Belle II Software  release-08-01-10
HarmonicMoments.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 
10 #include <analysis/ContinuumSuppression/HarmonicMoments.h>
11 
12 using namespace Belle2;
13 
14 
15 
17 {
18  // Loop over the particles' momenta
19  for (auto& p : m_momenta) {
20  // Gets momentum and costheta of the vector
21  double pMag = p.R();
22  double cTheta = p.Dot(m_axis) / pMag;
23 
24  // Fills the momenta.
25  // This part is quite ugly, but hard-coding the Legendre polynomials makes the code
26  // much faster than using the boost libraries, which are implementing the recursive formulas.
27  // This implementation should also be faster than a switch...case one.
28  double cTheta2 = cTheta * cTheta;
29  double cTheta3 = cTheta2 * cTheta;
30  double cTheta4 = cTheta2 * cTheta2;
31 
32  m_moment[0] += pMag;
33  m_moment[1] += pMag * cTheta;
34  m_moment[2] += pMag * 0.5 * (3.*cTheta2 - 1);
35  m_moment[3] += pMag * 0.5 * (5.*cTheta3 - 3.*cTheta);
36  m_moment[4] += pMag * 0.125 * (35.*cTheta4 - 30.*cTheta2 + 3.);
37  }
38  return;
39 }
40 
41 
43 {
44  // Loop over the particles' momenta
45  for (auto& p : m_momenta) {
46  // gets momentum and costheta of the vector
47  double pMag = p.R();
48  double cTheta = p.Dot(m_axis) / pMag;
49 
50  // Fills the momenta.
51  // This part is quite ugly, but hard-coding the Legendre polynomials makes the code
52  // much faster than using the boost libraries, which are implementing the recursive formulas.
53  // This implementation should also be faster than a switch...case one.
54  double cTheta2 = cTheta * cTheta;
55  double cTheta3 = cTheta2 * cTheta;
56  double cTheta4 = cTheta2 * cTheta2;
57  double cTheta5 = cTheta4 * cTheta;
58  double cTheta6 = cTheta3 * cTheta3;
59  double cTheta7 = cTheta6 * cTheta;
60  double cTheta8 = cTheta4 * cTheta4;
61 
62  m_moment[0] += pMag;
63  m_moment[1] += pMag * cTheta;
64  m_moment[2] += pMag * 0.5 * (3.*cTheta2 - 1);
65  m_moment[3] += pMag * 0.5 * (5.*cTheta3 - 3.*cTheta);
66  m_moment[4] += pMag * 0.125 * (35.*cTheta4 - 30.*cTheta2 + 3.);
67  m_moment[5] += pMag * 0.125 * (63.*cTheta5 - 70 * cTheta3 + 15.*cTheta);
68  m_moment[6] += pMag * 0.0625 * (231.*cTheta6 - 315 * cTheta4 + 105 * cTheta2 - 5.);
69  m_moment[7] += pMag * 0.0625 * (429.*cTheta7 - 693.*cTheta5 + 315.*cTheta3 - 35.*cTheta);
70  m_moment[8] += pMag * 0.0078125 * (6435.*cTheta8 - 12012.*cTheta6 + 6930.*cTheta4 - 1260.*cTheta2 + 35.);
71  }
72  return;
73 }
double m_moment[9]
The harmonic moments.
std::vector< ROOT::Math::XYZVector > m_momenta
The list of particles.
ROOT::Math::XYZVector m_axis
The reference axis.
void calculateAllMoments()
Calculates the moments up to order 8.
void calculateBasicMoments()
Calculates the moments up to order 4.
Abstract base class for different kinds of events.