) {
242  discarded_bits = 12;
243  } else if ((m_chi & 0x0060000) != 0) {
244  discarded_bits = 10;
245  } else if ((m_chi & 0x0018000) != 0) {
246  discarded_bits = 8;
247  } else if ((m_chi & 0x0006000) != 0) {
248  discarded_bits = 6;
249  } else if ((m_chi & 0x0001800) != 0) {
250  discarded_bits = 4;
251  } else if ((m_chi & 0x0000600) != 0) {
252  discarded_bits = 2;
253  }
254  if (discarded_bits > 0) {
255  m_chi >>= discarded_bits;
256  m_chi <<= discarded_bits;
257  }
258 }
259 
261 {
264 
265  const double trgtick = ec.s_clock / ec.getRF() / ec.m_ntrg; // trigger tick
266  const double tscale = 2 * trgtick, toff = ec.s_clock / (2 * ec.getRF());
267 
268  // clear the storage for the event
269  memset(m_adc.data(), 0, m_adc.size()*sizeof(adccounts_t));
270 
271  const double E2GeV = 1 / Unit::GeV; // convert Geant energy units to GeV
272  const double T2us = 1 / Unit::us; // convert Geant time units to microseconds
273 
274  // emulate response for ECL hits after ADC measurements
275  for (const auto& hit : m_eclSimHits) {
276  int cellId = hit.getCellId(); // 1 .. 8736
277  int j = cellId - 1; // 0 .. 8735
278  int id = m_eclMapper.getCrateID(cellId) - 1; // 0 .. 51
279  double timeOffset = tscale * m_ttime[id] - toff;
280  double hitE = hit.getEnergyDep() * m_calib[j].ascale * E2GeV;
281  double hitTimeAve = (hit.getFlightTime() + m_calib[j].tshift + eclp->time2sensor(j, hit.getPosition())) * T2us;
282 
283  m_adc[j].energyConversion = m_calib[j].ascale * E2GeV * 20000;
284  m_adc[j].flighttime += hit.getFlightTime() * hit.getEnergyDep(); //true time weighted by energy
285  m_adc[j].timeshift += m_calib[j].tshift * hit.getEnergyDep();
286  m_adc[j].timetosensor += eclp->time2sensor(j, hit.getPosition()) * hit.getEnergyDep();
287  m_adc[j].totalHadronDep += hit.getHadronEnergyDep(); // true deposited energy hadron component (in GeV)
288  m_adc[j].totalDep += hit.getEnergyDep(); //true deposited energy (in GeV)
289 
290  if (m_HadronPulseShape == true) {
291  double hitHadronE = hit.getHadronEnergyDep() * m_calib[j].ascale * E2GeV;
292  m_adc[j].AddHit(hitE - hitHadronE, hitTimeAve + timeOffset, m_ss_HadronShapeSimulations[0]);//Gamma Component
293  m_adc[j].AddHit(hitHadronE, hitTimeAve + timeOffset, m_ss_HadronShapeSimulations[1]); //Hadron Component
294  } else {
295  m_adc[j].AddHit(hitE, hitTimeAve + timeOffset, m_ss[m_tbl[j].iss]);
296  }
297  }
298 
299  // add only background hits
300  for (const auto& hit : m_eclHits) {
301  if (hit.getBackgroundTag() == BackgroundMetaData::bg_none) continue;
302  int cellId = hit.getCellId(); // 1 .. 8736
303  int j = cellId - 1; // 0 .. 8735
304  int id = m_eclMapper.getCrateID(cellId) - 1; // 0 .. 51
305  double timeOffset = tscale * m_ttime[id] - toff;
306  double hitE = hit.getEnergyDep() * m_calib[j].ascale * E2GeV;
307  double hitTimeAve = (hit.getTimeAve() + m_calib[j].tshift) * T2us;
308  m_adc[j].AddHit(hitE, hitTimeAve + timeOffset, m_ss[m_tbl[j].iss]);
309  }
310 
311  // internuclear counter effect -- charged particle crosses diode and produces signal
312  if (m_inter) {
313  // ionisation energy in Si is I = 3.6x10^-6 MeV for electron-hole pair
314  // 5000 pairs in the diode per 1 MeV deposited in the crystal attached to the diode
315  // conversion factor to get equvalent energy deposition in the crystal to sum up it with deposition in crystal
316  const double diodeEdep2crystalEdep = E2GeV * (1 / (5000 * 3.6e-6));
317  for (const auto& hit : m_eclDiodeHits) {
318  int cellId = hit.getCellId(); // 1 .. 8736
319  int j = cellId - 1; // 0 .. 8735
320  int id = m_eclMapper.getCrateID(cellId) - 1; // 0 .. 51
321  double timeOffset = tscale * m_ttime[id] - toff;
322  double hitE = hit.getEnergyDep() * m_calib[j].ascale * diodeEdep2crystalEdep;
323  double hitTimeAve = (hit.getTimeAve() + m_calib[j].tshift) * T2us;
324 
325  adccounts_t& a = m_adc[j];
326  // cout << "internuclearcountereffect " << j << " " << hit.getEnergyDep() << " " << hit.getTimeAve() << " " << a.total << endl;
327  // for (int i = 0; i < ec.m_nsmp; i++) cout << i << " " << a.c[i] << endl;
328  if (m_HadronPulseShape) {
329  a.AddHit(hitE, hitTimeAve + timeOffset, m_ss_HadronShapeSimulations[2]); // diode component
330  } else {
331  a.AddHit(hitE, hitTimeAve + timeOffset, m_ss[1]); // m_ss[1] is the sampled diode response
332  }
333  // for (int i = 0; i < ec.m_nsmp; i++) cout << i << " " << a.c[i] << endl;
334  }
335  }
336 
337  if (m_calibration) {
338  // This has been added by Alex Bobrov for calibration
339  // of covariance matrix artificially generate 100 MeV in time for each crystal
340  double hitE = 0.1, hitTimeAve = 0.0;
341  for (int j = 0; j < ec.m_nch; j++) {
342  int cellId = j + 1; // 1 .. 8736
343  int id = m_eclMapper.getCrateID(cellId) - 1; // 0 .. 51
344  double timeOffset = tscale * m_ttime[id] - toff;
345  m_adc[j].AddHit(hitE, hitTimeAve + timeOffset, m_ss[m_tbl[j].iss]);
346  }
347  }
348 }
349 
351 {
353  float z[ec.m_nsmp], AdcNoise[ec.m_nsmp]; // buffers with electronic noise
354  // Noise generation
355  for (int i = 0; i < ec.m_nsmp; i++) z[i] = gRandom->Gaus(0, 1);
356  m_noise[m_tbl[J].inoise].generateCorrelatedNoise(z, AdcNoise);
357  for (int i = 0; i < ec.m_nsmp; i++) FitA[i] = 20 * AdcNoise[i] + 3000;
358 }
359 
361 {
363  BitStream out(ec.m_nch * ec.m_nsmp * 18 / 32);
364  out.putNBits(m_compAlgo & 0xff, 8);
365  ECLCompress* comp = selectAlgo(m_compAlgo & 0xff);
366  if (comp == nullptr)
367  B2FATAL("Unknown compression algorithm: " << m_compAlgo);
368 
369  int FitA[ec.m_nsmp]; // buffer for the waveform fitter
370  // loop over entire calorimeter
371  for (int j = 0; j < ec.m_nch; j++) {
372  adccounts_t& a = m_adc[j];
374  for (int i = 0; i < ec.m_nsmp; i++) {
375  int A = 20000 * a.c[i] + FitA[i];
376  FitA[i] = max(0, min(A, (1 << 18) - 1));
377  }
378  comp->compress(out, FitA);
379  }
380  out.resize();
381 
382  ECLWaveforms* wf = new ECLWaveforms;
383  m_eclWaveforms.assign(wf);
384 
385  std::swap(out.getStore(), wf->getStore());
386  if (comp) delete comp;
387 }
388 
390 {
392 
393  // make relation between cellid and eclhits
394  struct ch_t {int cell, id;};
395  vector<ch_t> hitmap;
396  for (const auto& hit : m_eclHits) {
397  int j = hit.getCellId() - 1; //0~8735
398  if (hit.getBackgroundTag() == BackgroundMetaData::bg_none) hitmap.push_back({j, hit.getArrayIndex()});
399  // cout<<"C:"<<hit.getBackgroundTag()<<" "<<hit.getCellId()<<" "<<hit.getEnergyDep()<<" "<<hit.getTimeAve()<<endl;
400  }
401 
402  bool isBGOverlay = m_eclWaveforms.isValid(), isTrigTime = false;
403  BitStream out;
404  ECLCompress* comp = nullptr;
405 
406  // check background overlay
407  if (isBGOverlay) {
408  std::swap(out.getStore(), m_eclWaveforms->getStore());
409  out.setPos(0);
410  unsigned int compAlgo = out.getNBits(8);
411  comp = selectAlgo(compAlgo & 0x7f);
412  if (comp == nullptr)
413  B2FATAL("Unknown compression algorithm: " << compAlgo);
414  isTrigTime = compAlgo >> 7; // crate trigger times are stored and retrived
415  if (isTrigTime) {
416  for (int i = 0; i < ECL::ECL_CRATES; i++) {
417  unsigned char t = out.getNBits(7); // [0..72)
418  m_ttime[i] = t;
419  }
420  }
421  }
422 
423  if (!m_trigTime || !isTrigTime) { // reproduce previous logic -- one trigger time for all crates
424  int DeltaT = gRandom->Uniform(0, double(ec.m_ntrg) * 0.5); // trigger decision can come in any time [0..72)
425  for (int id = 0; id < ECL::ECL_CRATES; id++) m_ttime[id] = DeltaT;
426  }
427 
428  int triggerTag0 = m_EventMetaData->getEvent();
429  for (int id = 0; id < ECL::ECL_CRATES; id++) {
430  auto eclTrig = m_eclTrigs.appendNew();
431  int triggerPhase0 = 2 * (m_ttime[id] + m_ttime[id] / 3);
432  eclTrig->setTrigId(id);
433  eclTrig->setTimeTrig(triggerPhase0);
434  eclTrig->setTrigTag(triggerTag0);
435  }
436 
437  shapeSignals();
438 
439  // We want to produce background waveforms in simulation first than
440  // dump to a disk, read from the disk to test before real data
441  if (m_waveformMaker) { makeWaveforms(); return; }
442 
443  int FitA[ec.m_nsmp]; // buffer for the waveform fitter
444 
445  // loop over entire calorimeter
446  for (int j = 0; j < ec.m_nch; j++) {
447  adccounts_t& a = m_adc[j];
448 
449  //normalize the MC true arrival times
450  if (m_adc[j].totalDep > 0) {
451  m_adc[j].flighttime /= m_adc[j].totalDep;
452  m_adc[j].timeshift /= m_adc[j].totalDep;
453  m_adc[j].timetosensor /= m_adc[j].totalDep;
454  }
455 
456  // if background waveform is here there is no need to generate
457  // electronic noise since it is already in the waveform
458  if (isBGOverlay) {
459  comp->uncompress(out, FitA);
460  } else {
461  // Signal amplitude should be above 100 keV
462  if (a.total < 0.0001) continue;
464  }
465 
466  for (int i = 0; i < ec.m_nsmp; i++) {
467  int A = 20000 * a.c[i] + FitA[i];
468  FitA[i] = max(0, min(A, (1 << 18) - 1));
469  }
470 
471  int energyFit = 0; // fit output : Amplitude 18 bits
472  int tFit = 0; // fit output : T_ave 12 bits
473  int qualityFit = 0; // fit output : quality 2 bits
474  int chi = 0; // fit output : chi square it is not available in the experiment
475 
476  int id = m_eclMapper.getCrateID(j + 1) - 1; // 0 .. 51
477  int ttrig = 2 * m_ttime[id];
478 
479  shapeFitterWrapper(j, FitA, ttrig, energyFit, tFit, qualityFit, chi);
480 
481  if (energyFit > m_ADCThreshold) {
482  int CellId = j + 1;
483 
484  //note energyFit and m_Awave is in ADC units
485  if (energyFit > m_Awave[CellId - 1]) {
486  //only save waveforms above ADC threshold
487  const auto eclDsp = m_eclDsps.appendNew();
488  eclDsp->setCellId(CellId);
489  eclDsp->setDspA(FitA);
490  }
491 
492  // only store extra MC info if requested and above threshold
494  const auto eclDspWithExtraMCInfo = m_eclDspsWithExtraMCInfo.appendNew();
495  eclDspWithExtraMCInfo->setCellId(CellId);
496  eclDspWithExtraMCInfo->setDspA(FitA);
497  eclDspWithExtraMCInfo->setEnergyDep(a.totalDep);
498  eclDspWithExtraMCInfo->setHadronEnergyDep(a.totalHadronDep);
499  eclDspWithExtraMCInfo->setFlightTime(a.flighttime);
500  eclDspWithExtraMCInfo->setTimeShift(a.timeshift);
501  eclDspWithExtraMCInfo->setTimeToSensor(a.timetosensor);
502  eclDspWithExtraMCInfo->setEnergyConversion(a.energyConversion * 20000);
503  }
504 
505  const auto eclDigit = m_eclDigits.appendNew();
506  eclDigit->setCellId(CellId); // cellId in range from 1 to 8736
507  eclDigit->setAmp(energyFit); // E (GeV) = energyFit/20000;
508  eclDigit->setTimeFit(tFit); // t0 (us)= (1520 - m_ltr)*24.*12/508/(3072/2) ;
509  eclDigit->setQuality(qualityFit);
510  if (qualityFit == 2)
511  eclDigit->setChi(chi);
512  else eclDigit->setChi(0);
513  for (const auto& hit : hitmap)
514  if (hit.cell == j) eclDigit->addRelationTo(m_eclHits[hit.id]);
515 
516  // set relation to DspWithExtraInfo
517  for (auto& DspWithExtraMCInfo : m_eclDspsWithExtraMCInfo) {
518  if (eclDigit->getCellId() == DspWithExtraMCInfo.getCellId()) DspWithExtraMCInfo.addRelationTo(eclDigit);
519  }
520  }
521  } //store each crystal hit
522  if (comp) delete comp;
523 }
524 
526 {
527 }
528 
530 {
531 }
532 
534 {
535 
536  if (m_waveformParametersMC.hasChanged()) {
537 
538  m_ss_HadronShapeSimulations.resize(3);
539 
540  //read MC templates from database
541  float photonParsPSD[10];
542  float hadronParsPSD[10];
543  float diodeParsPSD[10];
544  for (int i = 0; i < 10; i++) {
545  photonParsPSD[i] = m_waveformParametersMC->getPhotonParameters()[i + 1];
546  hadronParsPSD[i] = m_waveformParametersMC->getHadronParameters()[i + 1];
547  diodeParsPSD[i] = m_waveformParametersMC->getDiodeParameters()[i + 1];
548  }
549 
550  //Initialize templates for hadron shape simulations
551  m_ss_HadronShapeSimulations[0].InitSample(photonParsPSD, m_waveformParametersMC->getPhotonParameters()[0]);
552  m_ss_HadronShapeSimulations[1].InitSample(hadronParsPSD, m_waveformParametersMC->getHadronParameters()[0]);
553  m_ss_HadronShapeSimulations[2].InitSample(diodeParsPSD, m_waveformParametersMC->getDiodeParameters()[0]);
554 
555  }
556 
557 }
558 
560 {
562 
563  TFile* rootfile = nullptr;
564  TTree* tree = nullptr;
565  TTree* tree2 = nullptr;
566  TTree* tree3 = nullptr;
567 
569  bool hasChanged = false;
570  hasChanged |= m_waveformParameters.hasChanged();
571  hasChanged |= m_algoParameters.hasChanged();
572  hasChanged |= m_noiseParameters.hasChanged();
573 
574  if (!hasChanged) return;
575 
576  tree = const_cast<TTree*>(&*m_waveformParameters);
577  tree2 = const_cast<TTree*>(&*m_algoParameters);
578  tree3 = const_cast<TTree*>(&*m_noiseParameters);
579  } else {
580  string dataFileName;
581  if (m_background) {
582  dataFileName = FileSystem::findFile("/data/ecl/ECL-WF-BG.root");
583  B2DEBUG(150, "ECLDigitizer: Reading configuration data with background from: " << dataFileName);
584  } else {
585  dataFileName = FileSystem::findFile("/data/ecl/ECL-WF.root");
586  B2DEBUG(150, "ECLDigitizer: Reading configuration data without background from: " << dataFileName);
587  }
588  assert(! dataFileName.empty());
589 
590  rootfile = new TFile(dataFileName.c_str(), "read");
591  tree = (TTree*) rootfile->Get("EclWF");
592  tree2 = (TTree*) rootfile->Get("EclAlgo");
593  tree3 = (TTree*) rootfile->Get("EclNoise");
594  }
595 
596  if (tree == 0 || tree2 == 0 || tree3 == 0) B2FATAL("Data not found");
597 
598  m_tbl.resize(ec.m_nch);
599 
600  const int maxncellid = 512;
601  int ncellId;
602  vector<int> cellId(maxncellid);//[ncellId] buffer for crystal identification number
603 
604  tree->SetBranchAddress("ncellId", &ncellId);
605  tree->SetBranchAddress("cellId", cellId.data());
606 
607  vector<int> eclWaveformDataTable(ec.m_nch);
608  for (Long64_t j = 0, jmax = tree->GetEntries(); j < jmax; j++) {
609  tree->GetEntry(j);
610  assert(ncellId <= maxncellid);
611  for (int i = 0; i < ncellId; ++i)
612  eclWaveformDataTable[cellId[i] - 1] = j;
613  }
614  B2DEBUG(150, "ECLDigitizer: " << tree->GetEntries() << " sets of wave form covariance matricies will be used.");
615 
616  ECLWFAlgoParams* algo = new ECLWFAlgoParams;
617  tree2->SetBranchAddress("Algopars", &algo);
618  tree2->SetBranchAddress("ncellId", &ncellId);
619  tree2->SetBranchAddress("cellId", cellId.data());
620  Long64_t jmax2 = tree2->GetEntries();
621  vector<ECLWFAlgoParams> eclWFAlgoParams;
622  eclWFAlgoParams.reserve(jmax2);
623  for (Long64_t j = 0; j < jmax2; j++) {
624  tree2->GetEntry(j);
625  assert(ncellId <= maxncellid);
626  eclWFAlgoParams.push_back(*algo);
627  for (int i = 0; i < ncellId; ++i)
628  m_tbl[cellId[i] - 1].idn = j;
629  }
630  if (algo) delete algo;
631  B2DEBUG(150, "ECLDigitizer: " << eclWFAlgoParams.size() << " parameter sets of fitting algorithm were read.");
632 
633  ECLNoiseData* noise = new ECLNoiseData;
634  tree3->SetBranchAddress("NoiseM", &noise);
635  tree3->SetBranchAddress("ncellId", &ncellId);
636  tree3->SetBranchAddress("cellId", cellId.data());
637 
638  Long64_t jmax3 = tree3->GetEntries();
639  m_noise.reserve(jmax3);
640  for (Long64_t j = 0; j < jmax3; j++) {
641  tree3->GetEntry(j);
642  assert(ncellId <= maxncellid);
643  m_noise.push_back(*noise);
644  if (ncellId == 0) {
645  for (int i = 0; i < ec.m_nch; i++)
646  m_tbl[i].inoise = 0;
647  break;
648  } else {
649  for (int i = 0; i < ncellId; ++i)
650  m_tbl[cellId[i] - 1].inoise = j;
651  }
652  }
653  if (noise) delete noise;
654  B2DEBUG(150, "ECLDigitizer: " << eclWFAlgoParams.size() << " noise matricies were loaded.");
655 
656  // repack fitting algorithm parameters
657  m_idn.resize(eclWFAlgoParams.size());
658  for (int i = 0, imax = eclWFAlgoParams.size(); i < imax; i++)
659  repack(eclWFAlgoParams[i], m_idn[i]);
660 
661  vector<uint_pair_t> pairIdx;
662  for (int i = 0; i < ec.m_nch; i++) {
663  unsigned int wfIdx = eclWaveformDataTable[i];
664  unsigned int algoIdx = m_tbl[i].idn;
665  uint_pair_t p(wfIdx, algoIdx);
666  vector<uint_pair_t>::iterator ip = find(pairIdx.begin(), pairIdx.end(), p);
667  if (ip != pairIdx.end()) { // crystal i already have the same parameters as before
668  m_tbl[i].ifunc = ip - pairIdx.begin();
669  } else { // new combination of parameters
670  m_tbl[i].ifunc = pairIdx.size();
671  pairIdx.push_back(p);
672  }
673  }
674 
675  // now we know how many distinct elements of the (Waveform x AlgoParams) matrix should be
676  m_fitparams.resize(pairIdx.size());
677 
678  ECLWaveformData* eclWFData = new ECLWaveformData;
679  tree->SetBranchAddress("CovarianceM", &eclWFData);
680  tree->SetBranchStatus("ncellId", 0); // do not read it at the moment
681  tree->SetBranchStatus("cellId", 0); // do not read it at the moment
682 
683  // fill parameters for each (Waveform x AlgoParams) parameter set
684  for (unsigned int ip = 0; ip < pairIdx.size(); ip++) {
685  const uint_pair_t& p = pairIdx[ip];
686  tree->GetEntry(p.first); // retrieve data to eclWFData pointer
687  getfitparams(*eclWFData, eclWFAlgoParams[p.second], m_fitparams[ip]);
688  }
689  B2DEBUG(150, "ECLDigitizer: " << m_fitparams.size() << " fitting crystals groups were created.");
690 
691  // at the moment there is only one sampled signal shape in the pool
692  // since all shaper parameters are the same for all crystals
693  m_ss.resize(2);
694  float MP[10]; eclWFData->getWaveformParArray(MP);
695  m_ss[0].InitSample(MP, 27.7221);
696  // parameters vector from ps.dat file, time offset 0.5 usec added to
697  // have peak position with parameters from ps.dat roughly in the
698  // same place as in current MC
699  // double crystal_params[10] = {0.5, 0.301298, 0.631401, 0.470911, 0.903988, -0.11734200/19.5216, 2.26567, 0.675393, 0.683995, 0.0498786};
700  // m_ss[0].InitSample(crystal_params, 0.9999272*19.5216);
701  for (int i = 0; i < ec.m_nch; i++) m_tbl[i].iss = 0;
702  // one sampled diode response in the pool, parameters vector from
703  // pg.dat file, time offset 0.5 usec added to have peak position with
704  // parameters from ps.dat roughly in the same place as in current MC
705  double diode_params[] = {0 + 0.5, 0.100002, 0.756483, 0.456153, 0.0729031, 0.3906 / 9.98822, 2.85128, 0.842469, 0.854184, 0.110284};
706  m_ss[1].InitSample(diode_params, 0.9569100 * 9.98822);
707 
708  B2DEBUG(150, "ECLDigitizer: " << m_ss.size() << " sampled signal templates were created.");
709 
710  if (eclWFData) delete eclWFData;
711 
712  if (!m_useWaveformParameters) rootfile->Close();
713 }
714 
716 {
717  // filling short int array
718  t.id[ 0] = eclWFAlgo.getlAT() + 128;
719  t.id[ 1] = eclWFAlgo.getsT() + 128;
720  t.id[ 2] = eclWFAlgo.gethT();
721  t.id[ 3] = 17952;
722  t.id[ 4] = 19529;
723  t.id[ 5] = 69;
724  t.id[ 6] = 0;
725  t.id[ 7] = 0;
726  t.id[ 8] = 257;
727  t.id[ 9] = -1;
728  t.id[10] = 0;
729  t.id[11] = 0;
730 
731  // filling unsigned char array
732  t.ic[12 * 2 + 0] = eclWFAlgo.getk1();
733  t.ic[12 * 2 + 1] = eclWFAlgo.getk2();
734  t.ic[13 * 2 + 0] = eclWFAlgo.getka();
735  t.ic[13 * 2 + 1] = eclWFAlgo.getkb();
736  t.ic[14 * 2 + 0] = eclWFAlgo.getkc();
737  t.ic[14 * 2 + 1] = eclWFAlgo.gety0s() - 16;
738 
739  // again, filling short int array
740  t.id[15] = eclWFAlgo.getcT();
741 }
742 
744 {
746 
747  double ssd[16][16];
748  eclWFData.getMatrix(ssd);
749  vector<double> MP(10);
750  eclWFData.getWaveformParArray(MP.data());
751 
752  // shape function parameters
753  int iff = 1 << 14; //Alex Bobrov for correct chi square
754 
755  int ia = 1 << eclWFAlgo.getka();
756  int ib = 1 << eclWFAlgo.getkb();
757  int ic = 1 << eclWFAlgo.getkc();
758 
759  double dbl_f [192][16];
760  double dbl_f1 [192][16];
761  double dbl_fg31[192][16];
762  double dbl_fg32[192][16];
763  double dbl_fg33[192][16];
764  double dbl_fg41[24][16];
765  double dbl_fg43[24][16];
766 
767  int_array_192x16_t& ref_f = p.f;
768  int_array_192x16_t& ref_f1 = p.f1;
769  int_array_192x16_t& ref_fg31 = p.fg31;
770  int_array_192x16_t& ref_fg32 = p.fg32;
771  int_array_192x16_t& ref_fg33 = p.fg33;
772  int_array_24x16_t& ref_fg41 = p.fg41;
773  int_array_24x16_t& ref_fg43 = p.fg43;
774 
775  // Dynamic normalization coefficient for shape function
776  double fm = 0;
777 
778  double unitscale = 1.0;
779  if (m_unitscale > 0) unitscale = m_unitscale;
780 
781  ShaperDSP_t dsp(MP, unitscale);
782  dsp.settimestride(ec.m_step);
783  dsp.setseedoffset(ec.m_step / ec.m_ndt);
784  dsp.settimeseed(-(ec.m_step - (ec.m_step / ec.m_ndt)));
785  vector<dd_t> f(16);
786  for (int k = 0; k < 2 * ec.m_ndt; k++, dsp.nextseed()) { // calculate fit parameters around 0 +- 1 ADC tick
787  dsp.fillvector(f);
788 
789  double g0g0 = 0, g0g1 = 0, g1g1 = 0, g0g2 = 0, g1g2 = 0, g2g2 = 0;
790  double sg0[16], sg1[16], sg2[16];
791  for (int j = 0; j < 16; j++) {
792  double g0 = 0, g1 = 0, g2 = 0;
793  for (int i = 0; i < 16; i++) {
794  if (fm < f[i].first) fm = f[i].first;
795  g0 += ssd[j][i] * f[i].first;
796  g1 += ssd[j][i] * f[i].second;
797  g2 += ssd[j][i];
798  }
799  g0g0 += g0 * f[j].first;
800  g0g1 += g1 * f[j].first;
801  g1g1 += g1 * f[j].second;
802  g0g2 += g0;
803  g1g2 += g1;
804  g2g2 += g2;
805  sg0[j] = g0;
806  sg1[j] = g1;
807  sg2[j] = g2;
808  }
809 
810  double a00 = g1g1 * g2g2 - g1g2 * g1g2;
811  double a11 = g0g0 * g2g2 - g0g2 * g0g2;
812  double a22 = g0g0 * g1g1 - g0g1 * g0g1;
813  double a01 = g1g2 * g0g2 - g0g1 * g2g2;
814  double a02 = g0g1 * g1g2 - g1g1 * g0g2;
815  double a12 = g0g1 * g0g2 - g0g0 * g1g2;
816 
817  double igg2 = 1 / (a11 * g1g1 + g0g1 * a01 + g1g2 * a12);
818 
819  // to fixed point representation
820  const double isd = 3. / 4., sd = 1 / isd ; // conversion factor (???)
821  for (int i = 0; i < 16; i++) {
822  double w = i ? 1.0 : 1. / 16.;
823 
824  dbl_f [k][i] = (f[i].first * iff * w);
825  dbl_f1 [k][i] = (f[i].second * iff * w * sd);
826 
827  double fg31 = (a00 * sg0[i] + a01 * sg1[i] + a02 * sg2[i]) * igg2;
828  double fg32 = (a01 * sg0[i] + a11 * sg1[i] + a12 * sg2[i]) * igg2;
829  double fg33 = (a02 * sg0[i] + a12 * sg1[i] + a22 * sg2[i]) * igg2;
830 
831  dbl_fg31[k][i] = (fg31 * ia * w);
832  dbl_fg32[k][i] = (fg32 * ib * w * isd);
833  dbl_fg33[k][i] = (fg33 * ic * w);
834  }
835 
836  //first approximation without time correction
837  int jk = 23 + ((48 - k) >> 2);
838  if (jk >= 0 && jk < 24 && (48 - k) % 4 == 0) {
839 
840  double igg1 = 1 / a11;
841  // to fixed point
842  for (int i = 0; i < 16; i++) {
843  double w = i ? 1.0 : 1. / 16.;
844 
845  double fg41 = (g2g2 * sg0[i] - g0g2 * sg2[i]) * igg1;
846  double fg43 = (g0g0 * sg2[i] - g0g2 * sg0[i]) * igg1;
847  dbl_fg41[jk][i] = (fg41 * ia * w);
848  dbl_fg43[jk][i] = (fg43 * ic * w);
849  }
850  }
851  }
852  // Ignore dynamically calculated normalization coefficient if
853  // unitscale is set to a static positive value.
854  if (m_unitscale > 0) fm = 1.0;
855  for (int k = 0; k < 2 * ec.m_ndt; k++) {
856  for (int j = 0; j < 16; j++) {
857  ref_f [k][j] = lrint(dbl_f [k][j] / fm);
858  ref_f1 [k][j] = lrint(dbl_f1 [k][j] / fm);
859  ref_fg31[k][j] = lrint(dbl_fg31[k][j] * fm);
860  ref_fg32[k][j] = lrint(dbl_fg32[k][j] * fm);
861  ref_fg33[k][j] = lrint(dbl_fg33[k][j]);
862  if (k >= 24) continue;
863  ref_fg41[k][j] = lrint(dbl_fg41[k][j] * fm);
864  ref_fg43[k][j] = lrint(dbl_fg43[k][j]);
865  }
866  }
867 }
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
int m_ADCThreshold
ADC threshold for wavefom fits.
std::vector< calibration_t > m_calib
Storage for calibration constants.
double m_unitscale
Normalization coefficient for ECL signal shape.
StoreArray< ECLDsp > m_eclDsps
Generated waveforms.
void callbackHadronSignalShapes()
callback hadron signal shapes from database
void shapeSignals()
Emulate response of energy deposition in a crystal and attached photodiode and make waveforms.
ECL::ECLChannelMapper m_eclMapper
Channel Mapper.
DBObjPtr< TTree > m_algoParameters
Shape fitting algorithm parameters.
StoreObjPtr< ECLWaveforms > m_eclWaveforms
Compressed waveforms.
std::vector< algoparams_t > m_idn
Fit algorihtm parameters shared by group of crystals.
StoreArray< ECLHit > m_eclDiodeHits
Diode hits array.
std::pair< unsigned int, unsigned int > uint_pair_t
a pair of unsigned ints
bool m_dspDataTest
DSP data usage flag.
std::vector< fitparams_t > m_fitparams
Pairs of (waveform parameters, fit parameters)
virtual void initialize() override
Initialize variables
virtual void event() override
Actual digitization of all hits in the ECL.
double m_WaveformThresholdOverride
If gt 0, value will override ECL_FPGA_StoreWaveform and apply value (in GeV) as threshold for all cry...
DBObjPtr< ECLCrystalCalib > m_CrateTimeOffset
Crate time offset.
DBObjPtr< TTree > m_waveformParameters
CellID-specific signal shapes.
double m_DspWithExtraMCInfoThreshold
Energy threshold above which to store DSPs with extra information.
StoreArray< ECLTrig > m_eclTrigs
Trigger information.
virtual void endRun() override
Nothing so far.
DBObjPtr< ECLCrystalCalib > m_MCTimeOffset
MC time offset.
virtual void terminate() override
Free memory.
StoreArray< ECLSimHit > m_eclSimHits
SimHits array.
bool m_background
Module parameters.
StoreArray< ECLDigit > m_eclDigits
Output Arrays.
void getfitparams(const ECLWaveformData &, const ECLWFAlgoParams &, fitparams_t &)
load waveform fit parameters for the shapeFitter function
void shapeFitterWrapper(const int j, const int *FitA, const int m_ttrig, int &m_lar, int &m_ltr, int &m_lq, int &m_chi) const
function wrapper for waveform fit
std::vector< double > m_Awave
Storage for waveform saving thresholds.
DBObjPtr< ECLCrystalCalib > m_CrystalElectronicsTime
Crystal electronics time.
std::vector< signalsample_t > m_ss_HadronShapeSimulations
tabulated shape line for hadron shape simulations
fitparams_t::int_array_192x16_t int_array_192x16_t
weighting coefficients for time and amplitude calculation
DBObjPtr< ECLCrystalCalib > m_CrystalElectronics
Crystal electronics.
fitparams_t::int_array_24x16_t int_array_24x16_t
weighting coefficients amplitude calculation.
virtual void beginRun() override
Nothing so far.
unsigned int m_compAlgo
compression algorithm for background waveforms
bool m_HadronPulseShape
hadron pulse shape flag
DBObjPtr< ECLCrystalCalib > m_CrystalEnergy
Crystal energy.
bool m_trigTime
Use trigger time from beam background overlay.
std::vector< crystallinks_t > m_tbl
Lookup table for ECL channels.
std::vector< adccounts_t > m_adc
Storage for adc hits from entire calorimeter (8736 crystals)
StoreArray< ECLDspWithExtraMCInfo > m_eclDspsWithExtraMCInfo
Generated waveforms with extra MC information.
StoreArray< ECLHit > m_eclHits
Hits array.
bool m_useWaveformParameters
If true, use m_waveformParameters, m_algoParameters, m_noiseParameters.
DBObjPtr< ECLCrystalCalib > m_FPGAWaveform
FPGA waveform.
bool m_calibration
calibration flag
bool m_storeDspWithExtraMCInfo
DSP with extra info flag.
unsigned char m_ttime[ECL::ECL_CRATES]
storage for trigger time in each ECL.
DBObjPtr< TTree > m_noiseParameters
Electronics noise covariance matrix.
bool m_loadOnce
Always load waveform parameters at least once.
std::vector< ECLNoiseData > m_noise
parameters for correlated noise simulation
DBObjPtr< ECLDigitWaveformParametersForMC > m_waveformParametersMC
Hadron signal shapes.
void repack(const ECLWFAlgoParams &, algoparams_t &)
repack waveform fit parameters from ROOT format to plain array of unsigned short for the shapeFitter ...
void makeWaveforms()
Produce and compress waveforms for beam background overlay.
bool m_waveformMaker
produce only waveform digits
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
void readDSPDB()
read Shaper-DSP data from root file
void makeElectronicNoiseAndPedestal(int j, int *FitA)
fill the waveform array FitA by electronic noise and bias it for channel J [0-8735]
std::string m_eclWaveformsName
name of background waveforms storage
DBObjPtr< ECLCrystalCalib > m_CrystalTimeOffset
Crystal time offset.
bool m_inter
internuclear counter effect
std::vector< signalsample_t > m_ss
tabulated shape line
Container for constant matrix used to generate electronic noise.
Container for constant parameters used in waveform fits.
int getkc() const
getter for multipliers power of 2 for fg33,fg43
int getlAT() const
getter for the threshold to calculate time
int getsT() const
getter for the threshold to send data to collector
int getcT() const
getter for the chi2 threshold for quality bit
int getk1() const
getter for the multipliers power of 2 for f
int getk2() const
getter for multipliers power of 2 for chi2 calculation
int getkb() const
getter for multipliers power of 2 for fg32
int gethT() const
getter for the hardware threshold
int gety0s() const
getter for the start point for pedestal calculation
int getka() const
getter for multipliers power of 2 for fg31 fg41
ECLWaveformData - container for inverse covariant matrix and shape parameters for time and amplitude ...
void getMatrix(float M[16][16]) const
Getter method for all matrix as two dimentional array (floats)
void getWaveformParArray(float P[10]) const
Getter method for waveform shape parameters as one dimentional array of floats.
Class to store ECL waveforms for entire calorimeter.
Definition: ECLWaveforms.h:21
std::vector< unsigned int > & getStore()
get data
Definition: ECLWaveforms.h:27
Bit stream struct.
Definition: BitStream.h:19
bool initFromDB()
Initialize channel mapper from the conditions database.
int getCrateID(int iCOPPERNode, int iFINESSE, bool pcie40=false)
Get crate number by given COPPER node number and FINESSE number.
Abstract class (interface) for ECL waveform compression/decompression to/from the BitStream storage.
Definition: ECLCompress.h:39
virtual void uncompress(BitStream &in, int *adc)=0
Decompress the ECL waveform.
virtual void compress(BitStream &out, const int *adc)=0
Compress the ECL waveform.
static ECLShapeFit shapeFitter(int cid, std::vector< int > adc, int ttrig, bool adjusted_timing=true)
Emulate shape fitting algorithm from ShaperDSP using algorithm from ecl/utility/src/ECLDspEmulator....
The Class for ECL Geometry Parameters.
static ECLGeometryPar * Instance()
Static method to get a reference to the ECLGeometryPar instance.
double time2sensor(int cid, const G4ThreeVector &hit_pos)
function to calculate flight time to diode sensor
Singleton class to hold the ECL configuration.
static EclConfiguration & get()
return this instance
static constexpr double m_step
time between points in internal units t_{asrto}*m_rf/2.
static constexpr double s_clock
digitization clock in RF units
static constexpr int m_nch
total number of electronic channels (crystals) in calorimeter
void setBackground(bool val)
set the background flag
static double getRF()
See m_rf.
static constexpr int m_ntrg
number of trigger counts per ADC clock tick
static constexpr int m_ndt
number of points per ADC tick where signal fit procedure parameters are evaluated
static constexpr int m_nsmp
number of ADC measurements for signal fitting
Class include function that calculate electronic response from energy deposit
Definition: shaperdsp.h:26
void fillvector(std::vector< double > &) const
fill vector with response function values and its derivative
Definition: shaperdsp.cc:417
void settimeseed(double)
set initial time
Definition: shaperdsp.cc:371
void settimestride(double)
set grid step for function calculation
Definition: shaperdsp.cc:361
void nextseed()
substruct toffset to tzero
Definition: shaperdsp.cc:376
void setseedoffset(double)
set timeoffset
Definition: shaperdsp.cc:366
static std::string findFile(const std::string &path, bool silent=false)
Search for given file or directory in local or central release directory, and return absolute path if...
Definition: FileSystem.cc:148
Base class for Modules.
Definition: Module.h:72
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
static const double us
[microsecond]
Definition: Unit.h:97
static const double GeV
Standard of [energy, momentum, mass].
Definition: Unit.h:51
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.
calibration constants per channel
ShaperDSP fit results from _lftda function.
a struct for the parameters of the algorithm
a struct for the fit parameters