Belle II Software  release-08-01-10
ECLBhabhaTCollectorModule Class Reference

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events. More...

#include <ECLBhabhaTCollectorModule.h>

Inheritance diagram for ECLBhabhaTCollectorModule:
Collaboration diagram for ECLBhabhaTCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLBhabhaTCollectorModule ()
 Module constructor.
 
virtual ~ECLBhabhaTCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 StoreArray for tracks.
 
std::unique_ptr< Belle2::ECL::ECLChannelMapperm_crystalMapper
 ECL object for keeping track of mapping between crystals and crates etc. More...
 
StoreObjPtr< SoftwareTriggerResultm_TrgResult
 Store array for Trigger selection.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
DBObjPtr< ECLCrystalCalibm_ElectronicsDB
 electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps More...
 
std::vector< float > m_Electronics
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsTimeDB
 Time offset from electronics calibration from database. More...
 
std::vector< float > m_ElectronicsTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_FlightTimeDB
 Time offset from flight time b/w IP and crystal from database. More...
 
std::vector< float > m_FlightTime
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_PreviousCrystalTimeDB
 Time offset from previous crystal time calibration (this calibration) from database. More...
 
std::vector< float > m_PreviousCrystalTime
 vector obtained from DB object
 
std::vector< float > m_PreviousCrystalTimeUnc
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 Time offset from crate time calibration (also this calibration) from database. More...
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
DBObjPtr< ECLReferenceCrystalPerCrateCalibm_RefCrystalsCalibDB
 Crystal IDs of the one reference crystal per crate from database. More...
 
std::vector< short > m_RefCrystalsCalib
 vector obtained from DB object
 
DBObjPtr< Belle2::ECLChannelMapm_channelMapDB
 Mapper of ecl channels to various other objects, like crates. More...
 
TTree * m_dbgTree_electrons = nullptr
 Output tree with detailed event data. More...
 
TTree * m_dbgTree_tracks = nullptr
 Debug TTree output per track.
 
TTree * m_dbgTree_crystals = nullptr
 Debug TTree output per crystal.
 
TTree * m_dbgTree_event = nullptr
 Debug TTree output per event.
 
TTree * m_dbgTree_allCuts = nullptr
 Debug TTree output after all cuts.
 
TTree * m_dbgTree_evt_allCuts = nullptr
 Debug TTree output per event after all cuts.
 
TTree * m_dbgTree_crys_allCuts = nullptr
 Debug TTree output per crystal after all cuts.
 
int m_tree_evtNum = intNaN
 Event number for debug TTree output.
 
int m_tree_cid = intNaN
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
int m_tree_amp = intNaN
 Fitting amplitude from ECL for debug TTree output.
 
double m_tree_en = realNaN
 Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
 
double m_tree_E1Etot = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy, unitless for debug TTree output.
 
double m_tree_E1E2 = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in the cluster, unitless for debug TTree output.
 
double m_tree_E1p = realNaN
 Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by the track momentum, unitless for debug TTree output.
 
int m_tree_quality = intNaN
 ECL fit quality for debug TTree output.
 
double m_tree_timeF = realNaN
 ECL fitting time for debug TTree output.
 
double m_tree_time = realNaN
 Time for Ts distribution for debug TTree output.
 
double m_tree_timetsPreviousTimeCalibs = realNaN
 Time for Ts distribution after application of previous time calibrations for debug TTree output.
 
double m_tree_t0 = realNaN
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = realNaN
 EventT0 uncertainty for debug TTree output.
 
double m_tree_t0_ECLclosestCDC = realNaN
 EventT0 (from ECL) closest to CDC for debug TTree output.
 
double m_tree_t0_ECL_minChi2 = realNaN
 EventT0 (from ECL) min chi2 for debug TTree output.
 
double m_tree_d0 = realNaN
 Track d0 for debug TTree output.
 
double m_tree_z0 = realNaN
 Track z0 for debug TTree output.
 
double m_tree_p = realNaN
 Track momentum for debug TTree output.
 
double m_tree_nCDChits = realNaN
 Number of CDC hits along the track for debug TTree output.
 
double m_tree_clustCrysE_DIV_maxEcrys = realNaN
 ratio of crystal energy to energy of the crystal that has the maximum energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_clustCrysE = realNaN
 crystal energy, only for the crystals that meet all the selection criteria for debug TTree output
 
double m_tree_enPlus = realNaN
 Energy of cluster associated to positively charged track, GeV for debug TTree output.
 
double m_tree_enNeg = realNaN
 Energy of cluster associated to negatively charged track, GeV for debug TTree output.
 
double m_tree_tClustPos = realNaN
 Cluster time of cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_tClustNeg = realNaN
 Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystPosClust = realNaN
 Time of the highest energy crystal in the cluster associated to positively charged track, ns for debug TTree output.
 
double m_tree_maxEcrystNegClust = realNaN
 Time of the highest energy crystal in the cluster associated to negatively charged track, ns for debug TTree output.
 
double m_tree_tClust = realNaN
 Cluster time of a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitTime = realNaN
 Time of an ECLCalDigit within a cluster, ns for debug TTree output.
 
double m_tree_ECLCalDigitE = realNaN
 Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
 
double m_tree_ECLDigitAmplitude = realNaN
 Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
 
int m_charge = intNaN
 particle charge, for debug TTree output
 
double m_E_DIV_p = realNaN
 Energy divided by momentum, for debug TTree output.
 
double m_massInvTracks = realNaN
 invariant mass of the two tracks, for debug TTree output
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
std::vector< float > m_EperCrys
 ECL cal digit energy for each crystal.
 
std::vector< int > m_eclCalDigitID
 ECL cal digit id sorter.
 
std::vector< int > m_eclDigitID
 ECL digit id sorter.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
int m_minCrystal = intNaN
 First CellId to handle.
 
int m_maxCrystal = intNaN
 Last CellId to handle.
 
double m_looseTrkZ0 = realNaN
 Loose track z0 minimum cut.
 
double m_tightTrkZ0 = realNaN
 Tight track z0 minimum cut.
 
double m_looseTrkD0 = realNaN
 Loose track d0 minimum cut.
 
double m_tightTrkD0 = realNaN
 Tight track d0 minimum cut.
 
int m_crystalCrate = intNaN
 Crate id for the crystal.
 
int m_runNum = intNaN
 run number
 
bool m_storeCalib = true
 Boolean for whether or not to store the previous calibration calibration constants.
 
std::unique_ptr< Belle2::ECL::ECLTimingUtilitiesm_ECLTimeUtil
 ECL timing tools. More...
 
double m_hadronEventT0_TO_bhabhaEventT0_correction
 correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared to CDC event t0 in hadronic events in ns
 
bool skipTrgSel
 flag to skip the trigger skim selection in the module
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates time vs crystal 2D histograms to later (in eclBhabhaTAlgorithm) find time crystal/crate offsets from bhabha events.

