Belle II Software  release-08-01-10
eclMuMuECollectorModule Class Reference

Calibration collector module that uses muon pairs to do ECL single crystal energy calibration. More...

#include <eclMuMuECollectorModule.h>

Inheritance diagram for eclMuMuECollectorModule:
Collaboration diagram for eclMuMuECollectorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclMuMuECollectorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
void prepare () override
 Define histograms and read payloads from DB. More...
 
void collect () override
 Select events and crystals and accumulate histograms. More...
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again. More...
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules. More...
 
const std::string & getName () const
 Returns the name of the module. More...
 
const std::string & getType () const
 Returns the type of the module (i.e. More...
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module. More...
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties. More...
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level. More...
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module. More...
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module. More...
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module. More...
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true. More...
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer). More...
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished. More...
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module. More...
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter. More...
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module. More...
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module. More...
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters. More...
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python. More...
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side. More...
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module. More...
 
void setType (const std::string &type)
 Set the module type. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module. More...
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module. More...
 
void setReturnValue (int value)
 Sets the return value for this module as integer. More...
 
void setReturnValue (bool value)
 Sets the return value for this module as bool. More...
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values. More...
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects. More...
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary. More...
 

Private Attributes

double m_minPairMass {9.0}
 Parameters to control the job. More...
 
double m_minTrackLength {30.0}
 minimum extrapolated track length in the crystal (30 cm)
 
double m_MaxNeighbourE {0.010}
 maximum signal allowed in a neighbouring crystal (0.010 GeV)
 
double m_thetaLabMinDeg {17.0}
 miniumum muon theta in lab (17 degrees)
 
double m_thetaLabMaxDeg {150.0}
 maximum muon theta in lab (150 degrees)
 
bool m_measureTrueEnergy {false}
 use eclCalDigit to determine MC deposited energy (false)
 
bool m_requireL1 {true}
 require events to satisfy a level 1 trigger (true)
 
int firstcellIDN4 = 1009
 Neighbours of each ECL crystal. More...
 
int lastcellIDN4 = 7920
 last cellID where we only need 4 neighbours
 
ECL::ECLNeighboursmyNeighbours4 {nullptr}
 class to return 4 nearest neighbours to crystal
 
ECL::ECLNeighboursmyNeighbours8 {nullptr}
 class to return 8 nearest neighbours to crystal
 
StoreArray< Trackm_trackArray
 Required arrays. More...
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of eclDigits.
 
StoreObjPtr< EventMetaDatam_evtMetaData
 DataStore EventMetaData.
 
StoreObjPtr< TRGSummarym_TRGResults
 DataStore TRGSummary.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
double cotThetaLabMin {0.0}
 Some other useful quantities. More...
 
double cotThetaLabMax {0.0}
 m_thetaLabMaxDeg converted to cotangent
 
int iEvent = 0
 event counter
 
std::vector< float > EperCrys
 ECL digit energy for each crystal.
 
DBObjPtr< ECLCrystalCalibm_ECLExpMuMuE
 Expected energies from database.
 
std::vector< float > ExpMuMuE
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsCalib
 Electronics calibration from database.
 
std::vector< float > ElectronicsCalib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_MuMuECalib
 Existing single muon pair calibration from DB; will be updated by CAF.
 
std::vector< float > MuMuECalib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_CrystalEnergy
 Existing single single calibration from DB is used to find expected E.
 
std::vector< float > CrystalEnergy
 vector obtained from DB object
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calibration collector module that uses muon pairs to do ECL single crystal energy calibration.

Definition at line 34 of file eclMuMuECollectorModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.



Record the input database constants for the first call


Check if DB objects have changed

Verify that we have valid values for the starting calibrations


If requested, require a level 1 trigger

Event selection. First, require at least two tracks

Look for highest pt negative and positive tracks in specified theta lab region. Negative first, positive 2nd. Use the pion (211) mass hypothesis, only one that is always available

Quit if we are missing a track

Quit if the invariant mass of the two tracks is too low

Extrapolate these two tracks into the ECL using muon (13) hypothesis

This extrapolation is the entrance point to an ECL crystal, assuming muon hypothesis

Now we have the exit point of the same ECL crystal

Keep track of this crystal if the track length is long enough. Note that if minTrackLength is less than half the crystal length, we will keep only the first extrapolation due to break

Quit if neither track has a successful extrapolation

Record ECL energy for each crystal

MuMuECalib is negative if the previous iteration of the algorithm was unable to calculate a value. In this case, the input value has been stored with a minus sign

Require that the energy in immediately adjacent crystals is below threshold. Also check if neighbour has high energy due to cable swaps

Fill the histogram if no significant signal in a neighbouring crystal

ExpMuMuE is negative if the algorithm was unable to calculate a value. In this case, the nominal input value has been stored with a minus sign

Reimplemented from CalibrationCollectorModule.

Definition at line 186 of file eclMuMuECollectorModule.cc.

187 {
188 
190  if (iEvent == 0) {
191  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
192  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysID + 0.001, ExpMuMuE[crysID]);
193  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysID + 0.001, ElectronicsCalib[crysID]);
194  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysID + 0.001, MuMuECalib[crysID]);
195  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysID + 0.001);
196  }
197  }
198 
199  if (iEvent % 10000 == 0) {B2INFO("eclMuMuECollector: iEvent = " << iEvent);}
200  iEvent++;
201 
204  bool newConst = false;
205  if (m_ECLExpMuMuE.hasChanged()) {
206  newConst = true;
207  B2INFO("ECLExpMuMuE has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
208  ExpMuMuE = m_ECLExpMuMuE->getCalibVector();
209  }
210  if (m_ElectronicsCalib.hasChanged()) {
211  newConst = true;
212  B2INFO("ECLCrystalElectronics has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
213  ElectronicsCalib = m_ElectronicsCalib->getCalibVector();
214  }
215  if (m_MuMuECalib.hasChanged()) {
216  newConst = true;
217  B2INFO("ECLCrystalEnergyMuMu has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
218  MuMuECalib = m_MuMuECalib->getCalibVector();
219  }
220  if (m_CrystalEnergy.hasChanged()) {
221  newConst = true;
222  B2INFO("ECLCrystalEnergy has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
223  CrystalEnergy = m_CrystalEnergy->getCalibVector();
224  }
225 
226  if (newConst) {
227  for (int ic = 1; ic < 9000; ic += 1000) {
228  B2INFO("DB constants for cellID=" << ic << ": ExpMuMuE = " << ExpMuMuE[ic - 1] << " ElectronicsCalib = " <<
229  ElectronicsCalib[ic - 1]
230  << " MuMuECalib = " << MuMuECalib[ic - 1]);
231  }
232 
234  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
235  if (ElectronicsCalib[crysID] <= 0) {B2FATAL("eclMuMuECollector: ElectronicsCalib = " << ElectronicsCalib[crysID] << " for crysID = " << crysID);}
236  if (ExpMuMuE[crysID] == 0) {B2FATAL("eclMuMuECollector: ExpMuMuE = 0 for crysID = " << crysID);}
237  if (MuMuECalib[crysID] == 0) {B2FATAL("eclMuMuECollector: MuMuECalib = 0 for crysID = " << crysID);}
238  }
239  }
240 
241 
242 
245  if (m_requireL1) {
246  unsigned int L1TriggerResults = m_TRGResults->getTRGSummary(0);
247  if (L1TriggerResults == 0) {return;}
248  }
249 
250  //------------------------------------------------------------------------
252  int nTrack = m_trackArray.getEntries();
253  if (nTrack < 2) {return;}
254 
256  double maxpt[2] = {0., 0.};
257  int iTrack[2] = { -1, -1};
258  for (int it = 0; it < nTrack; it++) {
259  const TrackFitResult* temptrackFit = m_trackArray[it]->getTrackFitResult(Const::ChargedStable(211));
260  if (not temptrackFit) {continue;}
261  int imu = 0;
262  if (temptrackFit->getChargeSign() == 1) {imu = 1; }
263 
264  double temppt = temptrackFit->getTransverseMomentum();
265  double cotThetaLab = temptrackFit->getCotTheta();
266  if (temppt > maxpt[imu] && cotThetaLab > cotThetaLabMin && cotThetaLab < cotThetaLabMax) {
267  maxpt[imu] = temppt;
268  iTrack[imu] = it;
269  }
270  }
271 
273  if (iTrack[0] == -1 || iTrack[1] == -1) { return; }
274 
276  ROOT::Math::PxPyPzEVector mu0 = m_trackArray[iTrack[0]]->getTrackFitResult(Const::ChargedStable(211))->get4Momentum();
277  ROOT::Math::PxPyPzEVector mu1 = m_trackArray[iTrack[1]]->getTrackFitResult(Const::ChargedStable(211))->get4Momentum();
278  if ((mu0 + mu1).M() < m_minPairMass) { return; }
279 
280  //------------------------------------------------------------------------
282  int extCrysID[2] = { -1, -1};
283  Const::EDetector eclID = Const::EDetector::ECL;
284  for (int imu = 0; imu < 2; imu++) {
285  ROOT::Math::XYZVector temppos[2] = {};
286  int IDEnter = -99;
287  for (auto& extHit : m_trackArray[iTrack[imu]]->getRelationsTo<ExtHit>()) {
288  int pdgCode = extHit.getPdgCode();
289  Const::EDetector detectorID = extHit.getDetectorID(); // subsystem ID
290  int temp0 = extHit.getCopyID(); // ID within that subsystem; for ecl it is crystal ID
291 
293  if (detectorID == eclID && TMath::Abs(pdgCode) == Const::muon.getPDGCode() && extHit.getStatus() == EXT_ENTER) {
294  IDEnter = temp0;
295  temppos[0] = extHit.getPosition();
296  }
297 
299  if (detectorID == eclID && TMath::Abs(pdgCode) == Const::muon.getPDGCode() && extHit.getStatus() == EXT_EXIT && temp0 == IDEnter) {
300  temppos[1] = extHit.getPosition();
301 
303  double trackLength = (temppos[1] - temppos[0]).R();
304  if (trackLength > m_minTrackLength) {extCrysID[imu] = temp0;}
305  break;
306  }
307  }
308  }
309 
311  if (extCrysID[0] == -1 && extCrysID[1] == -1) { return; }
312 
313  //------------------------------------------------------------------------
315  std::fill(EperCrys.begin(), EperCrys.end(), 0); // clear array
316 
317  //..Record crystals with high energies to diagnose cable swaps
318  const double highEnergyThresh = 0.18; // GeV
319  std::vector<int> highECrys; // crystalIDs of crystals with high energy
320 
321  //..For data, use muon pair calibration; for expected energies, use ECLCrystalEnergy
322  for (auto& eclDigit : m_eclDigitArray) {
323  int crysID = eclDigit.getCellId() - 1;
324  getObjectPtr<TH2F>("RawDigitAmpvsCrys")->Fill(crysID + 0.001, eclDigit.getAmp());
325 
327  float calib = abs(MuMuECalib[crysID]);
328  if (m_measureTrueEnergy) {calib = CrystalEnergy[crysID];}
329  EperCrys[crysID] = eclDigit.getAmp() * calib * ElectronicsCalib[crysID];
330  if (EperCrys[crysID] > highEnergyThresh) {highECrys.push_back(crysID);}
331  if (EperCrys[crysID] > 0.01) {
332  getObjectPtr<TH2F>("RawDigitTimevsCrys")->Fill(crysID + 0.001, eclDigit.getTimeFit());
333  }
334  }
335 
336  //------------------------------------------------------------------------
337  //..For expected energies, get the max energies crystals from the cluster. This is
338  // safer than converting the ECLDigit, since it does not require that the ECLCrystalEnergy
339  // payload used now is the same as was used when the event was generated.
340  if (m_measureTrueEnergy) {
341  for (int ic = 0; ic < m_eclClusterArray.getEntries(); ic++) {
343  int crysID = m_eclClusterArray[ic]->getMaxECellId() - 1;
344  float undoCorrection = m_eclClusterArray[ic]->getEnergyRaw() / m_eclClusterArray[ic]->getEnergy(
346  EperCrys[crysID] = undoCorrection * m_eclClusterArray[ic]->getEnergyHighestCrystal();
347  }
348  }
349  }
350 
351  //------------------------------------------------------------------------
354  for (int imu = 0; imu < 2; imu++) {
355  int crysID = extCrysID[imu];
356  int cellID = crysID + 1;
357  if (crysID > -1) {
358 
359  getObjectPtr<TH1F>("TrkPerCrysID")->Fill(crysID + 0.001);
360 
361  bool noNeighbourSignal = true;
362  bool highNeighourSignal = false;
363  if (cellID >= firstcellIDN4 && crysID <= lastcellIDN4) {
364  for (const auto& tempCellID : myNeighbours4->getNeighbours(cellID)) {
365  int tempCrysID = tempCellID - 1;
366  if (tempCellID != cellID && EperCrys[tempCrysID] > m_MaxNeighbourE) {
367  noNeighbourSignal = false;
368  if (EperCrys[tempCrysID] > highEnergyThresh) {highNeighourSignal = true;}
369  }
370  }
371  } else {
372  for (const auto& tempCellID : myNeighbours8->getNeighbours(cellID)) {
373  int tempCrysID = tempCellID - 1;
374  if (tempCellID != cellID && EperCrys[tempCrysID] > m_MaxNeighbourE) {
375  noNeighbourSignal = false;
376  if (EperCrys[tempCrysID] > highEnergyThresh) {highNeighourSignal = true;}
377  }
378  }
379  }
380 
382  if (noNeighbourSignal) {
383 
385  getObjectPtr<TH2F>("EnVsCrysID")->Fill(crysID + 0.001, EperCrys[crysID] / abs(ExpMuMuE[crysID]));
386  getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysID + 0.001, ExpMuMuE[crysID]);
387  getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysID + 0.001, ElectronicsCalib[crysID]);
388  getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysID + 0.001, MuMuECalib[crysID]);
389  getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysID + 0.001);
390  }
391 
392  //..Possible cable swap
393  if (highNeighourSignal or (noNeighbourSignal and EperCrys[crysID] < m_MaxNeighbourE)) {
394  for (auto& id : highECrys) {
395  getObjectPtr<TH2F>("hitCrysVsExtrapolatedCrys")->Fill(crysID + 0.0001, id + 0.0001);
396  }
397  }
398  }
399  }
400 }
double R
typedef autogenerated by FFTW
Provides a type-safe way to pass members of the chargedStableSet set.
Definition: Const.h:580
static const ChargedStable muon
muon particle
Definition: Const.h:651
EDetector
Enum for identifying the detector components (detector and subdetector).
Definition: Const.h:42
@ c_nPhotons
CR is split into n photons (N1)
const std::vector< short int > & getNeighbours(short int cid) const
Return the neighbours for a given cell ID.
Values of the result of a track fit with a given particle hypothesis.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of eclDigits.
double m_MaxNeighbourE
maximum signal allowed in a neighbouring crystal (0.010 GeV)
bool m_requireL1
require events to satisfy a level 1 trigger (true)
DBObjPtr< ECLCrystalCalib > m_ECLExpMuMuE
Expected energies from database.
double m_minTrackLength
minimum extrapolated track length in the crystal (30 cm)
ECL::ECLNeighbours * myNeighbours8
class to return 8 nearest neighbours to crystal
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
StoreObjPtr< TRGSummary > m_TRGResults
DataStore TRGSummary.
std::vector< float > ExpMuMuE
vector obtained from DB object
std::vector< float > EperCrys
ECL digit energy for each crystal.
double cotThetaLabMin
Some other useful quantities.
double m_minPairMass
Parameters to control the job.
StoreObjPtr< EventMetaData > m_evtMetaData
DataStore EventMetaData.
std::vector< float > ElectronicsCalib
vector obtained from DB object
int firstcellIDN4
Neighbours of each ECL crystal.
DBObjPtr< ECLCrystalCalib > m_CrystalEnergy
Existing single single calibration from DB is used to find expected E.
int lastcellIDN4
last cellID where we only need 4 neighbours
ECL::ECLNeighbours * myNeighbours4
class to return 4 nearest neighbours to crystal
std::vector< float > CrystalEnergy
vector obtained from DB object
std::vector< float > MuMuECalib
vector obtained from DB object
DBObjPtr< ECLCrystalCalib > m_MuMuECalib
Existing single muon pair calibration from DB; will be updated by CAF.
DBObjPtr< ECLCrystalCalib > m_ElectronicsCalib
Electronics calibration from database.
bool m_measureTrueEnergy
use eclCalDigit to determine MC deposited energy (false)
double cotThetaLabMax
m_thetaLabMaxDeg converted to cotangent
StoreArray< Track > m_trackArray
Required arrays.
const int c_NCrystals
Number of crystals.

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

◆ getFileNames()

virtual std::vector<std::string> getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootOutputModule, StorageRootOutputModule, and RootInputModule.

Definition at line 134 of file Module.h.

◆ getName()

const std::string& getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.




MetaData


Create the histograms and register them in the data store

Raw digit quantities for debugging purposes only

Four or ~eight nearest neighbours, plus crystal itself. ECLNeighbour uses cellID, 1–8736

Parameters

Resize vectors


Get expected energies and calibration constants from DB. Need to call hasChanged() for later comparison

Write out a few for quality control

Verify that we have valid values for the starting calibrations


Required data objects

Reimplemented from CalibrationCollectorModule.

Definition at line 62 of file eclMuMuECollectorModule.cc.

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

Member Data Documentation

◆ cotThetaLabMin

double cotThetaLabMin {0.0}
private

Some other useful quantities.

m_thetaLabMinDeg converted to cotangent

Definition at line 73 of file eclMuMuECollectorModule.h.

◆ firstcellIDN4

int firstcellIDN4 = 1009
private

Neighbours of each ECL crystal.

4 Neighbours for barrel and outer endcap; ;~8 otherwise first cellID where we only need 4 neighbours

Definition at line 59 of file eclMuMuECollectorModule.h.

◆ m_minPairMass

double m_minPairMass {9.0}
private

Parameters to control the job.

minimum invariant mass of the muon pair (9 GeV/c^2)

Definition at line 50 of file eclMuMuECollectorModule.h.

◆ m_trackArray

StoreArray<Track> m_trackArray
private

Required arrays.

Required input array of tracks

Definition at line 65 of file eclMuMuECollectorModule.h.


The documentation for this class was generated from the following files: