Belle II Software  release-08-01-10
eclEdgeAlgorithm.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 /* Own header. */
10 #include <ecl/calibration/eclEdgeAlgorithm.h>
11 
12 /* ECL headers. */
13 #include <ecl/dataobjects/ECLElementNumbers.h>
14 #include <ecl/dbobjects/ECLCrystalCalib.h>
15 
16 /* ROOT headers. */
17 #include <TFile.h>
18 #include <TH1F.h>
19 #include <TMath.h>
20 
21 /* C++ headers. */
22 #include <iostream>
23 
24 using namespace std;
25 using namespace Belle2;
26 using namespace ECL;
27 using namespace Calibration;
28 
29 
31 eclEdgeAlgorithm::eclEdgeAlgorithm(): CalibrationAlgorithm("eclEdgeCollector")
32 {
34  "Generate payloads ECLCrystalThetaEdge and ECLCrystalPhiEdge found by eclEdgeCollector"
35  );
36 }
37 
38 
41 {
42 
43  //-----------------------------------------------------------------------------------
44  //..Read in histograms created by the collector
45  auto eclCrystalX = getObjectPtr<TH1F>("eclCrystalX");
46  auto eclCrystalY = getObjectPtr<TH1F>("eclCrystalY");
47  auto eclCrystalZ = getObjectPtr<TH1F>("eclCrystalZ");
48  auto eclCrystalR = getObjectPtr<TH1F>("eclCrystalR");
49  auto eclCrystalTheta = getObjectPtr<TH1F>("eclCrystalTheta");
50  auto eclCrystalPhi = getObjectPtr<TH1F>("eclCrystalPhi");
51  auto eclCrystalDirTheta = getObjectPtr<TH1F>("eclCrystalDirTheta");
52  auto eclCrystalDirPhi = getObjectPtr<TH1F>("eclCrystalDirPhi");
53  auto eclCrystalEdgeTheta = getObjectPtr<TH1F>("eclCrystalEdgeTheta");
54  auto eclCrystalEdgePhi = getObjectPtr<TH1F>("eclCrystalEdgePhi");
55  auto eclEdgeCounter = getObjectPtr<TH1F>("eclEdgeCounter");
56 
57  //..And write them to disk
58  TFile* histfile = new TFile("eclEdgeAlgorithm.root", "recreate");
59  eclCrystalX->Write();
60  eclCrystalY->Write();
61  eclCrystalZ->Write();
62  eclCrystalR->Write();
63  eclCrystalTheta->Write();
64  eclCrystalPhi->Write();
65  eclCrystalDirTheta->Write();
66  eclCrystalDirPhi->Write();
67  eclCrystalEdgeTheta->Write();
68  eclCrystalEdgePhi->Write();
69  eclEdgeCounter->Write();
70 
71  //-----------------------------------------------------------------------------------
72  //..Set up
73 
74  //..Number of collector calls. Intended to be 1.
75  const int nCalls = (int)(eclEdgeCounter->GetBinContent(1) + 0.0001);
76 
77  //..First crysID of each thetaID will be handy
78  int firstCrysID[69] = {};
79  for (int thetaID = 1; thetaID < 69; thetaID++) {
80  firstCrysID[thetaID] = firstCrysID[thetaID - 1] + m_crystalsPerRing[thetaID - 1];
81  }
82 
83  //..Histograms of width payloads
84  TH1F* eclCrystalWidthTheta = new TH1F("eclCrystalWidthTheta", "Width of each crystal in theta;cellID;crystal width (rad)",
86  8737);
87  TH1F* eclCrystalWidthPhi = new TH1F("eclCrystalWidthPhi", "Width of each crystal in phi;cellID;crystal width (rad)",
89 
90  //-----------------------------------------------------------------------------------
91  //..Edges of the crystals in theta
92  std::vector<float> tempThetaEdge;
93  std::vector<float> tempUnc(ECLElementNumbers::c_NCrystals, 0.);
94  for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
95  tempThetaEdge.push_back(eclCrystalEdgeTheta->GetBinContent(cellID) / nCalls);
96  }
97  ECLCrystalCalib* crystalThetaEdge = new ECLCrystalCalib();
98  crystalThetaEdge->setCalibVector(tempThetaEdge, tempUnc);
99  saveCalibration(crystalThetaEdge, "ECLCrystalThetaEdge");
100  B2RESULT("eclEdgeAlgorithm: successfully stored payload ECLCrystalThetaEdge");
101 
102  //-----------------------------------------------------------------------------------
103  //..Edges of the crystals in phi
104  std::vector<float> tempPhiEdge;
105  for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
106  tempPhiEdge.push_back(eclCrystalEdgePhi->GetBinContent(cellID) / nCalls);
107  }
108  ECLCrystalCalib* crystalPhiEdge = new ECLCrystalCalib();
109  crystalPhiEdge->setCalibVector(tempPhiEdge, tempUnc);
110  saveCalibration(crystalPhiEdge, "ECLCrystalPhiEdge");
111  B2RESULT("eclEdgeAlgorithm: successfully stored payload ECLCrystalPhiEdge");
112 
113  //-----------------------------------------------------------------------------------
114  //..Width of the crystals in phi.
115  // Lower edge of next crystal in phi minus lower edge of crystal.
116  std::vector<float> tempPhiWidth;
117  int crysID = -1;
118  for (int thetaID = 0; thetaID < 69; thetaID++) {
119  for (int phiID = 0; phiID < m_crystalsPerRing[thetaID]; phiID++) {
120  crysID++;
121  int nextID = crysID + 1;
122  if (phiID == m_crystalsPerRing[thetaID] - 1) {nextID -= m_crystalsPerRing[thetaID];}
123  double width = tempPhiEdge[nextID] - tempPhiEdge[crysID];
124  if (width < 0) {width += 2.*TMath::Pi();}
125  tempPhiWidth.push_back(width);
126  }
127  }
128  ECLCrystalCalib* crystalPhiWidth = new ECLCrystalCalib();
129  crystalPhiWidth->setCalibVector(tempPhiWidth, tempUnc);
130  saveCalibration(crystalPhiWidth, "ECLCrystalPhiWidth");
131  B2RESULT("eclEdgeAlgorithm: successfully stored payload ECLCrystalPhiWidth");
132 
133  //..Also store in histogram
134  for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
135  eclCrystalWidthPhi->SetBinContent(cellID, tempPhiWidth[cellID - 1]);
136  eclCrystalWidthPhi->SetBinError(cellID, 0.);
137  }
138  histfile->cd();
139  eclCrystalWidthPhi->Write();
140 
141  //-----------------------------------------------------------------------------------
142  //..Width in theta. Look crystals in the next thetaID that overlap in phi.
143  // Last thetaID is a special case.
144  std::vector<float> tempThetaWidth;
145  for (int thetaID = 0; thetaID < 68; thetaID++) {
146  for (int ic = firstCrysID[thetaID]; ic < firstCrysID[thetaID] + m_crystalsPerRing[thetaID]; ic++) {
147  double minThetaWidth = 999.;
148  double maxThetaWidth = -999.;
149  for (int icnext = firstCrysID[thetaID + 1]; icnext < firstCrysID[thetaID + 1] + m_crystalsPerRing[thetaID + 1]; icnext++) {
150 
151  //..Lower edge of ic falls within icnext
152  double offset = tempPhiEdge[ic] - tempPhiEdge[icnext];
153  if (offset < -TMath::Pi()) {offset += 2.*TMath::Pi();}
154  if (offset > TMath::Pi()) {offset -= 2.*TMath::Pi();}
155  if (offset >= 0. and offset < tempPhiWidth[icnext]) {
156  double width = tempThetaEdge[icnext] - tempThetaEdge[ic];
157  if (width < minThetaWidth) {minThetaWidth = width;}
158  if (width > maxThetaWidth) {maxThetaWidth = width;}
159  }
160 
161  //..Lower edge of icnext falls within ic
162  offset = tempPhiEdge[icnext] - tempPhiEdge[ic];
163  if (offset < -TMath::Pi()) {offset += 2.*TMath::Pi();}
164  if (offset > TMath::Pi()) {offset -= 2.*TMath::Pi();}
165  if (offset >= 0. and offset < tempPhiWidth[ic]) {
166  double width = tempThetaEdge[icnext] - tempThetaEdge[ic];
167  if (width < minThetaWidth) {minThetaWidth = width;}
168  if (width > maxThetaWidth) {maxThetaWidth = width;}
169  }
170 
171  }
172  tempThetaWidth.push_back(0.5 * (maxThetaWidth + minThetaWidth));
173  }
174  }
175 
176  //..Last thetaID; assume crystals end at nominal value from detector drawings
177  const double upperThetaEdge = 2.7416;
178  const int thetaID68 = 68;
179  for (int ic = firstCrysID[thetaID68]; ic < firstCrysID[thetaID68] + m_crystalsPerRing[thetaID68]; ic++) {
180  tempThetaWidth.push_back(upperThetaEdge - tempThetaEdge[ic]);
181  }
182 
183  //..Store the payload
184  ECLCrystalCalib* crystalThetaWidth = new ECLCrystalCalib();
185  crystalThetaWidth->setCalibVector(tempThetaWidth, tempUnc);
186  saveCalibration(crystalThetaWidth, "ECLCrystalThetaWidth");
187  B2RESULT("eclEdgeAlgorithm: successfully stored payload ECLCrystalThetaWidth");
188 
189  //..Also store in histogram
190  for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
191  eclCrystalWidthTheta->SetBinContent(cellID, tempThetaWidth[cellID - 1]);
192  eclCrystalWidthTheta->SetBinError(cellID, 0.);
193  }
194  histfile->cd();
195  eclCrystalWidthTheta->Write();
196 
197  //-----------------------------------------------------------------------------------
198  //..Done
199  histfile->Close();
200  return c_OK;
201 }
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
const short m_crystalsPerRing[69]
crystals per thetaID
virtual EResult calibrate() override
..Run algorithm
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.