Definition at line 47 of file ECLBhabhaTCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

Store the crystal cell id of those being used as the reference crystals for ts. One crystal per crate is defined as having ts=0. This histogram only keeps track of the crystal id, not the crate id. The talg can figure out to which crate to associate the crystal.

Record the input database constants

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 319 of file ECLBhabhaTCollectorModule.cc.

320 {
321  int cutIndexPassed = 0;
322  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
323  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
324  B2DEBUG(22, "Event number = " << m_EventMetaData->getEvent());
325 
326 
327  // --- Check the trigger skim is the type that has two tracks
328 
329  /* If we skip the trigger skim selection then still fill the cutflow histogram
330  just so that the positions don't change. */
331  if (!skipTrgSel) {
332  if (!m_TrgResult.isValid()) {
333  B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
334  return;
335  }
336 
337  /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
338  to look at the 2 track bhabha events. */
339  const std::map<std::string, int>& fresults = m_TrgResult->getResults();
340  if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
341  B2WARNING("Can't find required bhabha trigger identifier");
342  return;
343  }
344 
345  const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
347  B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
348 
349  if (!eBhabha) {
350  return;
351  }
352  }
353 
354  /* Fill the histgram showing that the trigger skim cut passed OR that we
355  are skipping this selection. */
356  cutIndexPassed++;
357  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
358  B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
359 
360 
361 
362  /* Use ECLChannelMapper to get other detector indices for the crystals
363  For conversion from CellID to crate, shaper, and channel ids.
364  The initialization function automatically checks to see if the
365  object has been initialized and ifthe payload has changed and
366  thus needs updating. */
367  bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
368  if (ECLchannelMapHasChanged) {
369  B2INFO("ECLBhabhaTCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged", ECLchannelMapHasChanged));
370  if (!m_crystalMapper->initFromDB()) {
371  B2FATAL("ECLBhabhaTCollectorModule::collect() : Can't initialize eclChannelMapper!");
372  }
373  }
374 
375 
376  //== Get expected energies and calibration constants from DB. Need to call
377  // hasChanged() for later comparison
378  if (m_ElectronicsDB.hasChanged()) {
379  m_Electronics = m_ElectronicsDB->getCalibVector();
380  }
381  if (m_ElectronicsTimeDB.hasChanged()) {
382  m_ElectronicsTime = m_ElectronicsTimeDB->getCalibVector();
383  }
384  if (m_FlightTimeDB.hasChanged()) {
385  m_FlightTime = m_FlightTimeDB->getCalibVector();
386  }
387 
388  // Get the previous crystal time offset (the same thing that this calibration is meant to calculate).
389  // This can be used for testing purposes, and for the crate time offset.
390  if (m_PreviousCrystalTimeDB.hasChanged()) {
392  m_PreviousCrystalTimeUnc = m_PreviousCrystalTimeDB->getCalibUncVector();
393  }
394 
395  B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
396  if (m_CrateTimeDB.hasChanged()) {
397  m_CrateTime = m_CrateTimeDB->getCalibVector();
398  m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
399  }
400  B2DEBUG(29, "Finished checking if previous crate time payload has changed");
401  B2DEBUG(29, "m_CrateTime size = " << m_CrateTime.size());
402  B2DEBUG(25, "Crate time +- uncertainty [0]= " << m_CrateTime[0] << " +- " << m_CrateTimeUnc[0]);
403  B2DEBUG(25, "Crate time +- uncertainty [8735]= " << m_CrateTime[8735] << " +- " << m_CrateTimeUnc[8735]);
404 
405  B2DEBUG(29, "Finished checking if previous crate time payload has changed");
406  if (m_RefCrystalsCalibDB.hasChanged()) {
407  m_RefCrystalsCalib = m_RefCrystalsCalibDB->getReferenceCrystals();
408  }
409  B2DEBUG(29, "Finished checking if reference crystal cell ids payload has changed");
410 
411 
412  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalTimeOffset from the database"
413  << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
414  << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
415  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrateTimeOffset from the database"
416  << LogVar("IoV", m_CrateTimeDB.getIoV())
417  << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
418  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronics from the database"
419  << LogVar("IoV", m_ElectronicsDB.getIoV())
420  << LogVar("Checksum", m_ElectronicsDB.getChecksum()));
421  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalElectronicsTime from the database"
422  << LogVar("IoV", m_ElectronicsTimeDB.getIoV())
423  << LogVar("Checksum", m_ElectronicsTimeDB.getChecksum()));
424  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLCrystalFlightTime from the database"
425  << LogVar("IoV", m_FlightTimeDB.getIoV())
426  << LogVar("Checksum", m_FlightTimeDB.getChecksum()));
427  B2DEBUG(25, "ECLBhabhaTCollector:: loaded ECLReferenceCrystalPerCrateCalib from the database"
428  << LogVar("IoV", m_RefCrystalsCalibDB.getIoV())
429  << LogVar("Checksum", m_RefCrystalsCalibDB.getChecksum()));
430 
431 
432 
433  // Conversion coefficient from ADC ticks to nanoseconds
434  // TICKS_TO_NS ~ 0.4913 ns/clock tick
435  // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
436  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
437 
438 
439  vector<float> Crate_time_ns(52, 0.0);
441  // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
442  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
443  int crateID_temp = m_crystalMapper->getCrateID(crysID);
444  Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
445  }
446 
447 
448 
454  for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
455  getObjectPtr<TH1F>("refCrysIDzeroingCrate")->Fill(m_RefCrystalsCalib[crateID_temp - 1] + 0.001);
456  }
457 
458 
460  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
461  getObjectPtr<TH1F>("TsDatabase")->SetBinContent(crysID + 0.001, m_PreviousCrystalTime[crysID - 1]);
462  getObjectPtr<TH1F>("TsDatabaseUnc")->SetBinContent(crysID + 0.001, m_PreviousCrystalTimeUnc[crysID - 1]);
463  getObjectPtr<TH1F>("TcrateDatabase")->SetBinContent(crysID + 0.001, m_CrateTime[crysID - 1]);
464  getObjectPtr<TH1F>("TcrateUncDatabase")->SetBinContent(crysID + 0.001, m_CrateTimeUnc[crysID - 1]);
465  }
466  if (m_storeCalib) {
467  B2INFO("ECLBhabhaTCollector:: ECLCrystalTimeOffset from the database information:"
468  << LogVar("IoV", m_PreviousCrystalTimeDB.getIoV())
469  << LogVar("Checksum", m_PreviousCrystalTimeDB.getChecksum()));
470  B2INFO("First event so print out previous ts values");
471  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
472  B2INFO("cid = " << crysID << ", Ts previous = " << m_PreviousCrystalTime[crysID - 1]);
473  }
474  m_storeCalib = false;
475  }
476 
477 
478 
479 
480  for (int crateID_temp = 1; crateID_temp <= 52; crateID_temp++) {
481  getObjectPtr<TH1F>("tcrateDatabase_ns")->SetBinContent(crateID_temp + 0.001, Crate_time_ns[crateID_temp - 1]);
482  }
483 
484  // Use a histogram with only one bin as a counter to know the number of times the database histograms were filled.
485  // This is mostly useful for the talg when running over multiple runs and trying to read ts values.
486  getObjectPtr<TH1I>("databaseCounter")->SetBinContent(1, 1);
487 
488 
489 
490  // Save what CDC event t0 correction was applied
491  getObjectPtr<TH1F>("CDCEventT0Correction")->SetBinContent(1, m_hadronEventT0_TO_bhabhaEventT0_correction);
492 
493 
494 
495 
496  /* Getting the event t0 using the full event t0 rather than from the CDC specifically */
497  double evt_t0 = -1;
498  double evt_t0_unc = -1;
499  double evt_t0_ECL_closestCDC = -1;
500  double evt_t0_ECL_minChi2 = -1;
501 
502  // Determine if there is an event t0 to use and then extract the information about it
503  if (!m_eventT0.isValid()) {
504  //cout << "event t0 not valid\n";
505  return;
506  } else if (!m_eventT0->hasTemporaryEventT0(Const::EDetector::CDC)) {
507  //cout << "no event t0\n";
508  return;
509  } else {
510  // Event has a t0 from CDC
511  cutIndexPassed++;
512  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
513  B2DEBUG(22, "Cutflow: Event t0 exists: index = " << cutIndexPassed);
514 
515 
516  // Get event t0 from CDC. We don't want event t0 from ECL as we are calibrating the ECL wrt the more accurately measured time measurements of the time. Start with the CDC since it has an event t0 but in the future we may switch to the TOP detector.
517  // Based on the information from Thomas Hauth <Thomas.Hauth@kit.edu> (leaving physics) we should take the last event t0 in the list of event t0's from the CDC as the later event t0 measurements are calculated in slower but more accurate ways.
518  const auto bestCDCEventT0Candidate = m_eventT0->getBestCDCTemporaryEventT0();
519  evt_t0 = bestCDCEventT0Candidate->eventT0; // time value
520  evt_t0_unc = bestCDCEventT0Candidate->eventT0Uncertainty; // uncertainty on event t0
521 
522 
523  // Correct the CDC event t0 value for the bhabha bias
524  evt_t0 = evt_t0 + m_hadronEventT0_TO_bhabhaEventT0_correction; // Bias not yet fixed in CDC t0 reco.
525 
526 
527  // Get the ECL event t0 for comparison - validations
528  if (m_eventT0->hasTemporaryEventT0(Const::EDetector::ECL)) {
529  vector<EventT0::EventT0Component> evt_t0_list_ECL = m_eventT0->getTemporaryEventT0s(Const::EDetector::ECL);
530 
531 
532  double smallest_CDC_ECL_t0_diff = fabs(evt_t0_list_ECL[0].eventT0 - evt_t0);
533  int smallest_CDC_ECL_t0_diff_idx = 0;
534  for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
535  double tempt_ECL_t0 = evt_t0_list_ECL[ECLi].eventT0;
536  if (fabs(tempt_ECL_t0 - evt_t0) < smallest_CDC_ECL_t0_diff) {
537  smallest_CDC_ECL_t0_diff = fabs(tempt_ECL_t0 - evt_t0);
538  smallest_CDC_ECL_t0_diff_idx = ECLi;
539  }
540  }
541 
542  evt_t0_ECL_closestCDC = evt_t0_list_ECL[smallest_CDC_ECL_t0_diff_idx].eventT0; // time value
543  B2DEBUG(26, "evt_t0_ECL_closestCDC = " << evt_t0_ECL_closestCDC);
544 
545 
546 
547  double smallest_ECL_t0_minChi2 = evt_t0_list_ECL[0].quality;
548  int smallest_ECL_t0_minChi2_idx = 0;
549 
550  B2DEBUG(26, "evt_t0_list_ECL[0].quality = " << evt_t0_list_ECL[0].quality
551  << ", with ECL event t0 = " << evt_t0_list_ECL[0].eventT0);
552 
553  for (long unsigned int ECLi = 0; ECLi < evt_t0_list_ECL.size(); ECLi++) {
554  B2DEBUG(26, "evt_t0_list_ECL[" << ECLi << "].quality = " << evt_t0_list_ECL[ECLi].quality
555  << ", with ECL event t0 = " <<
556  evt_t0_list_ECL[ECLi].eventT0);
557  if (evt_t0_list_ECL[ECLi].quality < smallest_ECL_t0_minChi2) {
558  smallest_ECL_t0_minChi2 = evt_t0_list_ECL[ECLi].quality;
559  smallest_ECL_t0_minChi2_idx = ECLi;
560  }
561  }
562 
563  evt_t0_ECL_minChi2 = evt_t0_list_ECL[smallest_ECL_t0_minChi2_idx].eventT0; // time value
564 
565  B2DEBUG(26, "evt_t0_ECL_minChi2 = " << evt_t0_ECL_minChi2);
566  B2DEBUG(26, "smallest_ECL_t0_minChi2_idx = " << smallest_ECL_t0_minChi2_idx);
567  }
568  }
569 
570 
571 
572  /* Determine the energies for each of the crystals since this isn't naturally connected to the cluster.
573  Also determine the indexing of the ecl cal digits and the ecl digits
574  Taken from Chris's ec/modules/eclGammaGammaECollector */
575 
576  // Resize vectors
580 
581 
582  int idx = 0;
583  for (auto& eclCalDigit : m_eclCalDigitArray) {
584  int tempCrysID = eclCalDigit.getCellId() - 1;
585  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
586  m_eclCalDigitID[tempCrysID] = idx;
587  idx++;
588  }
589 
590  idx = 0;
591  for (auto& eclDigit : m_eclDigitArray) {
592  int tempCrysID = eclDigit.getCellId() - 1;
593  m_eclDigitID[tempCrysID] = idx;
594  idx++;
595  }
596 
597 
598 
599 
600  //---------------------------------------------------------------------
601  //..Some utilities
602  PCmsLabTransform boostrotate;
603 
604  //---------------------------------------------------------------------
605  //..Track properties, including 2 maxp tracks. Use pion (211) mass hypothesis,
606  // which is the only particle hypothesis currently available???
607  double maxp[2] = {0., 0.};
608  int maxiTrk[2] = { -1, -1};
609  int nTrkAll = tracks.getEntries();
610 
611  int nTrkLoose = 0;
612  int nTrkTight = 0;
614  /* Loop over all the tracks to define the tight and loose selection tracks.
615  We will select events with only 2 tight tracks and no additional loose tracks.
616  Tight tracks are a subset of looses tracks. */
617  for (int iTrk = 0; iTrk < nTrkAll; iTrk++) {
618  // Get track biasing towards the particle being a pion based on what particle types
619  // are used for reconstruction at this stage.
620  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
621  if (not tempTrackFit) {continue;}
622 
623  // Collect track info to be used for categorizing
624  short charge = tempTrackFit->getChargeSign();
625  double z0 = tempTrackFit->getZ0();
626  double d0 = tempTrackFit->getD0();
627  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits();
628  double p = tempTrackFit->getMomentum().R();
629 
630  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
631  //== Save debug TTree with detailed information if necessary.
632  m_tree_d0 = d0;
633  m_tree_z0 = z0;
634  m_tree_p = p;
635  m_charge = charge;
636  m_tree_nCDChits = nCDChits;
637 
638  if (m_saveTree) {
639  m_dbgTree_tracks->Fill();
640  }
641  //<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
642 
643 
644  /* Test if loose track */
645 
646  // d0 and z0 cuts
647  if (fabs(d0) > m_looseTrkD0) {
648  continue;
649  }
650  if (fabs(z0) > m_looseTrkZ0) {
651  continue;
652  }
653  // Number of hits in the CDC
654  if (nCDChits < 1) {
655  continue;
656  }
657  nTrkLoose++;
658 
659 
660 
661  /* Test if the loose track is also a tight track */
662 
663  // Number of hits in the CDC
664  if (nCDChits < 20) {
665  continue;
666  }
667 
668 
669  // d0 and z0 cuts
670  if (fabs(d0) > m_tightTrkD0) {
671  continue;
672  }
673  if (fabs(z0) > m_tightTrkZ0) {
674  continue;
675  }
676  nTrkTight++;
677 
678  // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
679  //..Find the maximum p negative [0] and positive [1] tracks
680  int icharge = 0;
681  if (charge > 0) {icharge = 1;}
682  if (p > maxp[icharge]) {
683  maxp[icharge] = p;
684  maxiTrk[icharge] = iTrk;
685  }
686 
687  }
688  /* After that last section the numbers of loose and tight tracks are known as well as the
689  index of the loose tracks that have the highest p negatively charged and highest p positively
690  charged tracks as measured in the centre of mass frame */
691 
692 
693  if (nTrkTight != 2) {
694  return;
695  }
696  // There are exactly two tight tracks
697  cutIndexPassed++;
698  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
699  B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
700 
701 
702  if (nTrkLoose != 2) {
703  return;
704  }
705  // There are exactly two loose tracks as well, i.e. no additional loose tracks
706  cutIndexPassed++;
707  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
708  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed);
709 
710  /* Determine if the two tracks have the opposite electric charge.
711  We know this because the track indices stores the max pt track in [0] for negatively charged track
712  and [1] fo the positively charged track. If both are filled then both a negatively charged
713  and positively charged track were found. */
714  bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
715  if (!oppositelyChargedTracksPassed) {
716  return;
717  }
718  // The two tracks have the opposite electric charges.
719  cutIndexPassed++;
720  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
721  B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
722 
723 
724 
725 
726  //---------------------------------------------------------------------
727  /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
728  multiple clusters to each track and find the crystal with the maximum energy within all
729  the sets of clusters associated to the tracks*/
730  double trkEClustLab[2] = {0., 0.};
731  double trkEClustCOM[2] = {0., 0.};
732  double trkpLab[2];
733  double trkpCOM[2];
734  ROOT::Math::PxPyPzEVector trkp4Lab[2];
735  ROOT::Math::PxPyPzEVector trkp4COM[2];
736 
737  // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
738  int crysIDMax[2] = { -1, -1 };
739  double crysEMax[2] = { -1, -1 };
740  double crysE2Max[2] = { -1, -1 };
741  int numClustersPerTrack[2] = { 0, 0 };
742 
743  double clusterTime[2] = {0, 0};
744 
745  double E_DIV_p[2];
746 
747  vector<double> time_ECLCaldigits_bothClusters;
748  vector<int> cid_ECLCaldigits_bothClusters;
749  vector<double> E_ECLCaldigits_bothClusters;
750  vector<double> amp_ECLDigits_bothClusters;
751  vector<int> chargeID_ECLCaldigits_bothClusters;
752 
753  for (int icharge = 0; icharge < 2; icharge++) {
754  if (maxiTrk[icharge] > -1) {
755  B2DEBUG(22, "looping over the 2 max pt tracks");
756 
757  const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
758  if (not tempTrackFit) {continue;}
759  trkp4Lab[icharge] = tempTrackFit->get4Momentum();
760  trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
761  trkpLab[icharge] = trkp4Lab[icharge].P();
762  trkpCOM[icharge] = trkp4COM[icharge].P();
763 
764 
765  /* For each cluster associated to the current track, sum up the energies to get the total
766  energy of all clusters associated to the track and find which crystal has the highest
767  energy from all those clusters*/
768  auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
769  for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
770 
771  B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
772  auto cluster = eclClusterRelationsFromTracks[clusterIdx];
773  bool goodClusterType = false;
774 
775  if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
776  trkEClustLab[icharge] += cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
777  goodClusterType = true;
778  numClustersPerTrack[icharge]++;
779  }
780 
781  if (goodClusterType) {
782 
783  clusterTime[icharge] = cluster->getTime();
784 
785  auto eclClusterRelations = cluster->getRelationsTo<ECLCalDigit>("ECLCalDigits");
786 
787  // Find the crystal that has the largest energy
788  for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
789  const auto calDigit = eclClusterRelations.object(ir);
790  int tempCrysID = calDigit->getCellId() - 1;
791  double tempE = m_EperCrys[tempCrysID];
792 
793  int eclDigitIndex = m_eclDigitID[tempCrysID];
794  ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
795 
796  // for the max E crystal
797  if (tempE > crysEMax[icharge]) {
798  // Set 2nd highest E crystal to the info from the highest E crystal
799  crysE2Max[icharge] = crysEMax[icharge];
800  // Set the highest E crystal to the current crystal
801  crysEMax[icharge] = tempE;
802  crysIDMax[icharge] = tempCrysID;
803  }
804  // for the 2nd highest E crystal
805  if (tempE > crysE2Max[icharge] && tempCrysID != crysIDMax[icharge]) {
806  crysE2Max[icharge] = tempE;
807  }
808 
809  // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
810  // If we drop the information about the second highest energy crystal we could use
811  // m_eclClusterArray[ic]->getMaxECellId()
812 
813  B2DEBUG(26, "calDigit(ir" << ir << ") time = " << calDigit->getTime() << "ns , with E = " << tempE << " GeV");
814  time_ECLCaldigits_bothClusters.push_back(calDigit->getTime());
815  cid_ECLCaldigits_bothClusters.push_back(tempCrysID);
816  E_ECLCaldigits_bothClusters.push_back(tempE);
817  amp_ECLDigits_bothClusters.push_back(ecl_dig->getAmp());
818  chargeID_ECLCaldigits_bothClusters.push_back(icharge);
819 
820  }
821  }
822  }
823  trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
824 
825  // Check both electrons to see if their cluster energy / track momentum is good.
826  // The Belle II physics book shows that this is the main way of separating electrons from other particles
827  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
828  E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
829 
830  }
831  }
832  /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
833  for the two saved track indices for both the lab and COM frames.
834  The crystal with the maximum energy, one associated to each track, is recorded*/
835 
836 
837 
838  //=== Check each crystal in the processed event and fill histogram.
839 
840  int numCrystalsPassingCuts = 0;
841 
842  int crystalIDs[2] = { -1, -1};
843  int crateIDs[2] = { -1, -1};
844  double ts_prevCalib[2] = { -1, -1};
845  double tcrate_prevCalib[2] = { -1, -1};
846  double times_noPreviousCalibrations[2] = { -1, -1};
847  bool crystalCutsPassed[2] = {false, false};
848  double crystalEnergies[2] = { -1, -1};
849  double crystalEnergies2[2] = { -1, -1};
850 
851  for (int iCharge = 0; iCharge < 2; iCharge++) {
852  int crystal_idx = crysIDMax[iCharge];
853  int eclCalDigitIndex = m_eclCalDigitID[crystal_idx];
854  int eclDigitIndex = m_eclDigitID[crystal_idx];
855 
856  ECLDigit* ecl_dig = m_eclDigitArray[eclDigitIndex];
857  ECLCalDigit* ecl_cal = m_eclCalDigitArray[eclCalDigitIndex];
858 
859  //== Check whether specific ECLDigits should be excluded.
860 
861  auto en = ecl_cal->getEnergy();
862  auto amplitude = ecl_dig->getAmp();
863  crystalEnergies[iCharge] = en;
864 
865  int cid = ecl_dig->getCellId();
866  double time = ecl_dig->getTimeFit() * TICKS_TO_NS - evt_t0;
867 
868  // Offset time by electronics calibration and flight time calibration.
869  time -= m_ElectronicsTime[cid - 1] * TICKS_TO_NS;
870  time -= m_FlightTime[cid - 1];
871 
872 
873  // Apply the time walk correction: time shift as a function of the amplitude corrected by the electronics calibration.
874  // The electronics calibration also accounts for crystals that have a dead pre-amp and thus half the normal amplitude.
875  double energyTimeShift = m_ECLTimeUtil->energyDependentTimeOffsetElectronic(amplitude * m_Electronics[cid - 1]) * TICKS_TO_NS;
876 
877  B2DEBUG(29, "cellid = " << cid << ", amplitude = " << amplitude << ", time before t(E) shift = " << time <<
878  ", t(E) shift = " << energyTimeShift << " ns");
879  time -= energyTimeShift;
880 
881 
882  // Cell ID should be within specified range.
883  if (cid < m_minCrystal || cid > m_maxCrystal) continue;
884 
885  // Absolute time should be in specified range condition.
886  if (fabs(time) > m_timeAbsMax) continue;
887 
888  // Fit quality flag -- choose only events with best fit quality
889  if (ecl_dig->getQuality() != 0) continue;
890 
891  //== Save time and crystal information. Fill plot after both electrons are tested
892  crystalIDs[iCharge] = cid;
893  crateIDs[iCharge] = m_crystalMapper->getCrateID(ecl_cal->getCellId());
894 
895 
896  ts_prevCalib[iCharge] = m_PreviousCrystalTime[cid - 1] * TICKS_TO_NS;
897  tcrate_prevCalib[iCharge] = m_CrateTime[cid - 1] * TICKS_TO_NS;
898  times_noPreviousCalibrations[iCharge] = time;
899 
900 
901  B2DEBUG(26, "iCharge = " << iCharge);
902  B2DEBUG(26, "crateIDs[iCharge] = " << crateIDs[iCharge]);
903  B2DEBUG(26, "times_noPreviousCalibrations[iCharge] = " << times_noPreviousCalibrations[iCharge]);
904  B2DEBUG(26, "tcrate_prevCalib[iCharge] = " << tcrate_prevCalib[iCharge]);
905  B2DEBUG(26, "ts_prevCalib[iCharge] = " << ts_prevCalib[iCharge]);
906 
907 
908  crystalCutsPassed[iCharge] = true;
909 
910 
911  // For second most energetic energy crystal
912  crystalEnergies2[iCharge] = crysE2Max[iCharge];
913 
914 
915 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
916  //== Save debug TTree with detailed information if necessary.
917  m_tree_cid = ecl_dig->getCellId();
918  m_tree_amp = ecl_dig->getAmp();
919  m_tree_en = en;
920  m_tree_E1Etot = en / trkEClustLab[iCharge];
921  m_tree_E1E2 = en / crystalEnergies2[iCharge];
922  m_tree_E1p = en / trkpLab[iCharge];
923  m_tree_timetsPreviousTimeCalibs = time - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
924  m_tree_timeF = ecl_dig->getTimeFit() * TICKS_TO_NS;
925  m_tree_time = time;
926  m_tree_quality = ecl_dig->getQuality();
927  m_tree_t0 = evt_t0;
928  m_tree_t0_unc = evt_t0_unc;
929  m_E_DIV_p = E_DIV_p[iCharge];
930  m_tree_evtNum = m_EventMetaData->getEvent();
931  m_crystalCrate = m_crystalMapper->getCrateID(ecl_cal->getCellId());
932  m_runNum = m_EventMetaData->getRun();
933 
934  if (m_saveTree) {
935  m_dbgTree_electrons->Fill();
936  }
937 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
938 
939  // Fill histogram with information about maximum energy crystal energy fraction
940  getObjectPtr<TH1F>("maxEcrsytalEnergyFraction")->Fill(en / trkEClustLab[iCharge]);
941 
942 
943  }
944 
945 
946 
947  // Check both electrons to see if their cluster energy / track momentum is good.
948  // The Belle II physics book shows that this is the main way of separating electrons from other particles
949  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
950  bool E_DIV_p_instance_passed[2] = {false, false};
951  double E_DIV_p_CUT = 0.7;
952  for (int icharge = 0; icharge < 2; icharge++) {
953  E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
954  }
955  if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
956  return;
957  }
958  // E/p sufficiently large
959  cutIndexPassed++;
960  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
961  B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
962 
963 
964 
965  // Start of cuts on both the combined system of tracks and energy clusters
966 
967  double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
968  double invMass_CUT = 0.9;
969  m_massInvTracks = invMassTrk; // invariant mass of the two tracks
970 
971 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
972  if (m_saveTree) {
973  m_dbgTree_event->Fill();
974  }
975 // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
976 
977  bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
978  if (!invMassCutsPassed) {
979  return;
980  }
981  // Invariable mass of the two tracks are above the minimum
982  cutIndexPassed++;
983  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
984  B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
985  " : index = " << cutIndexPassed);
986 
987 
988 
989  //== Fill output histogram.
990  for (int iCharge = 0; iCharge < 2; iCharge++) {
991  if (crystalCutsPassed[iCharge]) {
992  getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
993  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
994  getObjectPtr<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
995  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge], 1);
996  getObjectPtr<TH2F>("TimevsCrysNoCalibrations")->Fill((crystalIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
997  getObjectPtr<TH2F>("TimevsCrateNoCalibrations")->Fill((crateIDs[iCharge]) + 0.001, times_noPreviousCalibrations[iCharge], 1);
998  getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib")->Fill((crystalIDs[iCharge]) + 0.001,
999  times_noPreviousCalibrations[iCharge] - tcrate_prevCalib[iCharge], 1);
1000  getObjectPtr<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib")->Fill((crateIDs[iCharge]) + 0.001,
1001  times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge], 1);
1002 
1003  // Record number of crystals used from the event. Should be exactly two.
1004  numCrystalsPassingCuts++;
1005 
1006  }
1007  }
1008 
1009 
1010  // Change cutflow method for this bit ... don't call return because we used to call the hadron cluster stuff afterwards
1011  //
1012  if (crystalCutsPassed[0] || crystalCutsPassed[1]) {
1013  // At least one ECL crystal time and quality cuts passed
1014  cutIndexPassed++;
1015  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
1016  B2DEBUG(22, "Cutflow: At least one crystal time and quality cuts passed: index = " << cutIndexPassed);
1017 
1018  getObjectPtr<TH1F>("numCrystalEntriesPerEvent")->Fill(numCrystalsPassingCuts);
1019  }
1020 
1021 
1022  // Save final information to the tree after all cuts are applied
1023  for (int iCharge = 0; iCharge < 2; iCharge++) {
1024  if (crystalCutsPassed[iCharge]) {
1025  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1026  m_tree_evtNum = m_EventMetaData->getEvent();
1027  m_tree_cid = crystalIDs[iCharge];
1028  //m_tree_time = times[iCharge];
1029  m_tree_time = times_noPreviousCalibrations[iCharge];
1030  m_crystalCrate = crateIDs[iCharge];
1031  m_runNum = m_EventMetaData->getRun();
1032  m_tree_en = crystalEnergies[iCharge]; // for studies of ts as a function of energy
1033  m_tree_E1Etot = crystalEnergies[iCharge] / trkEClustLab[iCharge];
1034  m_tree_E1E2 = crystalEnergies[iCharge] / crystalEnergies2[iCharge];
1035  m_tree_E1p = crystalEnergies[iCharge] / trkpLab[iCharge];
1036  m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[iCharge] - ts_prevCalib[iCharge] - tcrate_prevCalib[iCharge];
1037  m_tree_t0 = evt_t0;
1038  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1039  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1040  m_tree_tClust = clusterTime[iCharge];
1041 
1042  m_massInvTracks = invMassTrk; // This is probably already set but I'll set it again anyways just so that it is clear
1043 
1044  if (m_saveTree) {
1045  m_dbgTree_allCuts->Fill();
1046  }
1047  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1048  }
1049  }
1050 
1051 
1052 
1053 
1054  if (crystalCutsPassed[0] && crystalCutsPassed[1] &&
1055  numClustersPerTrack[0] == 1 && numClustersPerTrack[1] == 1) {
1056  m_tree_enNeg = trkEClustLab[0];
1057  m_tree_enPlus = trkEClustLab[1];
1058  m_tree_tClustNeg = clusterTime[0];
1059  m_tree_tClustPos = clusterTime[1];
1060  m_tree_maxEcrystPosClust = times_noPreviousCalibrations[0] - ts_prevCalib[0] - tcrate_prevCalib[0];
1061  m_tree_maxEcrystNegClust = times_noPreviousCalibrations[1] - ts_prevCalib[1] - tcrate_prevCalib[1];
1062  m_tree_t0 = evt_t0;
1063  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1064  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1065 
1066  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1067  if (m_saveTree) {
1068  m_dbgTree_evt_allCuts->Fill();
1069  }
1070  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1071  }
1072 
1073 
1074  B2DEBUG(26, "m_tree_maxEcrystPosClust + evt_t0 = " << m_tree_maxEcrystPosClust + evt_t0);
1075  B2DEBUG(26, "m_tree_maxEcrystNegClust + evt_t0 = " << m_tree_maxEcrystNegClust + evt_t0);
1076  B2DEBUG(26, "CDC evt_t0 = " << evt_t0);
1077  B2DEBUG(26, "ECL min chi2 even t0, m_tree_t0_ECL_minChi2 = " << m_tree_t0_ECL_minChi2);
1078 
1079 
1080 
1081  for (long unsigned int digit_i = 0; digit_i < time_ECLCaldigits_bothClusters.size(); digit_i++) {
1082  m_runNum = m_EventMetaData->getRun();
1083  m_tree_evtNum = m_EventMetaData->getEvent();
1084  m_tree_ECLCalDigitTime = time_ECLCaldigits_bothClusters[digit_i];
1085  m_tree_ECLCalDigitE = E_ECLCaldigits_bothClusters[digit_i];
1086  m_tree_ECLDigitAmplitude = amp_ECLDigits_bothClusters[digit_i];
1087  m_tree_t0 = evt_t0;
1088  m_tree_t0_ECLclosestCDC = evt_t0_ECL_closestCDC;
1089  m_tree_t0_ECL_minChi2 = evt_t0_ECL_minChi2;
1090  m_tree_timetsPreviousTimeCalibs = times_noPreviousCalibrations[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1091  ts_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]] -
1092  tcrate_prevCalib[chargeID_ECLCaldigits_bothClusters[digit_i]];
1093  m_tree_cid = cid_ECLCaldigits_bothClusters[digit_i];
1094 
1095  // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Tree saving
1096  if (m_saveTree) {
1097  m_dbgTree_crys_allCuts->Fill();
1098  }
1099  // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Tree saving
1100 
1101  }
1102 
1103 
1104  B2DEBUG(26, "This was for event number = " << m_tree_evtNum);
1105 
1106 }
static const ChargedStable pion
charged pion particle
Definition: Const.h:652
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
double m_tree_d0
Track d0 for debug TTree output.
double m_tree_maxEcrystNegClust
Time of the highest energy crystal in the cluster associated to negatively charged track,...
std::vector< float > m_CrateTime
vector obtained from DB object
std::vector< int > m_eclDigitID
ECL digit id sorter.
double m_tree_timeF
ECL fitting time for debug TTree output.
double m_tree_E1Etot
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy,...
double m_tree_tClustNeg
Cluster time of cluster associated to negatively charged track, ns for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_CrateTimeDB
Time offset from crate time calibration (also this calibration) from database.
StoreObjPtr< EventT0 > m_eventT0
StoreObjPtr for T0.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
std::vector< float > m_FlightTime
vector obtained from DB object
double m_tree_timetsPreviousTimeCalibs
Time for Ts distribution after application of previous time calibrations for debug TTree output.
double m_looseTrkD0
Loose track d0 minimum cut.
double m_tree_E1E2
Energy of crystal with maximum energy within ECL cluster divided by second most energetic crystal in ...
double m_tree_ECLDigitAmplitude
Amplitude (used to calculate energy) of an ECLDigit within a cluster, for debug TTree output.
double m_tree_tClustPos
Cluster time of cluster associated to positively charged track, ns for debug TTree output.
int m_tree_quality
ECL fit quality for debug TTree output.
bool m_saveTree
If true, save TTree with more detailed event info.
double m_tree_enNeg
Energy of cluster associated to negatively charged track, GeV for debug TTree output.
DBObjPtr< ECLCrystalCalib > m_ElectronicsTimeDB
Time offset from electronics calibration from database.
double m_tree_tClust
Cluster time of a cluster, ns for debug TTree output.
double m_E_DIV_p
Energy divided by momentum, for debug TTree output.
double m_tree_en
Energy of crystal with maximum energy within ECL cluster, GeV for debug TTree output.
std::vector< int > m_eclCalDigitID
ECL cal digit id sorter.
bool m_storeCalib
Boolean for whether or not to store the previous calibration calibration constants.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
DBObjPtr< ECLReferenceCrystalPerCrateCalib > m_RefCrystalsCalibDB
Crystal IDs of the one reference crystal per crate from database.
int m_crystalCrate
Crate id for the crystal.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
double m_tree_time
Time for Ts distribution for debug TTree output.
double m_massInvTracks
invariant mass of the two tracks, for debug TTree output
double m_tree_nCDChits
Number of CDC hits along the track for debug TTree output.
double m_tree_enPlus
Energy of cluster associated to positively charged track, GeV for debug TTree output.
int m_tree_evtNum
Event number for debug TTree output.
double m_tightTrkZ0
Tight track z0 minimum cut.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
std::vector< short > m_RefCrystalsCalib
vector obtained from DB object
double m_tree_t0_ECL_minChi2
EventT0 (from ECL) min chi2 for debug TTree output.
double m_tree_maxEcrystPosClust
Time of the highest energy crystal in the cluster associated to positively charged track,...
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
TTree * m_dbgTree_allCuts
Debug TTree output after all cuts.
double m_tree_ECLCalDigitTime
Time of an ECLCalDigit within a cluster, ns for debug TTree output.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
TTree * m_dbgTree_event
Debug TTree output per event.
double m_tree_z0
Track z0 for debug TTree output.
std::vector< float > m_EperCrys
ECL cal digit energy for each crystal.
bool skipTrgSel
flag to skip the trigger skim selection in the module
double m_tree_p
Track momentum for debug TTree output.
std::vector< float > m_PreviousCrystalTime
vector obtained from DB object
DBObjPtr< ECLCrystalCalib > m_PreviousCrystalTimeDB
Time offset from previous crystal time calibration (this calibration) from database.
double m_tightTrkD0
Tight track d0 minimum cut.
double m_tree_t0
EventT0 (not from ECL) for debug TTree output.
int m_tree_amp
Fitting amplitude from ECL for debug TTree output.
double m_tree_E1p
Energy of crystal with maximum energy within ECL cluster divided by total cluster energy divided by t...
TTree * m_dbgTree_evt_allCuts
Debug TTree output per event after all cuts.
std::vector< float > m_Electronics
vector obtained from DB object
int m_charge
particle charge, for debug TTree output
TTree * m_dbgTree_electrons
Output tree with detailed event data.
std::vector< float > m_PreviousCrystalTimeUnc
vector obtained from DB object
std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
ECL timing tools.
StoreArray< Track > tracks
StoreArray for tracks.
double m_tree_t0_ECLclosestCDC
EventT0 (from ECL) closest to CDC for debug TTree output.
TTree * m_dbgTree_crys_allCuts
Debug TTree output per crystal after all cuts.
DBObjPtr< ECLCrystalCalib > m_FlightTimeDB
Time offset from flight time b/w IP and crystal from database.
DBObjPtr< ECLCrystalCalib > m_ElectronicsDB
electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps
double m_tree_ECLCalDigitE
Energy of an ECLCalDigit within a cluster, GeV for debug TTree output.
StoreObjPtr< EventMetaData > m_EventMetaData
Event metadata.
double m_tree_t0_unc
EventT0 uncertainty for debug TTree output.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
double m_hadronEventT0_TO_bhabhaEventT0_correction
correction to apply to CDC event t0 values in bhabha events to correct for CDC event t0 bias compared...
std::vector< float > m_ElectronicsTime
vector obtained from DB object
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
TTree * m_dbgTree_tracks
Debug TTree output per track.
double m_looseTrkZ0
Loose track z0 minimum cut.
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:114
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:119
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
int getAmp() const
Get Fitting Amplitude.
Definition: ECLDigit.h:70
int getQuality() const
Get Fitting Quality.
Definition: ECLDigit.h:80
int getCellId() const
Get Cell ID.
Definition: ECLDigit.h:64
int getTimeFit() const
Get Fitting Time.
Definition: ECLDigit.h:75
static double getRF()
See m_rf.
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
Class to store variables with their name which were sent to the logging service.
@ c_accept
Accept this event.
const int c_NCrystals
Number of crystals.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, StorageRootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ m_channelMapDB

DBObjPtr<Belle2::ECLChannelMap> m_channelMapDB
private

Mapper of ecl channels to various other objects, like crates.

database object

Definition at line 123 of file ECLBhabhaTCollectorModule.h.

◆ m_CrateTimeDB

DBObjPtr<ECLCrystalCalib> m_CrateTimeDB
private

Time offset from crate time calibration (also this calibration) from database.

database object

Definition at line 114 of file ECLBhabhaTCollectorModule.h.

◆ m_crystalMapper

std::unique_ptr< Belle2::ECL::ECLChannelMapper> m_crystalMapper
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLChannelMapper>()

ECL object for keeping track of mapping between crystals and crates etc.

Definition at line 80 of file ECLBhabhaTCollectorModule.h.

◆ m_dbgTree_electrons

TTree* m_dbgTree_electrons = nullptr
private

Output tree with detailed event data.

Debug TTree output per electron

Definition at line 129 of file ECLBhabhaTCollectorModule.h.

◆ m_ECLTimeUtil

std::unique_ptr< Belle2::ECL::ECLTimingUtilities > m_ECLTimeUtil
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLTimingUtilities>()

ECL timing tools.

Definition at line 234 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsDB
private

electronics amplitude calibration from database Scale amplitudefor each crystal and for dead pre-amps

database object

Definition at line 97 of file ECLBhabhaTCollectorModule.h.

◆ m_ElectronicsTimeDB

DBObjPtr<ECLCrystalCalib> m_ElectronicsTimeDB
private

Time offset from electronics calibration from database.

database object

Definition at line 101 of file ECLBhabhaTCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0

Definition at line 90 of file ECLBhabhaTCollectorModule.h.

◆ m_FlightTimeDB

DBObjPtr<ECLCrystalCalib> m_FlightTimeDB
private

Time offset from flight time b/w IP and crystal from database.

database object

Definition at line 105 of file ECLBhabhaTCollectorModule.h.

◆ m_PreviousCrystalTimeDB

DBObjPtr<ECLCrystalCalib> m_PreviousCrystalTimeDB
private

Time offset from previous crystal time calibration (this calibration) from database.

database object

Definition at line 109 of file ECLBhabhaTCollectorModule.h.

◆ m_RefCrystalsCalibDB

DBObjPtr<ECLReferenceCrystalPerCrateCalib> m_RefCrystalsCalibDB
private

Crystal IDs of the one reference crystal per crate from database.

database object

Definition at line 119 of file ECLBhabhaTCollectorModule.h.


The documentation for this class was generated from the following files: