9 #include <pxd/calibration/PXDClusterPositionCalibrationAlgorithm.h>
14 #include "TMatrixDSym.h"
16 #include "TMatrixDSymEigen.h"
18 #include <boost/format.hpp>
25 PXDClusterPositionCalibrationAlgorithm::PXDClusterPositionCalibrationAlgorithm():
27 minClusterForShapeLikelyhood(500), minClusterForPositionOffset(2000), maxEtaBins(10),
29 m_clusterEta(0), m_positionOffsetU(0), m_positionOffsetV(0), m_sizeV(0),
30 m_pitchV(0), m_clusterKind(0)
33 " -------------------------- PXDClusterPositionCalibrationAlgorithm ----------------------\n"
35 " Algorithm for estimating cluster position offsets and shape likelyhoods. \n"
36 " ----------------------------------------------------------------------------------------\n"
45 auto pitchtree = getObjectPtr<TTree>(
"pitchtree");
46 pitchtree->SetBranchAddress(
"PitchV", &
m_pitchV);
49 for (
int i = 0; i < pitchtree->GetEntries(); ++i) {
50 pitchtree->GetEntry(i);
56 typedef tuple<int, int, int> bufferkey_t;
57 typedef pair<PXDClusterShapeIndexPar, PXDClusterShapeClassifierPar> buffervalue_t;
58 map<bufferkey_t, buffervalue_t> localCalibrationMap;
62 B2INFO(
"Start calibration of clusterkind=" << clusterKind <<
" ...");
64 string gridname = str(format(
"GridKind_%1%") % clusterKind);
65 auto grid = getObjectPtr<TH2F>(gridname);
67 for (
auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
68 for (
auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
71 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
72 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
75 B2INFO(
"Skip training estimator on thetaU=" << thetaU <<
", thetaV=" << thetaV);
78 B2INFO(
"Start training estimator on thetaU=" << thetaU <<
", thetaV=" << thetaV);
81 string treename = str(format(
"tree_%1%_%2%_%3%") % clusterKind % uBin % vBin);
87 bufferkey_t key = std::make_tuple(clusterKind, uBin, vBin);
88 localCalibrationMap[key] = buffervalue_t(localShapeIndexer, localShapeClassifier);
96 int globalShapeIndex = 0;
98 shapeIndexer->
addShape(*it, globalShapeIndex);
102 B2INFO(
"Number of cluster shapes is " << globalShapeIndex);
112 string gridname = str(format(
"GridKind_%1%") % clusterKind);
113 auto grid = getObjectPtr<TH2F>(gridname);
115 positionEstimator->
addGrid(clusterKind, *grid);
117 for (
auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
118 for (
auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
121 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
122 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
130 auto iter = localCalibrationMap.find(std::make_tuple(clusterKind, uBin, vBin));
131 auto localShapeIndexer = iter->second.first;
132 auto localShapeClassifer = iter->second.second;
135 auto shapeClassifier =
localToGlobal(&localShapeClassifer, &localShapeIndexer, shapeIndexer);
138 auto mirror_vBin = grid->GetYaxis()->FindBin(-thetaV);
142 B2INFO(
"Add shape classifier for angles thetaU=" << thetaU <<
", thetaV=" << thetaV <<
", clusterkind=" << clusterKind);
144 B2INFO(
"Add mirrored shape classifier for angles thetaU=" << thetaU <<
", thetaV=" << -thetaV <<
", clusterkind=" << clusterKind);
145 positionEstimator->
setShapeClassifier(mirroredClassifier, uBin, mirror_vBin, clusterKind);
153 B2INFO(
"PXDClusterPosition Calibration Successful");
166 for (
auto indexAndValue : shapeLikelyhoodMap) {
168 auto shapeIndex = indexAndValue.first;
169 auto shapeName = shapeIndexer->
getShapeName(shapeIndex);
171 auto mirroredIndex = shapeIndexer->
getShapeIndex(mirroredName);
173 mirroredShapeClassifier.addShapeLikelyhood(mirroredIndex, indexAndValue.second);
180 for (
auto indexAndValue : offsetMap) {
182 auto shapeIndex = indexAndValue.first;
183 auto shapeName = shapeIndexer->
getShapeName(shapeIndex);
185 auto mirroredIndex = shapeIndexer->
getShapeIndex(mirroredName);
187 mirroredShapeClassifier.addShape(mirroredIndex);
190 for (
auto offset : indexAndValue.second) {
192 auto percentile = percentileMap[shapeIndex][etaBin];
193 mirroredShapeClassifier.addEtaPercentile(mirroredIndex, percentile);
195 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
196 mirroredShapeClassifier.addEtaLikelyhood(mirroredIndex, likelyhood);
199 auto mirroredOffset =
PXDClusterOffsetPar(offset.getU(), shift - offset.getV(), offset.getUSigma2(), offset.getVSigma2(),
200 -offset.getUVCovariance());
201 mirroredShapeClassifier.addEtaOffset(mirroredIndex, mirroredOffset);
206 return mirroredShapeClassifier;
217 for (
auto indexAndValue : shapeLikelyhoodMap) {
219 auto shapeIndex = indexAndValue.first;
220 auto shapeName = shapeIndexer->
getShapeName(shapeIndex);
221 auto globalIndex = globalShapeIndexer->
getShapeIndex(shapeName);
223 globalShapeClassifier.addShapeLikelyhood(globalIndex, indexAndValue.second);
230 for (
auto indexAndValue : offsetMap) {
232 auto shapeIndex = indexAndValue.first;
233 auto shapeName = shapeIndexer->
getShapeName(shapeIndex);
234 auto globalIndex = globalShapeIndexer->
getShapeIndex(shapeName);
236 globalShapeClassifier.addShape(globalIndex);
239 for (
auto offset : indexAndValue.second) {
241 auto percentile = percentileMap[shapeIndex][etaBin];
242 globalShapeClassifier.addEtaPercentile(globalIndex, percentile);
244 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
245 globalShapeClassifier.addEtaLikelyhood(globalIndex, likelyhood);
247 globalShapeClassifier.addEtaOffset(globalIndex, offset);
251 return globalShapeClassifier;
258 auto tree = getObjectPtr<TTree>(treename);
260 const auto nEntries = tree->GetEntries();
261 B2INFO(
"Number of clusters is " << nEntries);
266 tree->SetBranchAddress(
"ShapeName", &shapeNamePtr);
267 tree->SetBranchAddress(
"MirroredShapeName", &mirroredShapeNamePtr);
271 tree->SetBranchAddress(
"SizeV", &
m_sizeV);
275 vector< pair<string, float> > shapeList;
277 for (
int i = 0; i < nEntries; ++i) {
282 auto it = std::find_if(shapeList.begin(), shapeList.end(),
283 [&](
const pair<string, float>& element) { return element.first == shapeName;});
286 if (it != shapeList.end()) {
293 shapeList.push_back(pair<string, int>(shapeName, 1));
305 vector< pair<string, TH1D> > etaHistos;
311 double coverage = 0.0;
313 for (
auto iter : shapeList) {
314 auto name = iter.first;
315 auto counter = iter.second;
317 double likelyhood = counter / nEntries;
321 shapeIndexer->
addShape(name, tmpIndex);
333 coverage += likelyhood;
334 string etaname = str(format(
"eta_%1%") % name);
337 if (name ==
"SD0.0") {
338 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 255, 0, 255);
339 etaHisto.SetDirectory(0);
340 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
344 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 301, 0, 1);
345 etaHisto.SetDirectory(0);
346 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
351 B2INFO(
"Offset coverage is " << 100 * coverage <<
"%");
356 for (
int i = 0; i < nEntries; ++i) {
360 auto it = std::find_if(etaHistos.begin(), etaHistos.end(),
361 [&](
const pair<string, TH1D>& element) { return element.first == shapeName;});
363 if (it != etaHistos.end()) {
370 vector< pair< string, vector<TH2D> > > offsetHistosVec;
372 for (
auto iter : etaHistos) {
373 auto name = iter.first;
374 auto& histo = iter.second;
375 int nClusters = histo.GetEntries();
379 shapeClassifier->
addShape(shapeIndex);
387 vector< TH2D > offsetHistos;
389 for (
int i = 0; i < nEtaBins; i++) {
391 double xq = double(i) / nEtaBins;
394 histo.GetQuantiles(1, &yq, &xq);
398 string offsetname = str(format(
"offset_%1%_%2%") % name % i);
399 TH2D offsetHisto(offsetname.c_str(), offsetname.c_str(), 1, 0, 1, 1, 0, 1);
400 offsetHisto.SetDirectory(0);
401 offsetHisto.StatOverflows();
402 offsetHistos.push_back(offsetHisto);
405 offsetHistosVec.push_back(pair<
string, vector<TH2D> >(name, offsetHistos));
410 for (
int i = 0; i < nEntries; ++i) {
414 auto it = std::find_if(offsetHistosVec.begin(), offsetHistosVec.end(),
415 [&](
const pair<
string, vector<TH2D>>& element) { return element.first == shapeName;});
417 if (it != offsetHistosVec.end()) {
427 for (
auto iter : offsetHistosVec) {
428 auto name = iter.first;
429 auto& histovec = iter.second;
434 for (
auto& histo : histovec) {
436 double etaLikelyhood = double(histo.GetEntries()) / nEntries;
437 double offsetU = histo.GetMean(1);
438 double offsetV = histo.GetMean(2);
439 double covUV = histo.GetCovariance();
440 double covU = pow(histo.GetRMS(1), 2);
441 double covV = pow(histo.GetRMS(2), 2);
443 B2INFO(
"Name " << name <<
", posU=" << offsetU <<
", posV=" << offsetV <<
", covU=" << covU <<
", covV=" << covV <<
", covUV=" <<
446 TMatrixDSym HitCov(2);
448 HitCov(1, 0) = covUV;
449 HitCov(0, 1) = covUV;
452 TMatrixDSymEigen HitCovE(HitCov);
453 TVectorD eigenval = HitCovE.GetEigenValues();
454 if (eigenval(0) <= 0 || eigenval(1) <= 0) {
455 B2ERROR(
"Estimated covariance matrix not positive definite.");
464 B2INFO(
"Added shape classifier with coverage " << 100 * coverage <<
"% on training data sample.");
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
The class for PXD cluster position offset payload.
float m_clusterEta
Eta value of cluster.
void createShapeClassifier(std::string treename, PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer)
Returns a new classifier and index trained on cluster tree.
float m_positionOffsetU
Position offset u of cluster.
std::string m_mirroredShapeName
Name of mirrored cluster shape.
std::vector< int > clusterKinds
Vector of clusterkinds to calibrate.
std::string m_shapeName
Branches for tree.
PXDClusterShapeClassifierPar mirrorShapeClassifier(PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer, int clusterKind)
Returns a mirrored version of shape classifier.
PXDClusterShapeClassifierPar localToGlobal(PXDClusterShapeClassifierPar *localShapeClassifier, PXDClusterShapeIndexPar *localShapeIndexer, PXDClusterShapeIndexPar *globalShapeIndexer)
Returns a shape classifier using global shape indices instead of local ones.
float m_pitchV
Branches for pitchtree.
std::map< std::string, int > m_sizeMap
Helper needed to map the name of a shape to the V size of the cluster.
float m_positionOffsetV
Position offset v of cluster.
int m_clusterKind
Pitch in V.
int maxEtaBins
Maximum number of eta bins for estimating cluster position offsets.
int minClusterForPositionOffset
Minimum number of collected clusters for estimating cluster position offsets.
int minClusterForShapeLikelyhood
Minimum number of collected clusters for estimating shape likelyhood.
virtual EResult calibrate() override
Run algo on data.
std::map< int, float > m_pitchMap
Helper needed to map the clusterkind to the V pitch of the sensor.
std::set< std::string > m_shapeSet
Set of unique shape names.
std::map< std::string, std::string > m_mirrorMap
Helper needed to map the name of a shape to the name of the mirrored shape.
The class for PXD cluster position lookup table payload.
void setShapeClassifier(const PXDClusterShapeClassifierPar &classifier, int uBin, int vBin, int clusterkind)
Set shape classifier.
void addGrid(int clusterkind, const TH2F &grid)
Add grid for clusterkind.
The class for PXD cluster shape classifier payload.
const std::map< int, std::vector< float > > & getPercentilesMap() const
Return percentiles map for position correction.
void addShapeLikelyhood(int shape_index, float likelyhood)
Add shape likelyhood.
const std::map< int, float > & getShapeLikelyhoodMap() const
Return shape likelyhood map
void addEtaLikelyhood(int shape_index, float likelyhood)
Add eta likelyhood to shape for position correction.
void addEtaPercentile(int shape_index, float percentile)
Add eta percentile to shape for position correction.
unsigned int getEtaIndex(int shape_index, float eta) const
Get eta index for position correction.
const std::map< int, std::vector< float > > & getLikelyhoodMap() const
Return likelyhood map for position correction.
void addShape(int shape_index)
Add shape for position correction.
const std::map< int, std::vector< PXDClusterOffsetPar > > & getOffsetMap() const
Return offset map for position correction.
void addEtaOffset(int shape_index, PXDClusterOffsetPar &offset)
Add offset to shape for position correction.
The class for PXD cluster shape index payload.
int getShapeIndex(const std::string &name) const
Returns shape index from name.
void addShape(const std::string &name, int index)
Add shape with name and index
const std::string & getShapeName(int index) const
Returns shape name from index.
Abstract base class for different kinds of events.