Belle II Software  release-08-01-10
EclConfigurationPure.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 /* Own header. */
10 #include <ecl/digitization/EclConfigurationPure.h>
11 
12 /* ECL headers. */
13 #include <ecl/digitization/ECLSampledShaper.h>
14 
15 /* C++ headers. */
16 #include <algorithm>
17 #include <iostream>
18 #include <cassert>
19 
20 using namespace Belle2;
21 using namespace Belle2::ECL;
22 using namespace std;
23 
25 
26 void EclConfigurationPure::signalsamplepure_t::InitSample(const TH1F* sampledfun, const TH1F* sampledfunDerivative)
27 {
28  const int N = m_ns * m_nlPure;
29  double r1 = 32 / m_ns;
30  double r2 = EclConfiguration::getTick() / EclConfiguration::m_ntrg * 8 / getTickPure();
31 
32  ECLSampledShaper dsp(sampledfun, round(r1 / r2));
33  dsp.fillarray(N, m_ft);
34  double maxval = * max_element(m_ft, m_ft + N);
35 
36  for_each(m_ft1, m_ft1 + N, [maxval](double & a) { a /= maxval; });
37  double maxval2 = * max_element(m_ft, m_ft + N);
38  assert(maxval2 - 1.0 < 0.001);
39  double sum = 0;
40  for (int i = 0; i < N; i++) sum += m_ft[i];
41  m_sumscale = m_ns / sum;
42  // for (int i = 0; i < N; ++i) m_ft1[i] = sampledfunDerivative->GetBinContent(i + 1);
43  ECLSampledShaper dsp1(sampledfunDerivative, round(r1 / r2));
44  dsp1.fillarray(N, m_ft1);
45  for_each(m_ft1, m_ft1 + N, [r1, r2, maxval](double & a) { a *= (r1 / r2) / maxval; });
46 }
47 
48 void EclConfigurationPure::adccountspure_t::AddHit(const double a, const double t0,
50 {
51  total += s.Accumulate(a, t0, c);
52 }
53 
54 double EclConfigurationPure::signalsamplepure_t::Accumulate(const double a, const double t0, double* s) const
55 {
56  // input parameters
57  // a -- signal amplitude
58  // t -- signal offset
59  // output parameter
60  // s -- output array with added signal
61  const double itick = 1 / getTickPure(); // reciprocal to avoid division in usec^-1 (has to be evaluated at compile time)
62  const double tlen = m_nlPure - 1.0 / m_ns; // length of the sampled signal in ADC clocks units
63  const double tmax = m_tmin + m_nsmp - 1; // upper range of the fit region
64 
65  double t = t0 * itick; // rescale time in usec to ADC clocks
66  double x0 = t, x1 = t + tlen;
67 
68  if (x0 > tmax) return 0; // signal starts after the upper range of output array -- do nothing
69  if (x0 < m_tmin) {
70  if (x1 < m_tmin) return 0; // signal ends before lower range of output array -- do nothing
71  x0 = m_tmin; // adjust signal with range of output array
72  }
73 
74  int imax = m_nsmp; // length of sampled signal is long enough so
75  // the last touched element is the last element
76  // of the output array
77  if (x1 < tmax) { // if initial time is too early we need to adjust
78  // the last touched element of output array to avoid
79  // out-of-bound situation in m_ft
80  imax = x1 - m_tmin; // imax is always positive so floor can be
81  // replace by simple typecast
82  imax += 1; // like s.end()
83  }
84 
85  double epsilon = 1.0 / m_ns / 10.;
86  double imind = ceil(x0 - m_tmin + epsilon); // store result in double to avoid int->double conversion below
87  // the ceil function today at modern CPUs is surprisingly fast (before it was horribly slow)
88  int imin = imind; // starting point to fill output array
89  double w = ((m_tmin - t) + imind - 1) * double(m_ns);
90  int jmin = w ; // starting point in sampled signal array
91  w -= jmin;
92 
93  // use linear interpolation between samples. Since signal samples
94  // are aligned with output samples only two weights are need to
95  // calculate to fill output array
96  const double w1 = a * w, w0 = a - w1;
97  double sum = 0;
98  //cout <<"Filling energy: " << a << " time " << t << endl;
99  //cout <<"imin: " << imin << " imax: " << imax << endl;
100  for (int i = imin, j = jmin; i < imax; i++, j += m_ns) {
101  double amp = 0;
102  if (j >= 0) amp = w0 * m_ft[j] + w1 * m_ft[j + 1];
103  //double amp = a * m_ft[j];
104  // cout << i << ":" << j << " " << m_ft[j] << " " << w * m_ft[j] + (1-w) * m_ft[j+1] << endl;
105  s[i] += amp;
106  sum += amp;
107  }
108  //cout << endl;
109  return sum * m_sumscale;
110 }
void fillarray(int N, double *a)
fill the sampled shape array
static double m_tickPure
Digitization tick for pure CsI calorimeter (microseconds)
static double getTick()
See m_tick.
static constexpr int m_ntrg
number of trigger counts per ADC clock tick
Abstract base class for different kinds of events.
void AddHit(const double a, const double t0, const signalsamplepure_t &q)
add hit method
a struct for a signal sample for the pure CsI calorimeter
void InitSample(const TH1F *, const TH1F *)
initialisation of signal sample
double Accumulate(const double a, const double t0, double *s) const