Belle II Software  release-08-01-10
eclGammaGammaECollectorModule Class Reference

Calibration collector module that uses e+e- --> gamma gamma to do ECL single crystal energy calibration. More...

#include <eclGammaGammaECollectorModule.h>

Inheritance diagram for eclGammaGammaECollectorModule:
Collaboration diagram for eclGammaGammaECollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclGammaGammaECollectorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
void prepare () override
 Define histograms and read payloads from DB. More...
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

double m_thetaLabMinDeg {0.}
 Parameters to control the job. More...
 
double m_thetaLabMaxDeg {180.}
 maximum photon theta in lab (180 degrees)
 
double m_minPairMass
 minimum invariant mass of the pair of photons (9 GeV/c^2)
 
double m_mindPhi
 minimum delta phi between clusters (179 deg)
 
double m_maxTime
 maximum photon (time - <t>)/dt99 (1)
 
bool m_measureTrueEnergy
 use eclCalDigit to determine MC deposited energy (false)
 
bool m_requireL1
 require events to satisfy a level 1 trigger (true)
 
StoreArray< Trackm_trackArray
 Required arrays. More...
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreObjPtr< EventMetaDatam_evtMetaData
 dataStore EventMetaData
 
StoreObjPtr< TRGSummarym_TRGResults
 dataStore TRGSummary
 
double thetaLabMin { -1.0}
 Some other useful quantities. More...
 
double thetaLabMax { -1.0}
 m_thetaLabMaxDeg converted to radians (coneversion in Module::init)
 
bool storeCalib = true
 force the input calibration constants to be saved first event
 
std::vector< float > EperCrys
 ECL digit energy for each crystal.
 
double minTrkpt = 0.3
 (GeV/c) minimum pt of a good track
 
double maxZ0 = 4.
 (cm) maximum abs(Z0) of a good track
 
double maxD0 = 2.
 (cm) maximum abs(D0) of a good track
 
double minpValue = 0.001
 minimum p value of a good track
 
int minCDChits = 5
 minimum CDC hits for a good track
 
DBObjPtr< ECLCrystalCalibm_ECLExpGammaGammaE
 Expected energies from database.
 
std::vector< float > ExpGammaGammaE
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsCalib
 Electronics calibration from database.
 
std::vector< float > ElectronicsCalib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_GammaGammaECalib
 Existing single crystal calibration from DB; will be updated by CAF.
 
std::vector< float > GammaGammaECalib
 vector obtained from DB object
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calibration collector module that uses e+e- --> gamma gamma to do ECL single crystal energy calibration.

Definition at line 29 of file eclGammaGammaECollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.



Record the input database constants for the first call


Check if DB objects have changed

Verify that we have valid values for the starting calibrations


If requested, require a level 1 trigger

Event selection. First, require zero good tracks. Use pion (211) mass hypothesis.

Find the two maximum energy photon clusters

Selection criteria using the two clusters

Require that the two are in the specified angular region

And both have reasonably good times

And that their invariant mass is greater than specified value

And that they are back-to-back in phi

Record ECL digit amplitude as a function of CrysID when calibrating

GammaGammaECalib is negative if the previous iteration of the algorithm was unable to calculate a value. In this case, the input value has been stored with a minus sign

Expected energies, get the energy of the most energetic crystal from the cluster

ExpGammaGammaE is negative if the algorithm was unable to calculate a value. In this case, the nominal input value has been stored with a minus sign

Reimplemented from CalibrationCollectorModule.

Definition at line 161 of file eclGammaGammaECollectorModule.cc.

162 {
163 
165  if (storeCalib) {
166  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
167  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysID + 0.001, ExpGammaGammaE[crysID]);
168  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysID + 0.001, ElectronicsCalib[crysID]);
169  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysID + 0.001, GammaGammaECalib[crysID]);
170  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysID + 0.001);
171  }
172  storeCalib = false;
173  }
174 
177  bool newConst = false;
178  if (m_ECLExpGammaGammaE.hasChanged()) {
179  newConst = true;
180  B2INFO("ECLExpGammaGammaE has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
181  ExpGammaGammaE = m_ECLExpGammaGammaE->getCalibVector();
182  }
183  if (m_ElectronicsCalib.hasChanged()) {
184  newConst = true;
185  B2INFO("ECLCrystalElectronics has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
186  ElectronicsCalib = m_ElectronicsCalib->getCalibVector();
187  }
188  if (m_GammaGammaECalib.hasChanged()) {
189  newConst = true;
190  B2INFO("ECLCrystalEnergyGammaGamma has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
191  GammaGammaECalib = m_GammaGammaECalib->getCalibVector();
192  }
193 
194  if (newConst) {
195  for (int ic = 1; ic < 9000; ic += 1000) {
196  B2INFO("DB constants for cellID=" << ic << ": ExpGammaGammaE = " << ExpGammaGammaE[ic - 1] << " ElectronicsCalib = " <<
197  ElectronicsCalib[ic - 1]
198  << " GammaGammaECalib = " << GammaGammaECalib[ic - 1]);
199  }
200 
202  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
203  if (ElectronicsCalib[crysID] <= 0) {B2FATAL("eclGammaGammaECollector: ElectronicsCalib = " << ElectronicsCalib[crysID] << " for crysID = " << crysID);}
204  if (ExpGammaGammaE[crysID] == 0) {B2FATAL("eclGammaGammaECollector: ExpGammaGammaE = 0 for crysID = " << crysID);}
205  if (GammaGammaECalib[crysID] == 0) {B2FATAL("eclGammaGammaECollector: GammaGammaECalib = 0 for crysID = " << crysID);}
206  }
207  }
208 
211  if (m_requireL1) {
212  unsigned int L1TriggerResults = m_TRGResults->getTRGSummary(0);
213  if (L1TriggerResults == 0) {return;}
214  }
215 
216  //------------------------------------------------------------------------
218  int nGoodTrk = 0;
219  for (auto& track : m_trackArray) {
220  const TrackFitResult* temptrackFit = track.getTrackFitResult(Const::ChargedStable(211));
221  if (temptrackFit) {
222  double pt = temptrackFit->getTransverseMomentum();
223  double z0 = temptrackFit->getZ0();
224  double d0 = temptrackFit->getD0();
225  double pValue = temptrackFit->getPValue();
226  int nCDChits = temptrackFit->getHitPatternCDC().getNHits();
227  if (pt > minTrkpt && abs(z0) < maxZ0 && abs(d0) < maxD0 && pValue > minpValue && nCDChits >= minCDChits) {nGoodTrk++;}
228  }
229  }
230  if (nGoodTrk > 0) {return;}
231 
232  //------------------------------------------------------------------------
235  int icMax[2] = { -1, -1};
236  double maxClustE[2] = { -1., -1.};
237  int nclust = m_eclClusterArray.getEntries();
238  for (int ic = 0; ic < nclust; ic++) {
239  if (m_eclClusterArray[ic]->hasHypothesis(usePhotons)) {
240  double eClust = m_eclClusterArray[ic]->getEnergy(usePhotons);
241  if (eClust > maxClustE[0]) {
242  maxClustE[1] = maxClustE[0];
243  icMax[1] = icMax[0];
244  maxClustE[0] = eClust;
245  icMax[0] = ic;
246  } else if (eClust > maxClustE[1]) {
247  maxClustE[1] = eClust;
248  icMax[1] = ic;
249  }
250  }
251  }
252 
253  //------------------------------------------------------------------------
256  if (icMax[0] == -1 || icMax[1] == -1) {return;}
257  double theta0 = m_eclClusterArray[icMax[0]]->getTheta();
258  double theta1 = m_eclClusterArray[icMax[1]]->getTheta();
259  if (theta0 < thetaLabMin || theta0 > thetaLabMax || theta1 < thetaLabMin || theta1 > thetaLabMax) {return;}
260 
262  double t0 = m_eclClusterArray[icMax[0]]->getTime();
263  double t990 = m_eclClusterArray[icMax[0]]->getDeltaTime99();
264  double t1 = m_eclClusterArray[icMax[1]]->getTime();
265  double t991 = m_eclClusterArray[icMax[1]]->getDeltaTime99();
266  double taverage = (t0 / (t990 * t990) + t1 / (t991 * t991)) / (1. / (t990 * t990) + 1. / (t991 * t991));
267  if (abs(t0 - taverage) > t990 * m_maxTime || abs(t1 - taverage) > t991 * m_maxTime) {return;}
268 
270  ClusterUtils cUtil;
271  const ROOT::Math::XYZVector clustervertex = cUtil.GetIPPosition();
272 
273  double phi0 = m_eclClusterArray[icMax[0]]->getPhi();
274  ROOT::Math::XYZVector p30;
275  VectorUtil::setMagThetaPhi(p30, maxClustE[0], theta0, phi0);
276  const ROOT::Math::PxPyPzEVector p40 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[0]], clustervertex, usePhotons);
277 
278  double phi1 = m_eclClusterArray[icMax[1]]->getPhi();
279  ROOT::Math::XYZVector p31;
280  VectorUtil::setMagThetaPhi(p31, maxClustE[1], theta1, phi1);
281  const ROOT::Math::PxPyPzEVector p41 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[1]], clustervertex, usePhotons);
282 
283  double pairmass = (p40 + p41).M();
284  if (pairmass < m_minPairMass) {return;}
285 
287  PCmsLabTransform boostrotate;
288  ROOT::Math::PxPyPzEVector p40COM = boostrotate.rotateLabToCms() * p40;
289  ROOT::Math::PxPyPzEVector p41COM = boostrotate.rotateLabToCms() * p41;
290  double dphi = abs(p41COM.Phi() - p40COM.Phi()) * TMath::RadToDeg();
291  if (dphi > 180.) {dphi = 360. - dphi;}
292  if (dphi < m_mindPhi) {return;}
293 
294  //------------------------------------------------------------------------
295  //** Find the most energetic crystal in each photon cluster */
296  int crysIDMax[2] = { -1, -1};
297  for (int ic = 0; ic < 2; ic++) {
298  crysIDMax[ic] = m_eclClusterArray[icMax[ic]]->getMaxECellId() - 1;
299  }
300 
301  //------------------------------------------------------------------------
303  memset(&EperCrys[0], 0, EperCrys.size()*sizeof EperCrys[0]);
304  if (!m_measureTrueEnergy) {
305  for (auto& eclDigit : m_eclDigitArray) {
306  int crysID = eclDigit.getCellId() - 1;
307  getObjectPtr<TH2F>("RawDigitAmpvsCrys")->Fill(crysID + 0.001, eclDigit.getAmp());
308 
310  EperCrys[crysID] = eclDigit.getAmp() * abs(GammaGammaECalib[crysID]) * ElectronicsCalib[crysID];
311  if (EperCrys[crysID] > 0.01) {
312  getObjectPtr<TH2F>("RawDigitTimevsCrys")->Fill(crysID + 0.001, eclDigit.getTimeFit());
313  }
314  }
315 
317  } else {
318 
319  //..getEnergyHighestCrystal() includes the leakage correction; we want raw energy.
320  for (int ic = 0; ic < 2; ic++) {
321  float undoCorrection = m_eclClusterArray[icMax[ic]]->getEnergyRaw() / m_eclClusterArray[icMax[ic]]->getEnergy(
323  EperCrys[crysIDMax[ic]] = undoCorrection * m_eclClusterArray[icMax[ic]]->getEnergyHighestCrystal();
324 
325  }
326  }
327 
328  //------------------------------------------------------------------------
329  //** Store the normalized energies of the two crystals */
330  for (int ic = 0; ic < 2; ic++) {
331  if (crysIDMax[ic] >= 0) {
333  getObjectPtr<TH2F>("EnVsCrysID")->Fill(crysIDMax[ic] + 0.001, EperCrys[crysIDMax[ic]] / abs(ExpGammaGammaE[crysIDMax[ic]]));
334  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysIDMax[ic] + 0.001, ExpGammaGammaE[crysIDMax[ic]]);
335  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysIDMax[ic] + 0.001, ElectronicsCalib[crysIDMax[ic]]);
336  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysIDMax[ic] + 0.001, GammaGammaECalib[crysIDMax[ic]]);
337  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysIDMax[ic] + 0.001);
338  }
339  }
340  if (crysIDMax[0] >= 0 && crysIDMax[1] >= 0) {
341  getObjectPtr<TH1F>("TimeMinusAverage")->Fill((t0 - taverage) / t990);
342  getObjectPtr<TH1F>("TimeMinusAverage")->Fill((t1 - taverage) / t991);
343  }
344 }
Class to provide momentum-related information from ECLClusters.
Definition: ClusterUtils.h:35
const ROOT::Math::PxPyPzEVector Get4MomentumFromCluster(const ECLCluster *cluster, ECLCluster::EHypothesisBit hypo)
Returns four momentum vector.
Definition: ClusterUtils.cc:25
const ROOT::Math::XYZVector GetIPPosition()
Returns default IP position from beam parameters.
Provides a type-safe way to pass members of the chargedStableSet set.
Definition: Const.h:580
EHypothesisBit
The hypothesis bits for this ECLCluster (Connected region (CR) is split using this hypothesis.
Definition: ECLCluster.h:31
@ c_nPhotons
CR is split into n photons (N1)
unsigned short getNHits() const
Get the total Number of CDC hits in the fit.
Class to hold Lorentz transformations from/to CMS and boost vector.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
double getPValue() const
Getter for Chi2 Probability of the track fit.
double getD0() const
Getter for d0.
double getTransverseMomentum() const
Getter for the absolute value of the transverse momentum at the perigee.
double getZ0() const
Getter for z0.
HitPatternCDC getHitPatternCDC() const
Getter for the hit pattern in the CDC;.
DBObjPtr< ECLCrystalCalib > m_ECLExpGammaGammaE
Expected energies from database.
double maxD0
(cm) maximum abs(D0) of a good track
double minTrkpt
(GeV/c) minimum pt of a good track
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
DBObjPtr< ECLCrystalCalib > m_GammaGammaECalib
Existing single crystal calibration from DB; will be updated by CAF.
bool m_requireL1
require events to satisfy a level 1 trigger (true)
double m_maxTime
maximum photon (time - <t>)/dt99 (1)
double m_mindPhi
minimum delta phi between clusters (179 deg)
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
StoreObjPtr< TRGSummary > m_TRGResults
dataStore TRGSummary
std::vector< float > ExpGammaGammaE
vector obtained from DB object
bool storeCalib
force the input calibration constants to be saved first event
std::vector< float > EperCrys
ECL digit energy for each crystal.
double m_minPairMass
minimum invariant mass of the pair of photons (9 GeV/c^2)
StoreObjPtr< EventMetaData > m_evtMetaData
dataStore EventMetaData
std::vector< float > ElectronicsCalib
vector obtained from DB object
int minCDChits
minimum CDC hits for a good track
double minpValue
minimum p value of a good track
double maxZ0
(cm) maximum abs(Z0) of a good track
double thetaLabMax
m_thetaLabMaxDeg converted to radians (coneversion in Module::init)
DBObjPtr< ECLCrystalCalib > m_ElectronicsCalib
Electronics calibration from database.
bool m_measureTrueEnergy
use eclCalDigit to determine MC deposited energy (false)
std::vector< float > GammaGammaECalib
vector obtained from DB object
StoreArray< Track > m_trackArray
Required arrays.
const int c_NCrystals
Number of crystals.

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, StorageRootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.





Create the histograms and register them in the data store

Raw digit quantities for debugging purposes only

Parameters

Resize vectors


Get expected energies and calibration constants from DB. Need to call hasChanged() for later comparison

Write out a few for quality control

Verify that we have valid values for the payloads


Required data objects. We don't need digits to find expected energies.

Reimplemented from CalibrationCollectorModule.

Definition at line 69 of file eclGammaGammaECollectorModule.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ m_thetaLabMinDeg

double m_thetaLabMinDeg {0.}
private

Parameters to control the job.

miniumum photon theta in lab (0 degrees)

Definition at line 44 of file eclGammaGammaECollectorModule.h.

◆ m_trackArray

StoreArray<Track> m_trackArray
private

Required arrays.

Required input array of Tracks

Definition at line 53 of file eclGammaGammaECollectorModule.h.

◆ thetaLabMin

double thetaLabMin { -1.0}
private

Some other useful quantities.

m_thetaLabMinDeg converted to radians (conversion in Module::init)

Definition at line 61 of file eclGammaGammaECollectorModule.h.


The documentation for this class was generated from the following files: