Expert for the TMVA Regression MVA method.
More...
#include <TMVA.h>
Expert for the TMVA Regression MVA method.
Definition at line 362 of file TMVA.h.
◆ apply()
std::vector< float > apply |
( |
Dataset & |
test_data | ) |
const |
|
overridevirtual |
Apply this m_expert onto a dataset.
- Parameters
-
Implements Expert.
Definition at line 542 of file TMVA.cc.
◆ applyMulticlass()
virtual std::vector<std::vector<float> > applyMulticlass |
( |
Dataset & |
test_data | ) |
const |
|
inlinevirtualinherited |
Apply this m_expert onto a dataset.
Multiclass mode. Not pure virtual, since not all derived classes to re-implement this.
- Parameters
-
- Returns
- vector of size N=test_data.getNumberOfEvents() with N=m_classes.size() scores for each event in the dataset.
Reimplemented in TrivialExpert, TMVAExpertMulticlass, and PythonExpert.
Definition at line 56 of file Expert.h.
◆ load()
Load the expert from a Weightfile.
- Parameters
-
weightfile | containing all information necessary to build the m_expert |
Reimplemented from TMVAExpert.
Definition at line 476 of file TMVA.cc.
The documentation for this class was generated from the following files: