Belle II Software  release-08-01-10
MultivariateNormalGenerator.h
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #pragma once
10 
11 #include <Eigen/Dense>
12 #include <Math/Vector3D.h>
13 #include <TRandom.h>
14 #include <TVectorT.h>
15 #include <TVector3.h>
16 #include <TMatrixTBase.h>
17 
18 namespace Belle2 {
54  public:
64  MultivariateNormalGenerator(int n, const double* mean, const double* cov)
65  {
66  setMeanCov(n, mean, cov);
67  }
72  MultivariateNormalGenerator(const Eigen::VectorXd& mean, const Eigen::MatrixXd& cov)
73  {
74  setMeanCov(mean, cov);
75  }
80  Eigen::VectorXd generate() const
81  {
82  //To get the correlated multivariate normal distribution, we multiply
83  //standard normal distributed values (mean=0, sigma=1) with a
84  //transformation matrix we obtained from an LDLT decomposition and add
85  //the mean values.
86  Eigen::VectorXd x(m_mean.rows());
87  for (int i = 0; i < m_mean.rows(); ++i) x(i) = gRandom->Gaus();
88  return m_mean + (m_transform * x);
89  }
93  void reset();
95  size_t size() const { return m_mean.rows(); }
100  void generate(double* output) const
101  {
102  Eigen::VectorXd x = generate();
103  for (int i = 0; i < x.rows(); ++i) { output[i] = x(i); }
104  }
105 
112  TVector3 generateVec3() const
113  {
114  Eigen::VectorXd x = generate();
115  TVector3 output(0, 0, 0);
116  for (unsigned int i = 0; i < std::min(3u, (unsigned int)size()); ++i) {
117  output[i] = x(i);
118  }
119  return output;
120  }
121 
125  TVectorD generateVecT() const
126  {
127  Eigen::VectorXd x = generate();
128  TVectorD output(x.rows());
129  output.SetElements(x.data());
130  return output;
131  }
132 
142  bool setMeanCov(int n, const double* mean, const double* cov);
143 
149  bool setMeanCov(const Eigen::VectorXd& mean, const Eigen::MatrixXd& cov);
150 
157  template<class value_type> bool setMeanCov(const TVectorT<value_type>& mean,
158  const TMatrixTBase<value_type>& cov);
159 
165  template<class value_type> bool setMeanCov(const ROOT::Math::XYZVector& mean,
166  const TMatrixTBase<value_type>& cov);
167 
168  private:
170  Eigen::VectorXd m_mean;
173  Eigen::MatrixXd m_transform;
174  };
175 
176  template<class value_type> bool MultivariateNormalGenerator::setMeanCov(
177  const TVectorT<value_type>& mean, const TMatrixTBase<value_type>& cov)
178  {
179  Eigen::VectorXd emean(mean.GetNrows());
180  Eigen::MatrixXd ecov(cov.GetNrows(), cov.GetNcols());
181  for (int i = 0; i < mean.GetNrows(); ++i) { emean(i) = mean(i); }
182  for (int i = 0; i < cov.GetNrows(); ++i) {
183  for (int j = 0; j < cov.GetNcols(); ++j) {
184  ecov(i, j) = cov(i, j);
185  }
186  }
187  return setMeanCov(emean, ecov);
188  }
189 
190  template<class value_type> bool MultivariateNormalGenerator::setMeanCov(
191  const ROOT::Math::XYZVector& mean, const TMatrixTBase<value_type>& cov)
192  {
193  TVectorT<value_type> tmean(3);
194  tmean[0] = mean.X();
195  tmean[1] = mean.Y();
196  tmean[2] = mean.Z();
197  return setMeanCov(tmean, cov);
198  }
200 }
Class to generate normal distributed, correlated random numbers given the mean values and the covaria...
size_t size() const
Return the number of elements to be generated on generate()
MultivariateNormalGenerator(const Eigen::VectorXd &mean, const Eigen::MatrixXd &cov)
constructor with Eigen matrix interface.
void generate(double *output) const
Generate a set of correlated random numbers with the previouly set mean and covariance and store them...
MultivariateNormalGenerator(int n, const double *mean, const double *cov)
constructor with array interface: mean and covariance are passed as double arrays where the covarianc...
Eigen::VectorXd m_mean
Member to store the mean values of the distribution.
bool setMeanCov(int n, const double *mean, const double *cov)
set the mean and covariance for the distribution with array interface: mean and covariance are passed...
Eigen::VectorXd generate() const
Generate a set of correlated random numbers with the previouly set mean and covariance.
MultivariateNormalGenerator()
default constructor to allow later initialization
void reset()
reset the generator setting the size to 0.
TVectorD generateVecT() const
Generate a set of correlated random numbers with the previouly set mean and covariance and return a T...
Eigen::MatrixXd m_transform
Member to store the transformation matrix for standard normal distributed random values.
TVector3 generateVec3() const
Generate a set of correlated random numbers with the previouly set mean and covariance and return a T...
Abstract base class for different kinds of events.