Belle II Software  release-08-01-10
XTCalibrationAlgorithm Class Reference

Class to perform xt calibration for drift chamber. More...

#include <XTCalibrationAlgorithm.h>

Inheritance diagram for XTCalibrationAlgorithm:
Collaboration diagram for XTCalibrationAlgorithm:

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 XTCalibrationAlgorithm ()
 Constructor.
 
 ~XTCalibrationAlgorithm ()
 Destructor.
 
void setBField (bool bfield)
 set to use BField
 
void setDebug (bool debug=false)
 Run in debug or silent.
 
void setMinimumNDF (double ndf)
 set minimum number of degree of freedom requirement
 
void setMinimumPval (double pval)
 set minimum Prob(Chi2) requirement
 
void setXtMode (unsigned short mode=c_Chebyshev)
 set xt mode, 0 is polynimial, 1 is Chebshev polynomial
 
void setStoreHisto (bool storeHist=false)
 set to store histogram or not.
 
void enableTextOutput (bool output=true)
 Enable text output of calibration result.
 
void setOutputFileName (std::string outputname)
 output file name
 
void setHistFileName (const std::string &name)
 Set name for histogram output.
 
void setLRSeparate (bool lr=true)
 Set LR separate mode (default is true).
 
void setThreshold (double th=0.6)
 Set threshold for the fraction of fitted results.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type. More...
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun. More...
 
std::string getCollectorName () const
 Alias for prefix. More...
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list. More...
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration. More...
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algoithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The rturn bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

EResult calibrate () override
 Run algo on data.
 
void createHisto ()
 Create histogram for calibration.
 
void write ()
 Store calibrated constand.
 
void storeHisto ()
 Store histogram to file.
 
void prepare ()
 Prepare the calibration of XT.
 
EResult checkConvergence ()
 Check the convergence of XT fit.
 
void sanitaryCheck ()
 Check if there are any wrong xt functions.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm. More...
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used interally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

double m_minNdf = 5
 minimum ndf required
 
double m_minPval = 0.
 minimum pvalue required
 
bool m_debug = false
 run in debug or silent
 
bool m_storeHisto = true
 Store histogram or not.
 
bool m_LRseparate = true
 Separate LR in calibration or mix.
 
bool m_bField = true
 with b field or none
 
double m_threshold = 0.6
 minimal requirement for the fraction of fitted results
 
TProfile * m_hProf [56][2][20][10]
 Profile xt histo.
 
TH2F * m_hist2d [56][2][20][10]
 2D histo of xt
 
TH2F * m_hist2dDraw [56][20][10]
 2d histo for draw
 
TH1F * m_hist2d_1 [56][2][20][10]
 1D xt histo, results of slice fit
 
TF1 * m_xtFunc [56][2][20][10]
 XTFunction.
 
double m_xtPrior [56][2][18][7][8]
 paremeters of XT before calibration
 
int m_fitStatus [56][2][20][10]
 Fit flag.
 
bool m_useSliceFit = false
 Use slice fit or profile.
 
int m_minEntriesRequired = 5000
 minimum number of hit per hitosgram.
 
int m_nAlphaBins
 number of alpha bins
 
int m_nThetaBins
 number of theta bins
 
int m_xtMode = c_Chebyshev
 Mode of xt; 0 is polynomial;1 is Chebyshev.
 
int m_xtModePrior
 Mode of xt before calibration; 0 is polynomial;1 is Chebyshev.
 
float m_lowerAlpha [18]
 Lower boundays of alpha bins.
 
float m_upperAlpha [18]
 Upper boundays of alpha bins.
 
float m_iAlpha [18]
 Represented alpha in alpha bins.
 
float m_lowerTheta [7]
 Lower boundays of theta bins.
 
float m_upperTheta [7]
 Upper boundays of theta bins.
 
float m_iTheta [7]
 Represented theta in theta bins.
 
double m_par6 [56]
 boundary parameter for fitting, semi-experiment number More...
 
bool m_textOutput = false
 output text file if true
 
std::string m_outputFileName = "xt_new.dat"
 Output xt filename.
 
std::string m_histName = "histXT.root"
 root file name
 
DBObjPtr< CDCGeometrym_cdcGeo
 Geometry of CDC.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class to perform xt calibration for drift chamber.

Definition at line 51 of file XTCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfuly =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

Member Function Documentation

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

◆ execute()

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorihtm.

Definition at line 164 of file CalibrationAlgorithm.h.

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

Member Data Documentation

◆ m_par6

double m_par6[56]
private
Initial value:
= {89, 91, 94, 99, 104, 107, 110, 117,
126, 144, 150, 157, 170, 180,
160, 167, 183, 205, 200, 194,
177, 189, 192, 206, 224, 234,
193, 206, 209, 215, 222, 239,
204, 212, 217, 227, 235, 240,
215, 222, 230, 239, 246, 253,
227, 232, 239, 243, 253, 258,
231, 243, 246, 256, 263, 300
}

boundary parameter for fitting, semi-experiment number

Definition at line 146 of file XTCalibrationAlgorithm.h.


The documentation for this class was generated from the following files: