Belle II Software  release-08-01-10
eclBhabhaTAlgorithm Class Reference

Calibrate ecl crystals using bhabha events. More...

#include <eclBhabhaTAlgorithm.h>

Inheritance diagram for eclBhabhaTAlgorithm:
Collaboration diagram for eclBhabhaTAlgorithm:

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclBhabhaTAlgorithm ()
 ..Constructor
 
 ~eclBhabhaTAlgorithm ()
 ..Destructor
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type. More...
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun. More...
 
std::string getCollectorName () const
 Alias for prefix. More...
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list. More...
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration. More...
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algoithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The rturn bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int cellIDLo
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
int cellIDHi
 Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
 
double meanCleanRebinFactor
 Rebinning factor for mean calculation.
 
double meanCleanCutMinFactor
 After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value. More...
 
int crateIDLo
 Fit crates with crateID0 in the inclusive range [crateIDLo,crateIDHi].
 
int crateIDHi
 Fit crates with crateID0 in the inclusive range [crateIDLo,crateIDHi].
 
bool savePrevCrysPayload
 Save the previous crystal payload values for comparison.
 
bool readPrevCrysPayload
 Read the previous crystal payload values for comparison.
 
bool debugOutput
 Save every histogram and fitted function to debugFilename.
 
std::string debugFilenameBase
 Name of file with debug output, eclBhabhaTAlgorithm.root by default.
 
std::string collectorName
 Name of the collector.
 
int refCrysPerCrate [52]
 List of crystals, one per crate, used as reference time for crystal time calibration.
 

Protected Member Functions

EResult calibrate () override
 ..Run algorithm on events More...
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm. More...
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used interally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Calibrate ecl crystals using bhabha events.

Definition at line 25 of file eclBhabhaTAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfuly =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

Member Function Documentation

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events

Put root into batch mode so that we don't try to open a graphics window

Write out job parameters


Implements CalibrationAlgorithm.

Definition at line 60 of file eclBhabhaTAlgorithm.cc.

61 {
63  gROOT->SetBatch();
64 
65 
67  B2INFO("eclBhabhaTAlgorithm parameters:");
68  B2INFO("cellIDLo = " << cellIDLo);
69  B2INFO("cellIDHi = " << cellIDHi);
70  B2INFO("meanCleanRebinFactor = " << meanCleanRebinFactor);
71  B2INFO("meanCleanCutMinFactor = " << meanCleanCutMinFactor);
72  B2INFO("crateIDLo = " << crateIDLo);
73  B2INFO("crateIDHi = " << crateIDHi);
74  B2INFO("savePrevCrysPayload = " << savePrevCrysPayload);
75  B2INFO("readPrevCrysPayload = " << readPrevCrysPayload);
76  B2INFO("refCrysPerCrate = {");
77  for (int crateTest = 0; crateTest < 52 - 1; crateTest++) {
78  B2INFO(refCrysPerCrate[crateTest] << ",");
79  }
80  B2INFO(refCrysPerCrate[52 - 1] << "}");
81 
82 
83  /* Histogram with the data collected by eclBhabhaTCollectorModule */
84 
85  auto TimevsCrysPrevCrateCalibPrevCrystCalib = getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibPrevCrystCalib");
86  auto TimevsCratePrevCrateCalibPrevCrystCalib = getObjectPtr<TH2F>("TimevsCratePrevCrateCalibPrevCrystCalib");
87  auto TimevsCrysNoCalibrations = getObjectPtr<TH2F>("TimevsCrysNoCalibrations");
88  auto TimevsCrysPrevCrateCalibNoCrystCalib = getObjectPtr<TH2F>("TimevsCrysPrevCrateCalibNoCrystCalib");
89  auto TimevsCrateNoCrateCalibPrevCrystCalib = getObjectPtr<TH2F>("TimevsCrateNoCrateCalibPrevCrystCalib");
90 
91  // Collect other plots just for reference - combines all the runs for these plots.
92  auto cutflow = getObjectPtr<TH1F>("cutflow");
93 
94 
95  // Define new plots to make
96  // New calibration constant values minus older values from previous iteration plotted as a function of the crystal or crate id
97  unique_ptr<TH1F> tsNew_MINUS_tsOld__cid(new TH1F("TsNew_MINUS_TsOld__cid",
98  ";cell id; ts(new|bhabha) - ts(previous iteration|merged) [ns]", ECLElementNumbers::c_NCrystals,
100  unique_ptr<TH1F> tcrateNew_MINUS_tcrateOld__crateID(new TH1F("tcrateNew_MINUS_tcrateOld__crateID",
101  ";crate id; tcrate(new | bhabha) - tcrate(previous iteration | merged) [ns]",
102  52, 1, 52 + 1));
103  unique_ptr<TH1F> tsNew_MINUS_tsCustomPrev__cid(new TH1F("TsNew_MINUS_TsCustomPrev__cid",
104  ";cell id; ts(new|bhabha) - ts(old = 'before 1st iter'|merged) [ns]",
106  unique_ptr<TH1F> tsNew_MINUS_tsOldBhabha__cid(new TH1F("TsNew_MINUS_TsOldBhabha__cid",
107  ";cell id; ts(new|bhabha) - ts(previous iteration|bhabha) [ns]", ECLElementNumbers::c_NCrystals,
109 
110 
111  // Histogram of the new time constant values minus values from previous iteration
112  unique_ptr<TH1F> tsNew_MINUS_tsOld(new TH1F("TsNew_MINUS_TsOld",
113  ";ts(new | bhabha) - ts(previous iteration | merged) [ns];Number of crystals",
114  201, -10.05, 10.05));
115  unique_ptr<TH1F> tcrateNew_MINUS_tcrateOld(new TH1F("tcrateNew_MINUS_tcrateOld",
116  ";tcrate(new) - tcrate(previous iteration) [ns];Number of crates",
117  201, -10.05, 10.05));
118  unique_ptr<TH1F> tsNew_MINUS_tsCustomPrev(new TH1F("TsNew_MINUS_TsCustomPrev",
119  ";ts(new | bhabha) - ts(old = 'before 1st iter' | merged) [ns];Number of crystals",
120  285, -69.5801, 69.5801));
121  unique_ptr<TH1F> tsNew_MINUS_tsOldBhabha(new TH1F("TsNew_MINUS_TsOldBhabha",
122  ";ts(new | bhabha) - ts(previous iteration | bhabha) [ns];Number of crystals",
123  201, -10.05, 10.05));
124 
125 
126 
127  // Histograms just for crates and collecting for all the different runs rather than run by run.
128  unique_ptr<TH1F> tcrateNew_MINUS_tcrateOld_allRuns(new TH1F("tcrateNew_MINUS_tcrateOld_allRuns",
129  "Crate time constant changes over all runs : tcrate(new) uncertainty < 0.1ns;tcrate(new) - tcrate(previous iteration) [ns];Number of crates",
130  201, -10.05, 10.05));
131 
132  unique_ptr<TH1F> tcrateNew_MINUS_tcrateOld_allRuns_allCrates(new TH1F("tcrateNew_MINUS_tcrateOld_allRuns_allCrates",
133  "Crate time constant changes over all runs : all crates;tcrate(new) - tcrate(previous iteration) [ns];Number of crates",
134  201, -10.05, 10.05));
135 
136  unique_ptr<TH1I> num_tcrates_perRun(new TH1I("num_tcrates_perRun",
137  "Number of good tcrates in each run;Run number;Number of good tcrates",
138  6000, 0, 6000));
139 
140  unique_ptr<TH2F> tcrateNew_MINUS_tcrateOld__vs__runNum(new TH2F("tcrateNew_MINUS_tcrateOld__vs__runNum",
141  "Crate time constant changes vs run number : tcrate(new) uncertainty < 0.1ns;Run number;tcrate(new) - tcrate(previous iteration) [ns]",
142  6000, 0, 6000, 21, -10.5, 10.5));
143 
144 
145 
146 
147 
148  if (!TimevsCrysNoCalibrations) return c_Failure;
149 
152  TFile* histfile = 0;
153  TFile* histExtraCrateInfofile = 0; // Only created if needed for crates
154 
155 
156  unique_ptr<TTree> tree_crystal(new TTree("tree_crystal", "Debug data from bhabha time calibration algorithm for crystals"));
157 
158  unique_ptr<TTree> tree_crate(new TTree("tree_crate", "Debug data from bhabha time calibration algorithm for crates"));
159  int tree_cid;
160 
161  // Vector of time offsets to be saved in the database.
162  vector<float> t_offsets;
163  // Vector of time offset uncertainties to be saved in the database.
164  vector<float> t_offsets_unc;
165  vector<float> t_offsets_prev; // previous time offsets
166 
167 
168  int minNumEntries = 40;
169  int minNumEntriesCrateConvergence = 1000;
170 
171 
172  double mean = 0;
173  double sigma = -1;
174  double mean_unc = 0;
175  int crystalCalibSaved = 0;
176  double tsPrev = 0;
177 
178 
179  bool minRunNumBool = false;
180  bool maxRunNumBool = false;
181  int minRunNum = -1;
182  int maxRunNum = -1;
183  int minExpNum = -1;
184  int maxExpNum = -1;
185  for (auto expRun : getRunList()) {
186  int expNumber = expRun.first;
187  int runNumber = expRun.second;
188  if (!minRunNumBool) {
189  minExpNum = expNumber;
190  minRunNum = runNumber;
191  minRunNumBool = true;
192  }
193  if (!maxRunNumBool) {
194  maxExpNum = expNumber;
195  maxRunNum = runNumber;
196  maxRunNumBool = true;
197  }
198  if (((minRunNum > runNumber) && (minExpNum >= expNumber)) ||
199  (minExpNum > expNumber)) {
200  minExpNum = expNumber;
201  minRunNum = runNumber;
202  }
203  if (((maxRunNum < runNumber) && (maxExpNum <= expNumber)) ||
204  (maxExpNum < expNumber))
205 
206  {
207  maxExpNum = expNumber;
208  maxRunNum = runNumber;
209  }
210  }
211 
212  B2INFO("debugFilenameBase = " << debugFilenameBase);
213  string runNumsString = string("_") + to_string(minExpNum) + "_" + to_string(minRunNum) + string("-") +
214  to_string(maxExpNum) + "_" + to_string(maxRunNum);
215  string debugFilename = debugFilenameBase + runNumsString + string(".root");
216  string extraCratedebugFilename = debugFilenameBase + string("_cratesAllRuns.root");
217 
218 
219  // Need to load information about the event/run/experiment to get the right database information
220  // Will be used for:
221  // * ECLChannelMapper (to map crystal to crates)
222  // * crystal payload updating for iterating crystal and crate fits
223  int eventNumberForCrates = 1;
224 
226  // simulate the initialize() phase where we can register objects in the DataStore
228  evtPtr.registerInDataStore();
230  // now construct the event metadata
231  evtPtr.construct(eventNumberForCrates, minRunNum, minExpNum);
232  // and update the database contents
233  DBStore& dbstore = DBStore::Instance();
234  dbstore.update();
235  // this is only needed it the payload might be intra-run dependent,
236  // that is if it might change during one run as well
237  dbstore.updateEvent();
238 
239 
240  B2INFO("Uploading payload for exp " << minExpNum << ", run " << minRunNum << ", event " << eventNumberForCrates);
241  updateDBObjPtrs(eventNumberForCrates, minRunNum, minExpNum);
242  unique_ptr<ECLChannelMapper> crystalMapper(new ECL::ECLChannelMapper());
243  crystalMapper->initFromDB();
244 
245 
246  //------------------------------------------------------------------------
247  //..Read payloads from database
248  B2INFO("Reading payloads: ECLCrystalTimeOffset and ECLCrateTimeOffset");
249  DBObjPtr<Belle2::ECLCrystalCalib> crystalTimeObject("ECLCrystalTimeOffset");
250  DBObjPtr<Belle2::ECLCrystalCalib> crateTimeObject("ECLCrateTimeOffset");
251 
252  //..Get vectors of values from the payloads
253  vector<float> currentValuesCrys = crystalTimeObject->getCalibVector();
254  vector<float> currentUncCrys = crystalTimeObject->getCalibUncVector();
255  vector<float> currentValuesCrate = crateTimeObject->getCalibVector();
256  vector<float> currentUncCrate = crateTimeObject->getCalibUncVector();
257 
258  //..Print out a few values for quality control
259  B2INFO("Values read from database. Write out for their values for comparison against those from tcol");
260  for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
261  B2INFO("ts: cellID " << ic + 1 << " " << currentValuesCrys[ic] << " +/- " << currentUncCrys[ic]);
262  B2INFO("tcrate: cellID " << ic + 1 << " " << currentValuesCrate[ic] << " +/- " << currentUncCrate[ic]);
263  }
264 
265 
266  //..Read in the previous crystal payload values
267  vector<float> prevValuesCrys(ECLElementNumbers::c_NCrystals);
268  if (readPrevCrysPayload) {
269  DBObjPtr<Belle2::ECLCrystalCalib> customPrevCrystalTimeObject("ECLCrystalTimeOffsetPreviousValues");
270  //..Get vectors of values from the payloads
271  prevValuesCrys = customPrevCrystalTimeObject->getCalibVector();
272 
273  //..Print out a few values for quality control
274  B2INFO("Previous values read from database. Write out for their values for comparison against those from tcol");
275  for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
276  B2INFO("ts custom previous payload: cellID " << ic + 1 << " " << prevValuesCrys[ic]);
277  }
278  }
279 
280 
281  //..Read bhabha payloads from database
282  B2INFO("Reading payloads: ECLCrystalTimeOffsetBhabha");
283  DBObjPtr<Belle2::ECLCrystalCalib> crystalBhabhaTimeObject("ECLCrystalTimeOffsetBhabha");
284 
285  //..Get vectors of values from the payloads
286  vector<float> currentBhabhaValuesCrys = crystalBhabhaTimeObject->getCalibVector();
287  vector<float> currentBhabhaUncCrys = crystalBhabhaTimeObject->getCalibUncVector();
288 
289  //..Print out a few values for quality control
290  for (int ic = 0; ic < ECLElementNumbers::c_NCrystals; ic += 500) {
291  B2INFO("ts bhabha: cellID " << ic + 1 << " " << currentBhabhaValuesCrys[ic] << " +/- " << currentBhabhaUncCrys[ic]);
292  }
293 
294 
295  //------------------------------------------------------------------------
296  //..Get the reference crystal information
297  auto refCrysIDzeroingCrate = getObjectPtr<TH1F>("refCrysIDzeroingCrate");
298 
299  // crystal index for the crystals (one per crate) that is used as the reference crystal. This one has
300  // ts defined as zero. The crystal id runs 1...8636, not starting at 0.
301  B2INFO("Extract reference crystals from collector histogram.");
302  vector <short> crystalIDreferenceUntested;
303  for (int bin = 1; bin <= ECLElementNumbers::c_NCrystals; bin++) {
304  if (refCrysIDzeroingCrate->GetBinContent(bin) > 0.5) {
305  crystalIDreferenceUntested.push_back(bin);
306  }
307  }
308 
309  // Output for the user the crystal id to be used as a reference
310  // and also state which crate the crystal is in.
311  B2INFO("Reference crystals to define as having ts=0. Base 1 counting for both crates and crystals");
312  for (long unsigned int crysRefCounter = 0; crysRefCounter < crystalIDreferenceUntested.size(); crysRefCounter++) {
313  int crys_id = crystalIDreferenceUntested[crysRefCounter] ;
314  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
315  B2INFO(" crystal " << crys_id << " is a reference for crate " << crate_id_from_crystal);
316  }
317 
318  // Check that the reference crystals make sense. There should be exactly one per crate but
319  // since the crystal calibration executes over multiple runs, it is possible that the
320  // reference crystals could change but we don't want to allow this.
321  B2INFO("Checking number of reference crystals");
322  B2INFO("Number of reference crystals = " << crystalIDreferenceUntested.size());
323 
324  // Check that there are exactly 52 reference crystals
325  if (crystalIDreferenceUntested.size() != 52) {
326  B2FATAL("The number of reference crystals does not equal 52, which is one per crate");
327  return c_Failure;
328  } else {
329  B2INFO("Number of reference crystals is 52 as required");
330  }
331 
332  // Count the number of reference crystals for each crate to make sure that there is exactly
333  // one reference crystal for each crate as defined by the payload/database.
334  // also fill the final vector that maps the crate id to the reference crystal id
335  vector <short> crateIDsNumRefCrystalsUntested(52, 0);
336  vector <short> crystalIDReferenceForZeroTs(52, 0);
337 
338  for (long unsigned int crysRefCounter = 0; crysRefCounter < crystalIDreferenceUntested.size(); crysRefCounter++) {
339  int crys_id = crystalIDreferenceUntested[crysRefCounter] ;
340  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
341  crateIDsNumRefCrystalsUntested[crate_id_from_crystal - 1]++;
342  crystalIDReferenceForZeroTs[crate_id_from_crystal - 1] = crys_id;
343  }
344  B2INFO("crystalIDReferenceForZeroTs = {");
345  for (int crateTest = 0; crateTest < 52 - 1; crateTest++) {
346  B2INFO(crystalIDReferenceForZeroTs[crateTest] << ",");
347  }
348  B2INFO(crystalIDReferenceForZeroTs[52 - 1] << "}");
349 
350 
351  // Make sure that there is only one reference crystal per crate as defined by the payload/database
352  for (int crateTest = 0; crateTest < 52; crateTest++) {
353  if (crateIDsNumRefCrystalsUntested[crateTest] != 1) {
354  B2FATAL("Crate " << crateTest + 1 << " (base 1) has " << crateIDsNumRefCrystalsUntested[crateTest] << " reference crystals");
355  return c_Failure;
356  }
357  }
358  B2INFO("All reference crystals are reasonably mapped one crystal to one crate for all crates");
359 
360 
361 
362  B2INFO("Extract reference crystals from algorithm steering script if provided. If user inputs custom values via steering script for this algorithm, they are only applied after all the tests are performed on the values from the histogram and override the histogram valuees. User can adjust just a single crystal if desired. Use -1 to indicate that a crystal is not to be modified. Position of crystal in list determines the crate to which the crystal is meant to be associated.");
363 
364  /* Test if the user wants to modify the reference crystals. This will probably be done very rarely,
365  perhaps less than once per year. If the user does want to change one or more reference
366  crystals then perform the checks again to make sure that there is still just one reference crystal
367  per crate after the modifications to the payload values with the user values.*/
368  bool userSetRefCrysPerCrate = false ;
369  for (int crateTest = 0; crateTest < 52; crateTest++) {
370  if (refCrysPerCrate[crateTest] != -1) {
371  crystalIDReferenceForZeroTs[crateTest] = refCrysPerCrate[crateTest] ;
372  B2INFO("Crate " << crateTest + 1 << " (base 1) new reference crystal = " << crystalIDReferenceForZeroTs[crateTest]);
373  userSetRefCrysPerCrate = true ;
374  }
375  }
376  if (userSetRefCrysPerCrate) {
377  B2INFO("User changed reference crystals via steering script");
378 
379  // Validate crystals per crate again with the new user set values
380  fill(crateIDsNumRefCrystalsUntested.begin(), crateIDsNumRefCrystalsUntested.end(), 0);
381  for (long unsigned int crysRefCounter = 0; crysRefCounter < 52; crysRefCounter++) {
382  int crys_id = crystalIDReferenceForZeroTs[crysRefCounter] ;
383  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
384  crateIDsNumRefCrystalsUntested[crate_id_from_crystal - 1]++;
385  }
386  for (int crateTest = 0; crateTest < 52; crateTest++) {
387  if (crateIDsNumRefCrystalsUntested[crateTest] != 1) {
388  B2FATAL("Crate " << crateTest + 1 << " (base 1) has " << crateIDsNumRefCrystalsUntested[crateTest] << " reference crystals");
389  return c_Failure;
390  }
391  }
392  B2INFO("All reference crystals are reasonably mapped one crystal to one crate for all crates after changes made by user steering script.");
393 
394  // Save the information to the payload if there is at least one crate
395  // reference crystal that has been modified by the user steering file
397  refCrystalsCalib->setCalibVector(crystalIDReferenceForZeroTs);
398  saveCalibration(refCrystalsCalib, "ECLReferenceCrystalPerCrateCalib");
399  B2INFO("Created reference crystal per crate payload: ECLReferenceCrystalPerCrateCalib");
400  } else {
401  B2INFO("User did not change reference crystals via steering script");
402  }
403 
404 
405  //------------------------------------------------------------------------
406  //..Start looking at timing information
407 
408  B2INFO("Debug output rootfile: " << debugFilename);
409  histfile = new TFile(debugFilename.c_str(), "recreate");
410 
411 
412  TimevsCrysPrevCrateCalibPrevCrystCalib ->Write();
413  TimevsCratePrevCrateCalibPrevCrystCalib->Write();
414  TimevsCrysNoCalibrations ->Write();
415  TimevsCrysPrevCrateCalibNoCrystCalib ->Write();
416  TimevsCrateNoCrateCalibPrevCrystCalib ->Write();
417 
418  cutflow->Write();
419 
420 
421  if (debugOutput) {
422  tree_crystal->Branch("cid", &tree_cid)->SetTitle("Cell ID, 1..8736");
423  tree_crystal->Branch("ts", &mean)->SetTitle("Time offset mean, ts, ns");
424  tree_crystal->Branch("tsUnc", &mean_unc)->SetTitle("Error of time ts mean, ns.");
425  tree_crystal->Branch("tsSigma", &sigma)->SetTitle("Sigma of time ts distribution, ns");
426  tree_crystal->Branch("crystalCalibSaved",
427  &crystalCalibSaved)->SetTitle("0=crystal skipped, 1=crystal calib saved (num entries based)");
428  tree_crystal->Branch("tsPrev", &tsPrev)->SetTitle("Previous crystal time offset, ts, ns");
429  tree_crystal->SetAutoSave(10);
430  }
431 
432 
433  double hist_tmin = TimevsCrysNoCalibrations->GetYaxis()->GetXmin();
434  double hist_tmax = TimevsCrysNoCalibrations->GetYaxis()->GetXmax();
435 
436  double time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
437  double time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
438 
439  B2INFO("hist_tmin = " << hist_tmin);
440  B2INFO("hist_tmax = " << hist_tmax);
441 
442  /* 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency.
443  Same for all crystals. */
444  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
445 
446  // The ts and tcrate database values are filled once per tcol instance so count the number of times that the database values
447  // were summed together by the histogram merging process and extract out the original values again.
448  auto databaseCounter = getObjectPtr<TH1I>("databaseCounter");
449  float numTimesFilled = databaseCounter->GetBinContent(1);
450  B2INFO("Number of times database histograms were merged = " << numTimesFilled);
451 
452 
453  auto TsDatabase = getObjectPtr<TH1F>("TsDatabase");
454  auto TsDatabaseUnc = getObjectPtr<TH1F>("TsDatabaseUnc");
455  for (int i = 1; i <= ECLElementNumbers::c_NCrystals; i++) {
456  t_offsets.push_back(TsDatabase->GetBinContent(i) / numTimesFilled);
457  t_offsets_prev.push_back(TsDatabase->GetBinContent(i) / numTimesFilled);
458 
459  B2INFO("t_offsets_prev (last iter) at crysID " << i << " = " << t_offsets_prev[i - 1]);
460 
461  t_offsets_unc.push_back(TsDatabaseUnc->GetBinContent(i) / numTimesFilled);
462  }
463 
464 
465  /* CRYSTAL CORRECTIONS */
466 
467  /* Make a 1D histogram of the number of hits per crystal. This will help with the validations
468  to make sure that all the crystals had enough hits and to look for problems.*/
469  TH1D* h_crysHits = TimevsCrysPrevCrateCalibNoCrystCalib->ProjectionX("h_crysHits");
470  h_crysHits->SetTitle("Hits per crystal;Crystal id");
471 
472  histfile->WriteTObject(h_crysHits, "h_crysHits");
473 
474 
475  // Loop over all the crystals for doing the crystal calibation
476  for (int crys_id = cellIDLo; crys_id <= cellIDHi; crys_id++) {
477  crystalCalibSaved = 0;
478 
479  double database_mean = 0;
480  double database_mean_unc = 0;
481 
482  B2INFO("Crystal id = " << crys_id);
483 
484 
485  vector<bool> ts_new_was_set(ECLElementNumbers::c_NCrystals, false);
486 
487 
488  /* Determining which bins to mask out for mean calculation
489  */
490 
491  TH1D* h_time = TimevsCrysPrevCrateCalibNoCrystCalib->ProjectionY((string("h_time_psi__") + to_string(crys_id)).c_str(),
492  crys_id, crys_id);
493  TH1D* h_timeMask = (TH1D*)h_time->Clone();
494  TH1D* h_timeMasked = (TH1D*)h_time->Clone((string("h_time_psi_masked__") + to_string(crys_id)).c_str());
495  TH1D* h_timeRebin = (TH1D*)h_time->Clone();
496 
497  // Do rebinning and cleaning of some bins but only if the user selection values call for it since it slows the code down
498  if (meanCleanRebinFactor != 1 || meanCleanCutMinFactor != 1) {
499 
500  h_timeRebin->Rebin(meanCleanRebinFactor);
501 
502  h_timeMask->Scale(0.0); // set all bins to being masked off
503 
504  time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
505  time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
506 
507  // Find value of bin with max value
508  double histRebin_max = h_timeRebin->GetMaximum();
509 
510  bool maskedOutNonZeroBin = false;
511  // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
512  for (int bin = 1; bin <= h_timeRebin->GetNbinsX(); bin++) {
513  for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
514  int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
515  if (nonRebinnedBinNumber < h_time->GetNbinsX()) {
516  if (h_timeRebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
517  h_timeMask->SetBinContent(nonRebinnedBinNumber, 1);
518 
519  // Save the lower and upper edges of the rebin histogram time range for fitting purposes
520  double x_lower = h_timeRebin->GetXaxis()->GetBinLowEdge(bin);
521  double x_upper = h_timeRebin->GetXaxis()->GetBinUpEdge(bin);
522  if (x_lower < time_fit_min) {
523  time_fit_min = x_lower;
524  }
525  if (x_upper > time_fit_max) {
526  time_fit_max = x_upper;
527  }
528 
529  } else {
530  if (h_time->GetBinContent(nonRebinnedBinNumber) > 0) {
531  B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_timeMasked->GetBinContent(nonRebinnedBinNumber) << " to 0");
532  maskedOutNonZeroBin = true;
533  }
534  h_timeMasked->SetBinContent(nonRebinnedBinNumber, 0);
535  }
536  }
537  }
538  }
539  B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
540  h_timeMasked->ResetStats();
541  h_timeMask->ResetStats();
542 
543  }
544 
545  // Calculate mean from masked histogram
546  double default_meanMasked = h_timeMasked->GetMean();
547  //double default_meanMasked_unc = h_timeMasked->GetMeanError();
548  B2INFO("default_meanMasked = " << default_meanMasked);
549 
550 
551  // Get the overall mean and standard deviation of the distribution within the plot. This doesn't require a fit.
552  double default_mean = h_time->GetMean();
553  double default_mean_unc = h_time->GetMeanError();
554  double default_sigma = h_time->GetStdDev();
555 
556  B2INFO("Fitting crystal between " << time_fit_min << " and " << time_fit_max);
557 
558  // gaus(0) is a substitute for [0]*exp(-0.5*((x-[1])/[2])**2)
559  TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
560  gaus->SetParNames("numCrystalHitsNormalization", "mean", "sigma");
561  /*
562  gaus->ReleaseParameter(0); // number of crystals
563  gaus->ReleaseParameter(1); // mean
564  gaus->ReleaseParameter(2); // standard deviation
565  */
566 
567  double hist_max = h_time->GetMaximum();
568 
569  //=== Estimate initial value of sigma as std dev.
570  double stddev = h_time->GetStdDev();
571  sigma = stddev;
572  mean = default_mean;
573 
574  //=== Setting parameters for initial iteration
575  gaus->SetParameter(0, hist_max / 2.);
576  gaus->SetParameter(1, mean);
577  gaus->SetParameter(2, sigma);
578  // L -- Use log likelihood method
579  // I -- Use integral of function in bin instead of value at bin center // not using
580  // R -- Use the range specified in the function range
581  // B -- Fix one or more parameters with predefined function // not using
582  // Q -- Quiet mode
583 
584  h_timeMasked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
585 
586  double fit_mean = gaus->GetParameter(1);
587  double fit_mean_unc = gaus->GetParError(1);
588  double fit_sigma = gaus->GetParameter(2);
589 
590  double meanDiff = fit_mean - default_mean;
591  double meanUncDiff = fit_mean_unc - default_mean_unc;
592  double sigmaDiff = fit_sigma - default_sigma;
593 
594  bool good_fit = false;
595 
596  if ((fabs(meanDiff) > 10) ||
597  (fabs(meanUncDiff) > 10) ||
598  (fabs(sigmaDiff) > 10) ||
599  (fit_mean_unc > 0.09) ||
600  (fit_sigma < 0.1) ||
601  (fit_mean < time_fit_min) ||
602  (fit_mean > time_fit_max)) {
603  B2INFO("Crystal id = " << crys_id);
604  B2INFO("fit mean, default mean = " << fit_mean << ", " << default_mean);
605  B2INFO("fit mean unc, default mean unc = " << fit_mean_unc << ", " << default_mean_unc);
606  B2INFO("fit sigma, default sigma = " << fit_sigma << ", " << default_sigma);
607 
608  B2INFO("crystal fit mean - hist mean = " << meanDiff);
609  B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
610  B2INFO("fit sigma - hist sigma = " << sigmaDiff);
611 
612  B2INFO("fit_mean = " << fit_mean);
613  B2INFO("time_fit_min = " << time_fit_min);
614  B2INFO("time_fit_max = " << time_fit_max);
615 
616  if (fabs(meanDiff) > 10) B2INFO("fit mean diff too large");
617  if (fabs(meanUncDiff) > 10) B2INFO("fit mean unc diff too large");
618  if (fabs(sigmaDiff) > 10) B2INFO("fit mean sigma diff too large");
619  if (fit_mean_unc > 0.09) B2INFO("fit mean unc too large");
620  if (fit_sigma < 0.1) B2INFO("fit sigma too small");
621 
622  } else {
623  good_fit = true;
624  }
625 
626 
627 
628  // Set the tree_crystal values - ignore fit values !!!!!!!!!!!!!!!!
629  sigma = default_sigma;
630 
631 
632  int numEntries = h_time->GetEntries();
633  /* If number of entries in histogram is greater than X then use the statistical information from the data otherwise
634  leave crystal uncalibrated. Histograms are still shown though. ALSO require the that fits are good.*/
635  if ((numEntries >= minNumEntries) && good_fit) {
636  crystalCalibSaved = 1;
637  database_mean = fit_mean;
638  database_mean_unc = fit_mean_unc;
639  } else {
640  database_mean = default_mean;
641  database_mean_unc = -fabs(default_mean_unc);
642  }
643 
644  if (numEntries < minNumEntries) B2INFO("Number of entries less than minimum");
645  if (numEntries == 0) B2INFO("Number of entries == 0");
646 
647 
648  tree_cid = crys_id;
649 
650  // For the database, convert back from ns to ADC ticks.
651  t_offsets[crys_id - 1] = database_mean / TICKS_TO_NS;
652  t_offsets_unc[crys_id - 1] = database_mean_unc / TICKS_TO_NS;
653 
654 
655  histfile->WriteTObject(h_time, (string("h_time_psi") + to_string(crys_id)).c_str());
656  histfile->WriteTObject(h_timeMasked, (string("h_time_psi_masked") + to_string(crys_id)).c_str());
657 
658  mean = database_mean;
659  mean_unc = database_mean_unc;
660 
661  tsPrev = t_offsets_prev[crys_id - 1] * TICKS_TO_NS;
662 
663  delete gaus;
664  tree_crystal->Fill();
665  }
666 
667 
668  // Shift the crystal time calibration constants by the reference crystal calibration constant values
669  if (cellIDLo <= cellIDHi) {
670  vector <double> tsRefCID ;
671  B2INFO("crystal times before shift");
672  for (int crate_id = 1; crate_id <= 52; crate_id++) {
673  tsRefCID.push_back(t_offsets[ crystalIDReferenceForZeroTs[crate_id - 1] - 1 ]);
674  B2INFO("crystal time [crystal = " << crystalIDReferenceForZeroTs[crate_id - 1] << ", crate = " << crate_id << " (base 1)] = " <<
675  t_offsets[ crystalIDReferenceForZeroTs[crate_id - 1] - 1 ] << " ticks");
676  }
677 
678  B2INFO("crystal times after shift wrt reference crystal");
679  for (int crys_id = 1; crys_id <= ECLElementNumbers::c_NCrystals; crys_id++) {
680  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
681  B2INFO("crystal time before shift [crystal = " << crys_id << ", crate = " << crate_id_from_crystal << " (base 1)] = " <<
682  t_offsets[crys_id - 1] << " +- " << t_offsets_unc[crys_id - 1] << " ticks");
683 
684  /* Shift the crystal time constant by that of the reference crystal, but only if
685  there were values to shift. If there were no entries, ts=0 and ts_unc=0, which
686  are special values so do not shift these crystals. */
687  if (t_offsets[crys_id - 1] == 0 && t_offsets_unc[crys_id - 1] == 0) {
688  B2INFO("crystal time after shift [crystal = " << crys_id << ", crate = " << crate_id_from_crystal << " (base 1)] = " <<
689  t_offsets[crys_id - 1] << " ticks. No change because ts=0 and ts_unc=0 (no entries).");
690  } else {
691  t_offsets[crys_id - 1] = t_offsets[crys_id - 1] - tsRefCID[crate_id_from_crystal - 1];
692  B2INFO("crystal time after shift [crystal = " << crys_id << ", crate = " << crate_id_from_crystal << " (base 1)] = " <<
693  t_offsets[crys_id - 1] << " ticks");
694  }
695 
696 
697  // Fill histograms with the difference in the ts values between iterations
698  double tsDiff_ns = (t_offsets[crys_id - 1] - t_offsets_prev[crys_id - 1]) * TICKS_TO_NS;
699  double tsDiffBhabha_ns = -999;
700  if (readPrevCrysPayload) {
701  tsDiffBhabha_ns = (t_offsets[crys_id - 1] - currentBhabhaValuesCrys[crys_id - 1]) * TICKS_TO_NS;
702  }
703 
704  B2INFO("Crystal " << crys_id << ": ts new bhabha - old merged = (" <<
705  t_offsets[crys_id - 1] << " - " << t_offsets_prev[crys_id - 1] <<
706  ") ticks * " << TICKS_TO_NS << " ns/tick = " << tsDiff_ns << " ns");
707  B2INFO("Crystal " << crys_id << ": ts new bhabha - old bhabha = (" <<
708  t_offsets[crys_id - 1] << " - " << currentBhabhaValuesCrys[crys_id - 1] <<
709  ") ticks * " << TICKS_TO_NS << " ns/tick = " << tsDiffBhabha_ns << " ns");
710 
711  tsNew_MINUS_tsOld__cid->SetBinContent(crys_id, tsDiff_ns);
712  tsNew_MINUS_tsOld__cid->SetBinError(crys_id, 0);
713  tsNew_MINUS_tsOld__cid->ResetStats();
714 
715  tsNew_MINUS_tsOld->Fill(tsDiff_ns);
716 
717 
718  tsNew_MINUS_tsOldBhabha__cid->SetBinContent(crys_id, tsDiffBhabha_ns);
719  tsNew_MINUS_tsOldBhabha__cid->SetBinError(crys_id, 0);
720  tsNew_MINUS_tsOldBhabha__cid->ResetStats();
721 
722  tsNew_MINUS_tsOldBhabha->Fill(tsDiffBhabha_ns);
723 
724 
725 
726  /* Fill histograms with the difference in the ts values from this iteration
727  and the previous values read in from the payload. */
728  double tsDiffCustomOld_ns = -999;
729  if (readPrevCrysPayload) {
730  tsDiffCustomOld_ns = (t_offsets[crys_id - 1] - prevValuesCrys[crys_id - 1]) * TICKS_TO_NS;
731  B2INFO("Crystal " << crys_id << ": ts new bhabha - 'before 1st iter' merged = (" <<
732  t_offsets[crys_id - 1] << " - " << prevValuesCrys[crys_id - 1] <<
733  ") ticks * " << TICKS_TO_NS << " ns/tick = " << tsDiffCustomOld_ns << " ns");
734  }
735  tsNew_MINUS_tsCustomPrev__cid->SetBinContent(crys_id, tsDiffCustomOld_ns);
736  tsNew_MINUS_tsCustomPrev__cid->SetBinError(crys_id, 0);
737  tsNew_MINUS_tsCustomPrev__cid->ResetStats();
738 
739  tsNew_MINUS_tsCustomPrev->Fill(tsDiffCustomOld_ns);
740 
741  }
742 
743  // Save the histograms to the output root file
744  histfile->WriteTObject(tsNew_MINUS_tsOld__cid.get(), "tsNew_MINUS_tsOld__cid");
745  histfile->WriteTObject(tsNew_MINUS_tsOld.get(), "tsNew_MINUS_tsOld");
746 
747  histfile->WriteTObject(tsNew_MINUS_tsCustomPrev__cid.get(), "tsNew_MINUS_tsCustomPrev__cid");
748  histfile->WriteTObject(tsNew_MINUS_tsCustomPrev.get(), "tsNew_MINUS_tsCustomPrev");
749 
750  histfile->WriteTObject(tsNew_MINUS_tsOldBhabha__cid.get(), "tsNew_MINUS_tsOldBhabha__cid");
751  histfile->WriteTObject(tsNew_MINUS_tsOldBhabha.get(), "tsNew_MINUS_tsOldBhabha");
752  }
753 
754 
755  //..Store previous crystal calibration constants to payload under different
756  // names so that they can be read in for comparison later. These are temporary
757  // payloads that are only used for plotting purposes while running the calibration
758  // and does not need to be added to any global tag.
759  if (savePrevCrysPayload) {
760  ECLCrystalCalib* crysTCalib_prev = new ECLCrystalCalib();
761  crysTCalib_prev->setCalibVector(currentValuesCrys, currentUncCrys);
762 
763  ECLCrystalCalib* crysBhabhaTCalib_prev = new ECLCrystalCalib();
764  crysBhabhaTCalib_prev->setCalibVector(currentBhabhaValuesCrys, currentBhabhaUncCrys);
765 
766 
767  // Save the information to the payload if there is at least one crystal
768  // begin calibrated.
769  if (cellIDLo <= cellIDHi) {
770  saveCalibration(crysTCalib_prev, "ECLCrystalTimeOffsetPreviousValues");
771  B2INFO("Previous overall crystal payload made");
772 
773  saveCalibration(crysBhabhaTCalib_prev, "ECLCrystalTimeOffsetBhabhaPreviousValues");
774  B2INFO("Previous bhabha crystal payload made");
775  }
776  }
777 
778 
779  ECLCrystalCalib* BhabhaTCalib = new ECLCrystalCalib();
780  BhabhaTCalib->setCalibVector(t_offsets, t_offsets_unc);
781 
782  // Save the information to the payload if there is at least one crystal
783  // begin calibrated.
784  if (cellIDLo <= cellIDHi) {
785  saveCalibration(BhabhaTCalib, "ECLCrystalTimeOffset");
786  saveCalibration(BhabhaTCalib, "ECLCrystalTimeOffsetBhabha");
787  B2DEBUG(22, "crystal payload made");
788  }
789 
790 
791  B2DEBUG(22, "end of crystal start of crate corrections .....");
792 
793 
794  //==============================================================
795  /* CRATE CORRECTIONS */
796 
797  hist_tmin = TimevsCrateNoCrateCalibPrevCrystCalib->GetYaxis()->GetXmin();
798  hist_tmax = TimevsCrateNoCrateCalibPrevCrystCalib->GetYaxis()->GetXmax();
799 
800  B2DEBUG(22, "Found min/max of X axis of TimevsCrateNoCrateCalibPrevCrystCalib");
801 
802  // Vector of time offsets to be saved in the database.
803 
804  auto TcrateDatabase = getObjectPtr<TH1F>("TcrateDatabase");
805 
806 
807  B2DEBUG(22, "Retrieved Ts and Tcrate histograms from tcol root file");
808 
809 
810  vector<float> tcrate_mean_new(52, 0.0);
811  vector<float> tcrate_mean_unc_new(52, 0.0);
812  vector<float> tcrate_sigma_new(52, 0.0);
813  vector<float> tcrate_mean_prev(52, 0.0);
814  // vector<float> tcrate_sigma_prev(52, 0.0); // currently not used
815  vector<bool> tcrate_new_was_set(52, false);
816  vector<bool> tcrate_new_goodQuality(52, false);
817 
818  B2DEBUG(22, "crate vectors set");
819 
820 
821 
822  // Crate time calibration constants are saved per crystal so read them per crystal
823  // and save as one entry per crate in the array
824  for (int crys_id = 1; crys_id <= ECLElementNumbers::c_NCrystals; crys_id++) {
825  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
826  tcrate_mean_prev[crate_id_from_crystal - 1] = TcrateDatabase->GetBinContent(crys_id) / numTimesFilled;
827  }
828 
829 
830  B2INFO("Print out previous crate time calibration constants to make sure they match from the two different sources.");
831  for (int crate_id = 1; crate_id <= 52; crate_id++) {
832  B2INFO("tcrate_mean_prev[crate " << crate_id << " (base 1)] = " << tcrate_mean_prev[crate_id - 1]);
833 
834  int thisRefCellID = crystalIDReferenceForZeroTs[crate_id - 1];
835  B2INFO("tcrate from payload: ref cellID " << thisRefCellID << " " << currentValuesCrate[thisRefCellID - 1] << " +/- " <<
836  currentUncCrate[thisRefCellID - 1]);
837  }
838 
839 
840  /* Read in the histogram about the crate calibration constant differences between iterations
841  if it exists. This way the histograms can be updated after each run.*/
842  if (crateIDLo <= crateIDHi) {
843  TFile* histExtraCrateInfofile_dummy = 0; // Only created if needed for crates
844  B2INFO("Debug output rootfile used for crate iterations: " << extraCratedebugFilename);
845  histExtraCrateInfofile_dummy = new TFile(extraCratedebugFilename.c_str(), "UPDATE");
846 
847 
848  // If the histogram already exists then read it in and recreate the file so that we can save an updated version of the histogram.
849  TKey* key = histExtraCrateInfofile_dummy->FindKey("tcrateNew_MINUS_tcrateOld_allRuns");
850  if (key != 0) {
851  TH1F* h = (TH1F*)histExtraCrateInfofile_dummy->Get("tcrateNew_MINUS_tcrateOld_allRuns");
852  tcrateNew_MINUS_tcrateOld_allRuns->Add(h);
853  }
854 
855  key = histExtraCrateInfofile_dummy->FindKey("tcrateNew_MINUS_tcrateOld_allRuns_allCrates");
856  if (key != 0) {
857  TH1F* h = (TH1F*)histExtraCrateInfofile_dummy->Get("tcrateNew_MINUS_tcrateOld_allRuns_allCrates");
858  tcrateNew_MINUS_tcrateOld_allRuns_allCrates->Add(h);
859  }
860 
861  key = histExtraCrateInfofile_dummy->FindKey("num_tcrates_perRun");
862  if (key != 0) {
863  TH1F* h = (TH1F*)histExtraCrateInfofile_dummy->Get("num_tcrates_perRun");
864  num_tcrates_perRun->Add(h);
865  }
866 
867  key = histExtraCrateInfofile_dummy->FindKey("tcrateNew_MINUS_tcrateOld__vs__runNum");
868  if (key != 0) {
869  TH1F* h = (TH1F*)histExtraCrateInfofile_dummy->Get("tcrateNew_MINUS_tcrateOld__vs__runNum");
870  tcrateNew_MINUS_tcrateOld__vs__runNum->Add(h);
871  }
872 
873  histExtraCrateInfofile_dummy->Close();
874 
875  /* After reading in all the histograms, recreate the root file from empty so that the
876  histograms can be made again with the updated values.*/
877  histExtraCrateInfofile = new TFile(extraCratedebugFilename.c_str(), "recreate");
878  }
879 
880 
881 
882  for (int crate_id = crateIDLo; crate_id <= crateIDHi; crate_id++) {
883 
884  B2DEBUG(22, "Start of crate id = " << crate_id);
885 
886  TH1D* h_time_crate = TimevsCrateNoCrateCalibPrevCrystCalib->ProjectionY("h_time_psi_crate", crate_id, crate_id);
887  TH1D* h_time_crate_mask = (TH1D*)h_time_crate->Clone();
888  TH1D* h_time_crate_masked = (TH1D*)h_time_crate->Clone();
889  TH1D* h_time_crate_rebin = (TH1D*)h_time_crate->Clone();
890 
891 
892  // Do rebinning and cleaning of some bins but only if the user selection values call for it since it slows the code down
893  if (meanCleanRebinFactor != 1 || meanCleanCutMinFactor != 1) {
894 
895  h_time_crate_rebin->Rebin(meanCleanRebinFactor);
896  h_time_crate_mask->Scale(0.0); // set all bins to being masked off
897 
898  time_fit_min = hist_tmax; // Set min value to largest possible value so that it gets reset
899  time_fit_max = hist_tmin; // Set max value to smallest possible value so that it gets reset
900 
901  // Find value of bin with max value
902  double histRebin_max = h_time_crate_rebin->GetMaximum();
903 
904  bool maskedOutNonZeroBin = false;
905  // Loop over all bins to find those with content less than a certain threshold. Mask the non-rebinned histogram for the corresponding bins
906  for (int bin = 1; bin <= h_time_crate_rebin->GetNbinsX(); bin++) {
907  for (int rebinCounter = 1; rebinCounter <= meanCleanRebinFactor; rebinCounter++) {
908  int nonRebinnedBinNumber = (bin - 1) * meanCleanRebinFactor + rebinCounter;
909  if (nonRebinnedBinNumber < h_time_crate->GetNbinsX()) {
910  if (h_time_crate_rebin->GetBinContent(bin) >= histRebin_max * meanCleanCutMinFactor) {
911  h_time_crate_mask->SetBinContent(nonRebinnedBinNumber, 1);
912 
913  // Save the lower and upper edges of the rebin histogram time range for fitting purposes
914  double x_lower = h_time_crate_rebin->GetXaxis()->GetBinLowEdge(bin);
915  double x_upper = h_time_crate_rebin->GetXaxis()->GetBinUpEdge(bin);
916  if (x_lower < time_fit_min) {
917  time_fit_min = x_lower;
918  }
919  if (x_upper > time_fit_max) {
920  time_fit_max = x_upper;
921  }
922  } else {
923  if (h_time_crate->GetBinContent(nonRebinnedBinNumber) > 0) {
924  B2DEBUG(22, "Setting bin " << nonRebinnedBinNumber << " from " << h_time_crate_masked->GetBinContent(
925  nonRebinnedBinNumber) << " to 0");
926  maskedOutNonZeroBin = true;
927  }
928  h_time_crate_masked->SetBinContent(nonRebinnedBinNumber, 0);
929  }
930  }
931  }
932  }
933  B2INFO("Bins with non-zero values have been masked out: " << maskedOutNonZeroBin);
934  h_time_crate_masked->ResetStats();
935  h_time_crate_mask->ResetStats();
936 
937  }
938 
939 
940 
941  B2DEBUG(22, "crate loop - projected h_time_psi_crate");
942 
943 
944  double default_mean_crate = h_time_crate_masked->GetMean();
945  double default_mean_crate_unc = h_time_crate_masked->GetMeanError();
946  double default_sigma_crate = h_time_crate_masked->GetStdDev();
947  B2INFO("Fitting crate between " << time_fit_min << " and " << time_fit_max);
948  TF1* gaus = new TF1("func", "gaus(0)", time_fit_min, time_fit_max);
949  gaus->SetParNames("numCrateHisNormalization", "mean", "sigma");
950  double hist_max = h_time_crate->GetMaximum();
951  double stddev = h_time_crate->GetStdDev();
952  double sigma_crate = stddev;
953  double mean_crate = default_mean_crate;
954  gaus->SetParameter(0, hist_max / 2.);
955  gaus->SetParameter(1, mean_crate);
956  gaus->SetParameter(2, sigma_crate);
957 
958  h_time_crate_masked->Fit(gaus, "LQR"); // L for likelihood, R for x-range, Q for fit quiet mode
959 
960  double fit_mean_crate = gaus->GetParameter(1);
961  double fit_mean_crate_unc = gaus->GetParError(1);
962  double fit_sigma_crate = gaus->GetParameter(2);
963 
964  double meanDiff = fit_mean_crate - default_mean_crate;
965  double meanUncDiff = fit_mean_crate_unc - default_mean_crate_unc;
966  double sigmaDiff = fit_sigma_crate - default_sigma_crate;
967 
968  bool good_fit = false;
969 
970  B2DEBUG(22, "Crate id = " << crate_id << " with crate mean = " << default_mean_crate << " +- " << fit_mean_crate_unc);
971 
972  if ((fabs(meanDiff) > 7) ||
973  (fabs(meanUncDiff) > 7) ||
974  (fabs(sigmaDiff) > 7) ||
975  (fit_mean_crate_unc > 3) ||
976  (fit_sigma_crate < 0.1) ||
977  (fit_mean_crate < time_fit_min) ||
978  (fit_mean_crate > time_fit_max)) {
979  B2INFO("Crate id = " << crate_id);
980  B2INFO("fit mean, default mean = " << fit_mean_crate << ", " << default_mean_crate);
981  B2INFO("fit sigma, default sigma = " << fit_sigma_crate << ", " << default_sigma_crate);
982 
983  B2INFO("crate fit mean - hist mean = " << meanDiff);
984  B2INFO("fit mean unc. - hist mean unc. = " << meanUncDiff);
985  B2INFO("fit sigma - hist sigma = " << sigmaDiff);
986  B2INFO("fit_mean_crate = " << fit_mean_crate);
987  B2INFO("time_fit_min = " << time_fit_min);
988  B2INFO("time_fit_max = " << time_fit_max);
989  } else {
990  good_fit = true;
991  }
992 
993  int numEntries = h_time_crate->GetEntries();
994  B2INFO("Number entries = " << numEntries);
995  double database_mean_crate = 0;
996  double database_mean_crate_unc = 0;
997  if ((numEntries >= minNumEntries) && good_fit) {
998  database_mean_crate = fit_mean_crate;
999  database_mean_crate_unc = fit_mean_crate_unc;
1000 
1001  if ((numEntries >= minNumEntriesCrateConvergence) && (fit_mean_crate_unc < 0.1)) {
1002  tcrate_new_goodQuality[crate_id - 1] = true;
1003  }
1004  } else {
1005  database_mean_crate = default_mean_crate;
1006  database_mean_crate_unc = default_mean_crate_unc;
1007  }
1008  if (numEntries == 0) {
1009  database_mean_crate = 0;
1010  database_mean_crate_unc = 0;
1011  }
1012 
1013  tcrate_mean_new[crate_id - 1] = database_mean_crate;
1014  tcrate_mean_unc_new[crate_id - 1] = database_mean_crate_unc;
1015  tcrate_sigma_new[crate_id - 1] = fit_sigma_crate;
1016  tcrate_new_was_set[crate_id - 1] = true;
1017 
1018 
1019  histfile->WriteTObject(h_time_crate, (string("h_time_psi_crate") + to_string(crate_id)).c_str());
1020  histfile->WriteTObject(h_time_crate_masked, (string("h_time_psi_crate_masked") + to_string(crate_id)).c_str());
1021  histfile->WriteTObject(h_time_crate_rebin, (string("h_time_psi_crate_rebinned") + to_string(crate_id)).c_str());
1022 
1023  delete gaus;
1024  }
1025 
1026  B2DEBUG(22, "crate histograms made");
1027 
1028 
1029  // Save database for crates
1030  // Vector of time offsets to be saved in the database.
1031  vector<float> t_offsets_crate;
1032  // Vector of time offset uncertainties to be saved in the database.
1033  vector<float> t_offsets_crate_unc;
1034  for (int i = 1; i <= ECLElementNumbers::c_NCrystals; i++) {
1035  t_offsets_crate.push_back(0);
1036  t_offsets_crate_unc.push_back(0);
1037  }
1038 
1039 
1040  for (int crys_id = 1; crys_id <= ECLElementNumbers::c_NCrystals; crys_id++) {
1041  int crate_id_from_crystal = crystalMapper->getCrateID(crys_id);
1042  if (tcrate_new_was_set[crate_id_from_crystal - 1]) {
1043  t_offsets_crate[crys_id - 1] = tcrate_mean_new[crate_id_from_crystal - 1] / TICKS_TO_NS;
1044  t_offsets_crate_unc[crys_id - 1] = tcrate_mean_unc_new[crate_id_from_crystal - 1] / TICKS_TO_NS;
1045 
1046  } else {
1047  t_offsets_crate[crys_id - 1] = tcrate_mean_prev[crate_id_from_crystal - 1];
1048  B2INFO("used old crate mean but zeroed uncertainty since not saved in root file");
1049  }
1050  }
1051 
1052 
1053  // Fill histograms with the difference in the tcrate values
1054  if (crateIDLo <= crateIDHi) {
1055  for (int crate_id = crateIDLo; crate_id <= crateIDHi; crate_id++) {
1056  // tcrate_mean_new already in ns, but tcrate_mean_prev in ticks.
1057  double tCrateDiff_ns = tcrate_mean_new[crate_id - 1] - (tcrate_mean_prev[crate_id - 1] * TICKS_TO_NS);
1058  B2INFO("Crate " << crate_id << ": tcrate new - previous iteration = "
1059  << tcrate_mean_new[crate_id - 1]
1060  << " - " << tcrate_mean_prev[crate_id - 1] * TICKS_TO_NS
1061  << " = " << tCrateDiff_ns << " ns");
1062  tcrateNew_MINUS_tcrateOld__crateID->SetBinContent(crate_id, tCrateDiff_ns);
1063  tcrateNew_MINUS_tcrateOld__crateID->SetBinError(crate_id, 0);
1064  tcrateNew_MINUS_tcrateOld__crateID->ResetStats();
1065 
1066  tcrateNew_MINUS_tcrateOld->Fill(tCrateDiff_ns);
1067 
1068  // Save the histograms monitoring the change between iterations
1069  tcrateNew_MINUS_tcrateOld_allRuns_allCrates->Fill(tCrateDiff_ns);
1070  if (tcrate_new_goodQuality[crate_id - 1]) {
1071  tcrateNew_MINUS_tcrateOld_allRuns->Fill(tCrateDiff_ns);
1072  num_tcrates_perRun->Fill(minRunNum);
1073  tcrateNew_MINUS_tcrateOld__vs__runNum->Fill(minRunNum, tCrateDiff_ns);
1074  }
1075  }
1076 
1077  // Save the histograms to the output root file
1078  histfile->WriteTObject(tcrateNew_MINUS_tcrateOld__crateID.get(), "tcrateNew_MINUS_tcrateOld__crateID");
1079  histfile->WriteTObject(tcrateNew_MINUS_tcrateOld.get(), "tcrateNew_MINUS_tcrateOld");
1080 
1081  // Save the histograms ot the crate iterations file
1082  histExtraCrateInfofile->WriteTObject(tcrateNew_MINUS_tcrateOld_allRuns.get(), "tcrateNew_MINUS_tcrateOld_allRuns");
1083  histExtraCrateInfofile->WriteTObject(tcrateNew_MINUS_tcrateOld_allRuns_allCrates.get(),
1084  "tcrateNew_MINUS_tcrateOld_allRuns_allCrates");
1085  histExtraCrateInfofile->WriteTObject(num_tcrates_perRun.get(), "num_tcrates_perRun");
1086  histExtraCrateInfofile->WriteTObject(tcrateNew_MINUS_tcrateOld__vs__runNum.get(), "tcrateNew_MINUS_tcrateOld__vs__runNum");
1087  }
1088 
1089 
1090  ECLCrystalCalib* BhabhaTCrateCalib = new ECLCrystalCalib();
1091  BhabhaTCrateCalib->setCalibVector(t_offsets_crate, t_offsets_crate_unc);
1092 
1093 
1094  // Save the information to the payload if there is at least one crate
1095  // begin calibrated.
1096  if (crateIDLo <= crateIDHi) {
1097  saveCalibration(BhabhaTCrateCalib, "ECLCrateTimeOffset");
1098  B2DEBUG(22, "crate payload made");
1099 
1100  histExtraCrateInfofile->Close();
1101  }
1102 
1103 
1104  int tree_crateid;
1105  int tree_runNum;
1106  double tree_tcrate_mean;
1107  double tree_tcrate_mean_unc;
1108  double tree_tcrate_sigma;
1109  double tree_tcrate_meanPrev;
1110 
1111  tree_crate->Branch("runNum", &tree_runNum)->SetTitle("Run number, 0..infinity and beyond!");
1112  tree_crate->Branch("crateid", &tree_crateid)->SetTitle("Crate id, 1..52");
1113  tree_crate->Branch("tcrate", &tree_tcrate_mean)->SetTitle("Crate time offset mean, tcrate, ns");
1114  tree_crate->Branch("tcratePrev", &tree_tcrate_meanPrev)->SetTitle("Previous crate time offset mean, tcrate, ns");
1115  tree_crate->Branch("tcrate_unc", &tree_tcrate_mean_unc)->SetTitle("Error of time tcrate mean, ns.");
1116  tree_crate->Branch("tcrate_sigma", &tree_tcrate_sigma)->SetTitle("Sigma of time tcrate distribution, ns");
1117  tree_crate->SetAutoSave(10);
1118 
1119 
1120  for (auto expRun : getRunList()) {
1121  // Key command to make sure your DBObjPtrs are correct
1122  B2INFO("run num, exp num: " << expRun.second << ", " << expRun.first);
1123  int runNumber = expRun.second;
1124 
1125  for (int crate_id = 1; crate_id <= 52; crate_id++) {
1126  if (tcrate_new_was_set[crate_id - 1]) {
1127  tree_runNum = runNumber;
1128  tree_crateid = crate_id;
1129  tree_tcrate_mean = tcrate_mean_new[crate_id - 1];
1130  tree_tcrate_mean_unc = tcrate_mean_unc_new[crate_id - 1];
1131  tree_tcrate_sigma = tcrate_sigma_new[crate_id - 1];
1132  tree_tcrate_meanPrev = tcrate_mean_prev[crate_id - 1] * TICKS_TO_NS;
1133  tree_crate->Fill();
1134  }
1135  }
1136  }
1137 
1138  B2DEBUG(22, "end of crate corrections .....");
1139 
1140  tree_crystal->Write();
1141  tree_crate->Write();
1142 
1143  histfile->Close();
1144 
1145  B2INFO("Finished talgorithm");
1146  return c_OK;
1147 }
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void updateDBObjPtrs(const unsigned int event, const int run, const int experiment)
Updates any DBObjPtrs by calling update(event) for DBStore.
@ c_OK
Finished successfuly =0 in Python.
@ c_Failure
Failed =3 in Python.
const std::vector< Calibration::ExpRun > & getRunList() const
Get the list of runs for which calibration is called.
Singleton class to cache database objects.
Definition: DBStore.h:31
static DataStore & Instance()
Instance of singleton Store.
Definition: DataStore.cc:54
void setInitializeActive(bool active)
Setter for m_initializeActive.
Definition: DataStore.cc:94
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
General DB object to store one reference crystal per per ECL crate for calibration purposes.
void setCalibVector(const std::vector< short > &refCrystals)
Set vector of constants with uncertainties.
This class provides access to ECL channel map that is either a) Loaded from the database (see ecl/dbo...
static double getRF()
See m_rf.
int crateIDHi
Fit crates with crateID0 in the inclusive range [crateIDLo,crateIDHi].
int cellIDHi
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
int cellIDLo
Fit crystals with cellID0 in the inclusive range [cellIDLo,cellIDHi].
bool debugOutput
Save every histogram and fitted function to debugFilename.
double meanCleanRebinFactor
Rebinning factor for mean calculation.
int crateIDLo
Fit crates with crateID0 in the inclusive range [crateIDLo,crateIDHi].
double meanCleanCutMinFactor
After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the ma...
bool savePrevCrysPayload
Save the previous crystal payload values for comparison.
bool readPrevCrysPayload
Read the previous crystal payload values for comparison.
int refCrysPerCrate[52]
List of crystals, one per crate, used as reference time for crystal time calibration.
std::string debugFilenameBase
Name of file with debug output, eclBhabhaTAlgorithm.root by default.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool construct(Args &&... params)
Construct an object of type T in this StoreObjPtr, using the provided constructor arguments.
Definition: StoreObjPtr.h:119
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79
const int c_NCrystals
Number of crystals.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

◆ execute()

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorihtm.

Definition at line 164 of file CalibrationAlgorithm.h.

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

Member Data Documentation

◆ meanCleanCutMinFactor

double meanCleanCutMinFactor

After rebinning, create a mask for bins that have values less than meanCleanCutMinFactor times the maximum bin value.

Expand mask and apply to non-rebinned histogram.

Definition at line 39 of file eclBhabhaTAlgorithm.h.


The documentation for this class was generated from the following files: