Belle II Software  release-08-01-10
eclBhabhaTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclBhabhaTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclBhabhaTimeCalibrationValidationCollectorModule:
Collaboration diagram for eclBhabhaTimeCalibrationValidationCollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
std::unique_ptr< Belle2::ECL::ECLChannelMapperm_crystalMapper
 ECL object for keeping track of mapping between crystals and crates etc. More...
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
StoreObjPtr< SoftwareTriggerResultm_TrgResult
 Store array for Trigger selection.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0. More...
 
TTree * m_dbg_tree_electronClusters
 debug output tree for per electron cluster
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
TTree * m_dbg_tree_run
 debug output tree for per run
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_time_fromE1 = -1
 Calibrated time - second highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_E1 = -1
 second highest E cluster energy
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 database object
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
DBObjPtr< Belle2::ECLChannelMapm_channelMapDB
 Mapper of ecl channels to various other objects, like crates. More...
 
int m_tree_crateid = -1
 Crate ID for debug TTree output.
 
double m_tree_tcrate = -1
 Crate time for debug TTree output.
 
double m_tree_tcrate_unc = -1
 Crate time uncertainty for debug TTree output.
 
int m_tree_PreviousRun = -1
 Run number for the previous run for debug TTree output.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_electron_clust = -1
 Electron cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
bool skipTrgSel
 flag to skip the trigger skim selection in the module
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 41 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

< vector derived from DB object

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 208 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

209 {
210  int cutIndexPassed = 0;
211  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
212  B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
213 
214 
215  // --- Check the trigger skim is the type that has two tracks
216 
217  /* If we skip the trigger skim selection then still fill the cutflow histogram
218  just so that the positions don't change. */
219  if (!skipTrgSel) {
220  if (!m_TrgResult.isValid()) {
221  B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
222  return;
223  }
224 
225  /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
226  to look at the 2 track bhabha events. */
227  const std::map<std::string, int>& fresults = m_TrgResult->getResults();
228  if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
229  B2WARNING("Can't find required bhabha trigger identifier");
230  return;
231  }
232 
233  const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
235  B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
236 
237  if (!eBhabha) {
238  return;
239  }
240  }
241 
242  /* Fill the histgram showing that the trigger skim cut passed OR that we
243  are skipping this selection. */
244  cutIndexPassed++;
245  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
246  B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
247 
248 
249 
250 
251 
252  /* Use ECLChannelMapper to get other detector indices for the crystals
253  For conversion from CellID to crate, shaper, and channel ids.
254  The initialization function automatically checks to see if the
255  object has been initialized and ifthe payload has changed and
256  thus needs updating. */
257  bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
258  if (ECLchannelMapHasChanged) {
259  B2INFO("eclBhabhaTimeCalibrationValidationCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged",
260  ECLchannelMapHasChanged));
261  if (!m_crystalMapper->initFromDB()) {
262  B2FATAL("eclBhabhaTimeCalibrationValidationCollectorModule::collect() : Can't initialize eclChannelMapper!");
263  }
264  }
265 
266 
267 
268 
269 
270  B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
271 
272  if (m_CrateTimeDB.hasChanged()) {
273  m_CrateTime = m_CrateTimeDB->getCalibVector();
274  m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
275  }
276 
277  B2DEBUG(25, "eclBhabhaTimeCalibrationValidationCollector:: loaded ECLCrateTimeOffset from the database"
278  << LogVar("IoV", m_CrateTimeDB.getIoV())
279  << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
280 
281  // Conversion coefficient from ADC ticks to nanoseconds
282  // TICKS_TO_NS ~ 0.4931 ns/clock tick
283  // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
284  const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
285 
286 
287  vector<float> Crate_time_ns(52, 0.0);
288  vector<float> Crate_time_unc_ns(52, 0.0);
290  // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
291  for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
292  int crateID_temp = m_crystalMapper->getCrateID(crysID);
293  Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
294  Crate_time_unc_ns[crateID_temp - 1] = m_CrateTimeUnc[crysID] * TICKS_TO_NS;
295  }
296 
297 
298 
299  // Storage crystal energies
301  for (auto& eclCalDigit : m_eclCalDigitArray) {
302  int tempCrysID = eclCalDigit.getCellId() - 1;
303  m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
304  }
305 
306 
307  // Getting the event t0 using the full event t0 rather than from the CDC specifically
308 
309  double evt_t0 = -1000 ;
310  double evt_t0_unc = -1000 ;
311 
312  // Determine if there is an event t0 to use and then extract the information about it
313  if (m_eventT0.isOptional()) {
314  if (!m_eventT0.isValid()) {
315  return;
316  }
317  if (!m_eventT0->hasEventT0()) {
318  return;
319  } else {
320  // Overall event t0 (combination of multiple event t0s from different detectors)
321  evt_t0 = m_eventT0->getEventT0() ;
322  evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
323  }
324  B2DEBUG(26, "Found event t0") ;
325  }
326 
327 
328  //---------------------------------------------------------------------
329  //..Some utilities
330  PCmsLabTransform boostrotate;
331 
332  //---------------------------------------------------------------------
333  //..Track properties. Use pion (211) mass hypothesis,
334  // which is the only particle hypothesis currently available???
335  double maxp[2] = {0., 0.};
336  int maxiTrk[2] = { -1, -1};
337  int nTrkAll = tracks.getEntries() ;
338 
339  int nTrkLoose = 0 ;
340  int nTrkTight = 0 ;
343  /* Loop over all the tracks to define the tight and loose selection tracks
344  We will select events with only 2 tight tracks and no additional loose tracks.
345  Tight tracks are a subset of looses tracks. */
346  for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
347  // Get track biasing towards the particle being a pion based on what particle types
348  // are used for reconstruction at this stage.
349  const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
350  if (not tempTrackFit) {continue ;}
351 
352  // Collect track info to be used for categorizing
353  short charge = tempTrackFit->getChargeSign() ;
354  double z0 = tempTrackFit->getZ0() ;
355  double d0 = tempTrackFit->getD0() ;
356  int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
357  double p = tempTrackFit->getMomentum().R() ;
358 
359  /* Test if loose track */
360 
361  // d0 and z0 cuts
362  if (fabs(d0) > m_looseTrkD0) {
363  continue;
364  }
365  if (fabs(z0) > m_looseTrkZ0) {
366  continue;
367  }
368  // Number of hits in the CDC
369  if (nCDChits < 1) {
370  continue;
371  }
372  nTrkLoose++;
373 
374 
375 
376  /* Test if the loose track is also a tight track */
377 
378  // Number of hits in the CDC
379  if (nCDChits < 20) {
380  continue;
381  }
382  // d0 and z0 cuts
383  if (fabs(d0) > m_tightTrkD0) {
384  continue;
385  }
386  if (fabs(z0) > m_tightTrkZ0) {
387  continue;
388  }
389  nTrkTight++;
390 
391  // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
392  //..Find the maximum p negative [0] and positive [1] tracks
393  int icharge = 0;
394  if (charge > 0) {icharge = 1;}
395  if (p > maxp[icharge]) {
396  maxp[icharge] = p;
397  maxiTrk[icharge] = iTrk;
398  }
399 
400  }
401  /* After that last section the numbers of loose and tight tracks are known as well as the
402  index of the loose tracks that have the highest p negatively charged and highest p positively
403  charged tracks as measured in the centre of mass frame */
404 
405 
406  if (nTrkTight != 2) {
407  return;
408  }
409  // There are exactly two tight tracks
410  cutIndexPassed++;
411  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
412  B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
413 
414 
415  if (nTrkLoose != 2) {
416  return;
417  }
418  // There are exactly two loose tracks as well, i.e. no additional loose tracks
419  cutIndexPassed++ ;
420  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
421  B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
422  /* Determine if the two tracks have the opposite electric charge.
423  We know this because the track indices stores the max pt track in [0] for negatively charged track
424  and [1] fo the positively charged track. If both are filled then both a negatively charged
425  and positively charged track were found. */
426  bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
427  if (!oppositelyChargedTracksPassed) {
428  return;
429  }
430  // The two tracks have the opposite electric charges.
431  cutIndexPassed++;
432  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
433  B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
434 
435 
436 
437  //---------------------------------------------------------------------
438  /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
439  multiple clusters to each track and find the crystal with the maximum energy within all
440  the sets of clusters associated to the tracks. Extract the good cluster times.*/
441  double trkEClustLab[2] = {0., 0.};
442  double trkEClustCOM[2] = {0., 0.};
443  double trkpLab[2];
444  double trkpCOM[2];
445  ROOT::Math::PxPyPzEVector trkp4Lab[2];
446  ROOT::Math::PxPyPzEVector trkp4COM[2];
447 
448  // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
449  int numClustersPerTrack[2] = { 0, 0 };
450  double E_DIV_p[2];
451 
452  vector<double> goodClustTimes ;
453  vector<double> goodClust_dt99 ;
454  vector<double> goodClustE ;
455  vector<int> goodClustMaxEcrys_cid ;
456 
457  for (int icharge = 0; icharge < 2; icharge++) {
458  if (maxiTrk[icharge] > -1) {
459  B2DEBUG(22, "looping over the 2 max pt tracks");
460 
461  const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
462  if (not tempTrackFit) {continue ;}
463 
464  trkp4Lab[icharge] = tempTrackFit->get4Momentum();
465  trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
466  trkpLab[icharge] = trkp4Lab[icharge].P();
467  trkpCOM[icharge] = trkp4COM[icharge].P();
468 
469 
470  /* For each cluster associated to the current track, sum up the energies to get the total
471  energy of all clusters associated to the track and find which crystal has the highest
472  energy from all those clusters*/
473  auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
474  for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
475 
476  B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
477  auto cluster = eclClusterRelationsFromTracks[clusterIdx];
478 
479  if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
480  numClustersPerTrack[icharge]++;
481  double eClust = cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
482  double electronTime = cluster->getTime();
483  bool badElectronTime = cluster->hasFailedFitTime();
484  bool badElectronTimeResolution = cluster->hasFailedTimeResolution();
485  if ((fabs(electronTime) < m_timeAbsMax) &&
486  (!badElectronTime) &&
487  (!badElectronTimeResolution)) {
488  trkEClustLab[icharge] += eClust ;
489  short cid = cluster->getMaxECellId() ;
490  goodClustMaxEcrys_cid.push_back(cid) ;
491  goodClustTimes.push_back(electronTime) ;
492  goodClust_dt99.push_back(cluster->getDeltaTime99()) ;
493  goodClustE.push_back(eClust);
494  }
495  }
496  }
497  trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
498 
499  // Check both electrons to see if their cluster energy / track momentum is good.
500  // The Belle II physics book shows that this is the main way of separating electrons from other particles
501  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
502  E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
503 
504  }
505  }
506  /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
507  for the two saved track indices for both the lab and COM frames.
508  The crystal with the maximum energy, one associated to each track, is recorded*/
509  B2DEBUG(26, "Extracted time information and E/p for the tracks") ;
510 
511 
512 
513  /* Cut on the number of ECL cluster connected to tracks
514 
515  THIS IS DIFFERENT FROM THE CODE THAT PERFORMS THE CALIBRATIONS. THIS VALIDATIONS REQUIRES
516  THAT THERE ARE EXACTLY TWO CLUSTERS ASSOCIATED TO THE TRACKS WHILE THE CALIBRATION
517  CODE ALLOWS FOR MORE THAN ONE CLUSTER PER TRACK. THIS VALIDATION ALSO DOES NOT CUT ON THE
518  NUMBER OF EXTRA CLUSTERS NOT ASSOCIATED TO THE 2 TRACKS, WHICH IS A LOOSER CUT THAN USED
519  TO PERFORM THE CALIBRATION. */
520  long unsigned int numGoodElectronClusters_cut = 2 ;
521  if (goodClustTimes.size() != numGoodElectronClusters_cut) {
522  return ;
523  }
524  // There is exactly two ECL clusters connected to tracks in the event
525  cutIndexPassed++ ;
526  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
527  B2DEBUG(22, "Cutflow: Exactly " << numGoodElectronClusters_cut
528  << " good clusters connected to tracks: index = " << cutIndexPassed);
529 
530 
531  // Check both electrons to see if their cluster energy / track momentum is good.
532  // The Belle II physics book shows that this is the main way of separating electrons from other particles
533  // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
534  bool E_DIV_p_instance_passed[2] = {false, false};
535  double E_DIV_p_CUT = 0.7;
536  for (int icharge = 0; icharge < 2; icharge++) {
537  E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
538  }
539  if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
540  return;
541  }
542  // E/p sufficiently large
543  cutIndexPassed++;
544  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
545  B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
546 
547 
548 
549  // Cut on the invariant mass of the tracks in the event
550  double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
551  double invMass_CUT = 0.9;
552 
553  bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
554  if (!invMassCutsPassed) {
555  return;
556  }
557  // Invariable mass of the two tracks are above the minimum
558  cutIndexPassed++;
559  getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
560  B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
561  " : index = " << cutIndexPassed);
562 
563 
564  B2DEBUG(22, "Event passed all cuts");
565 
566 
567  // Fill the histogram for the event level variables
568  getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
569 
570  bool isCDCt0 = m_eventT0->isCDCEventT0();
571  bool isECLt0 = m_eventT0->isECLEventT0();
572  string t0Detector = "UNKNOWN... WHY?";
573  if (isCDCt0) {
574  t0Detector = "CDC" ;
575  } else if (isECLt0) {
576  t0Detector = "ECL" ;
577  }
578 
579  B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" << isECLt0 << " t0 from " <<
580  t0Detector);
581 
582 
583  //=== For each good electron cluster in the processed event and fill histogram.
584  for (long unsigned int i = 0 ; i < goodClustTimes.size() ; i++) {
585  getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
586  getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i], 1) ;
587  getObjectPtr<TH2F>("clusterTime_run")->Fill(m_EventMetaData->getRun() + 0.001, goodClustTimes[i], 1) ;
588  getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
589  getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
590 
591 
592  //== Save debug TTree with detailed information if necessary.
593  if (m_saveTree) {
594 
595  m_tree_time = goodClustTimes[i] ;
596  m_tree_t0 = evt_t0 ;
597  m_tree_t0_unc = evt_t0_unc ;
598  m_E_electron_clust = goodClustE[i] ;
599  m_NtightTracks = nTrkTight ;
600  m_tree_evt_num = m_EventMetaData->getEvent() ;
601  m_tree_run = m_EventMetaData->getRun() ;
602  m_tree_cid = goodClustMaxEcrys_cid[i] ;
603  m_tree_dt99 = goodClust_dt99[i] ;
604 
606 
607  }
608  }
609  B2DEBUG(26, "Filled cluster tree") ;
610 
611  //=== Fill histogram for cluster time difference of the two electrons
612  double tDiff;
613  if (goodClustE[0] > goodClustE[1]) {
614  tDiff = goodClustTimes[0] - goodClustTimes[1];
615  } else {
616  tDiff = goodClustTimes[1] - goodClustTimes[0];
617  }
618 
619  getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(tDiff) ;
620 
621 
622 
623  if (m_saveTree) {
624  m_tree_t0 = evt_t0 ;
625  m_tree_t0_unc = evt_t0_unc ;
626  m_tree_evt_num = m_EventMetaData->getEvent() ;
627  m_tree_run = m_EventMetaData->getRun() ;
628  m_NtightTracks = nTrkTight ;
629  m_tree_E0 = goodClustE[0] ;
630  m_tree_E1 = goodClustE[1] ;
631  m_tree_time_fromE0 = goodClustTimes[0] ;
632  m_tree_time_fromE1 = goodClustTimes[1] ;
633 
634  m_dbg_tree_event->Fill() ;
635 
636 
637  int runNum = m_EventMetaData->getRun();
638  if (m_tree_PreviousRun != runNum) {
639  for (int icrate = 1; icrate <= 52; icrate++) {
640  m_tree_run = runNum ;
641  m_tree_crateid = icrate ;
642  m_tree_tcrate = Crate_time_ns[icrate] ;
643  m_tree_tcrate_unc = Crate_time_unc_ns[icrate] ;
644 
645  m_dbg_tree_run->Fill() ;
646  }
648  }
649  }
650 
651  B2DEBUG(26, "Filled event tree") ;
652 
653 }
static const ChargedStable pion
charged pion particle
Definition: Const.h:652
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
static double getRF()
See m_rf.
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
int m_tree_PreviousRun
Run number for the previous run for debug TTree output.
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
Class to store variables with their name which were sent to the logging service.
@ c_accept
Accept this event.
const int c_NCrystals
Number of crystals.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, StorageRootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ m_channelMapDB

DBObjPtr<Belle2::ECLChannelMap> m_channelMapDB
private

Mapper of ecl channels to various other objects, like crates.

database object

Definition at line 116 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_crystalMapper

std::unique_ptr< Belle2::ECL::ECLChannelMapper> m_crystalMapper
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLChannelMapper>()

ECL object for keeping track of mapping between crystals and crates etc.

Definition at line 75 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 85 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files: