Expert for the TMVA MVA method.
More...
#include <TMVA.h>
|
std::unique_ptr< TMVA::Reader > | m_expert |
| TMVA::Reader pointer.
|
|
std::vector< float > | m_input_cache |
| Input Cache for TMVA::Reader: Otherwise we would have to set the branch addresses in each apply call.
|
|
std::vector< float > | m_spectators_cache |
| Spectators Cache for TMVA::Reader: Otherwise we would have to set the branch addresses in each apply call.
|
|
GeneralOptions | m_general_options |
| General options loaded from the weightfile.
|
|
Expert for the TMVA MVA method.
Definition at line 284 of file TMVA.h.
◆ apply()
virtual std::vector<float> apply |
( |
Dataset & |
test_data | ) |
const |
|
pure virtualinherited |
Apply this expert onto a dataset.
- Parameters
-
Implemented in TrivialExpert, TMVAExpertRegression, TMVAExpertMulticlass, TMVAExpertClassification, ReweighterExpert, RegressionExpert< BaseClassifierExpert, RegressionClassifierOptions >, PythonExpert, PDFExpert, FastBDTExpert, FANNExpert, and CombinationExpert.
◆ applyMulticlass()
virtual std::vector<std::vector<float> > applyMulticlass |
( |
Dataset & |
test_data | ) |
const |
|
inlinevirtualinherited |
Apply this m_expert onto a dataset.
Multiclass mode. Not pure virtual, since not all derived classes to re-implement this.
- Parameters
-
- Returns
- vector of size N=test_data.getNumberOfEvents() with N=m_classes.size() scores for each event in the dataset.
Reimplemented in TrivialExpert, TMVAExpertMulticlass, and PythonExpert.
Definition at line 56 of file Expert.h.
◆ load()
The documentation for this class was generated from the following files: