Belle II Software development
PXDClusterPositionCalibrationAlgorithm.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <pxd/calibration/PXDClusterPositionCalibrationAlgorithm.h>
10
11#include <string>
12#include <tuple>
13#include "TH2F.h"
14#include "TMatrixDSym.h"
15#include "TVectorD.h"
16#include "TMatrixDSymEigen.h"
17
18#include <boost/format.hpp>
19#include <cmath>
20
21using namespace std;
22using boost::format;
23using namespace Belle2;
24
26 CalibrationAlgorithm("PXDClusterPositionCollector"),
27 minClusterForShapeLikelyhood(500), minClusterForPositionOffset(2000), maxEtaBins(10),
28 // Branches from TTree
29 m_clusterEta(0), m_positionOffsetU(0), m_positionOffsetV(0), m_sizeV(0),
30 m_pitchV(0), m_clusterKind(0)
31{
33 " -------------------------- PXDClusterPositionCalibrationAlgorithm ----------------------\n"
34 " \n"
35 " Algorithm for estimating cluster position offsets and shape likelyhoods. \n"
36 " ----------------------------------------------------------------------------------------\n"
37 );
38}
39
41{
42
43 // Read back the V pitch of all cluster kinds in source data
44 // This avoids relying on VXD::GeoCache.
45 auto pitchtree = getObjectPtr<TTree>("pitchtree");
46 pitchtree->SetBranchAddress("PitchV", &m_pitchV);
47 pitchtree->SetBranchAddress("ClusterKind", &m_clusterKind);
48
49 for (int i = 0; i < pitchtree->GetEntries(); ++i) {
50 pitchtree->GetEntry(i);
52 }
53
54 // Buffer temporary payloads for shape calibration for all
55 // clusterkinds and angle bins
56 typedef tuple<int, int, int> bufferkey_t;
57 typedef pair<PXDClusterShapeIndexPar, PXDClusterShapeClassifierPar> buffervalue_t;
58 map<bufferkey_t, buffervalue_t> localCalibrationMap;
59
60 for (auto clusterKind : clusterKinds) {
61
62 B2INFO("Start calibration of clusterkind=" << clusterKind << " ...");
63
64 string gridname = str(format("GridKind_%1%") % clusterKind);
65 auto grid = getObjectPtr<TH2F>(gridname);
66
67 for (auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
68 for (auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
69
70 // Bin is centered around angles
71 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
72 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
73
74 if (thetaV < 0) {
75 B2INFO("Skip training estimator on thetaU=" << thetaU << ", thetaV=" << thetaV);
76 continue;
77 } else {
78 B2INFO("Start training estimator on thetaU=" << thetaU << ", thetaV=" << thetaV);
79 }
80
81 string treename = str(format("tree_%1%_%2%_%3%") % clusterKind % uBin % vBin);
82
83 auto localShapeIndexer = PXDClusterShapeIndexPar();
84 auto localShapeClassifier = PXDClusterShapeClassifierPar();
85 createShapeClassifier(treename, &localShapeClassifier, &localShapeIndexer);
86
87 bufferkey_t key = std::make_tuple(clusterKind, uBin, vBin);
88 localCalibrationMap[key] = buffervalue_t(localShapeIndexer, localShapeClassifier);
89 }
90 }
91 }
92
93 // Create a ShapeIndexer payload
95
96 int globalShapeIndex = 0;
97 for (auto it = m_shapeSet.begin(); it != m_shapeSet.end(); ++it) {
98 shapeIndexer->addShape(*it, globalShapeIndex);
99 globalShapeIndex++;
100 }
101
102 B2INFO("Number of cluster shapes is " << globalShapeIndex);
103
104 // Save the cluster shape index table to database.
105 saveCalibration(shapeIndexer, "PXDClusterShapeIndexPar");
106
107 // Create position estimator
109
110 for (auto clusterKind : clusterKinds) {
111
112 string gridname = str(format("GridKind_%1%") % clusterKind);
113 auto grid = getObjectPtr<TH2F>(gridname);
114
115 positionEstimator->addGrid(clusterKind, *grid);
116
117 for (auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
118 for (auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
119
120 // Bin is centered around angles
121 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
122 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
123
124 if (thetaV < 0) {
125 // We skipped this part in training before
126 continue;
127 }
128
129 // Find the local calibration results
130 auto iter = localCalibrationMap.find(std::make_tuple(clusterKind, uBin, vBin));
131 auto localShapeIndexer = iter->second.first;
132 auto localShapeClassifer = iter->second.second;
133
134 // Require that all shape classifiers use a common shape indexer
135 auto shapeClassifier = localToGlobal(&localShapeClassifer, &localShapeIndexer, shapeIndexer);
136
137 // Mirror the shape classifier along v
138 auto mirror_vBin = grid->GetYaxis()->FindBin(-thetaV);
139 auto mirroredClassifier = mirrorShapeClassifier(&shapeClassifier, shapeIndexer, clusterKind);
140
141 // and fill into position estimator payload
142 B2INFO("Add shape classifier for angles thetaU=" << thetaU << ", thetaV=" << thetaV << ", clusterkind=" << clusterKind);
143 positionEstimator->setShapeClassifier(shapeClassifier, uBin, vBin, clusterKind);
144 B2INFO("Add mirrored shape classifier for angles thetaU=" << thetaU << ", thetaV=" << -thetaV << ", clusterkind=" << clusterKind);
145 positionEstimator->setShapeClassifier(mirroredClassifier, uBin, mirror_vBin, clusterKind);
146 }
147 }
148 }
149
150 // Save the cluster positions to database.
151 saveCalibration(positionEstimator, "PXDClusterPositionEstimatorPar");
152
153 B2INFO("PXDClusterPosition Calibration Successful");
154 return c_OK;
155}
156
157
159 shapeClassifier, PXDClusterShapeIndexPar* shapeIndexer, int clusterKind)
160{
161 // Create a mirrored shape classifier
162 auto mirroredShapeClassifier = PXDClusterShapeClassifierPar();
163
164 // Mirror the shape likelyhood map
165 auto shapeLikelyhoodMap = shapeClassifier->getShapeLikelyhoodMap();
166 for (auto indexAndValue : shapeLikelyhoodMap) {
167 // Compute the mirrored shape index
168 auto shapeIndex = indexAndValue.first;
169 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
170 auto mirroredName = m_mirrorMap[shapeName];
171 auto mirroredIndex = shapeIndexer->getShapeIndex(mirroredName);
172 // Store the result
173 mirroredShapeClassifier.addShapeLikelyhood(mirroredIndex, indexAndValue.second);
174 }
175
176 // Mirror the offset related maps
177 auto offsetMap = shapeClassifier->getOffsetMap();
178 auto percentileMap = shapeClassifier->getPercentilesMap();
179 auto likelyhoodMap = shapeClassifier->getLikelyhoodMap();
180 for (auto indexAndValue : offsetMap) {
181 // Compute the mirrored shape index
182 auto shapeIndex = indexAndValue.first;
183 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
184 auto mirroredName = m_mirrorMap[shapeName];
185 auto mirroredIndex = shapeIndexer->getShapeIndex(mirroredName);
186
187 mirroredShapeClassifier.addShape(mirroredIndex);
188
189 int etaBin = 0;
190 for (auto offset : indexAndValue.second) {
191 // Copy over percentile
192 auto percentile = percentileMap[shapeIndex][etaBin];
193 mirroredShapeClassifier.addEtaPercentile(mirroredIndex, percentile);
194 // Copy over likelyhood
195 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
196 mirroredShapeClassifier.addEtaLikelyhood(mirroredIndex, likelyhood);
197 // Mirror the offset: v offset shifts and covariance swaps sign
198 double shift = (m_sizeMap[shapeName] - 1) * m_pitchMap[clusterKind];
199 auto mirroredOffset = PXDClusterOffsetPar(offset.getU(), shift - offset.getV(), offset.getUSigma2(), offset.getVSigma2(),
200 -offset.getUVCovariance());
201 mirroredShapeClassifier.addEtaOffset(mirroredIndex, mirroredOffset);
202 etaBin++;
203 }
204 }
205
206 return mirroredShapeClassifier;
207}
208
210 PXDClusterShapeIndexPar* shapeIndexer, PXDClusterShapeIndexPar* globalShapeIndexer)
211{
212 // Create a shape classifier using global shape indices
213 auto globalShapeClassifier = PXDClusterShapeClassifierPar();
214
215 // Re-index the the shape likelyhood map
216 auto shapeLikelyhoodMap = shapeClassifier->getShapeLikelyhoodMap();
217 for (auto indexAndValue : shapeLikelyhoodMap) {
218 // Compute the global shape index
219 auto shapeIndex = indexAndValue.first;
220 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
221 auto globalIndex = globalShapeIndexer->getShapeIndex(shapeName);
222 // Store the result
223 globalShapeClassifier.addShapeLikelyhood(globalIndex, indexAndValue.second);
224 }
225
226 // Re-index the offset related maps
227 auto offsetMap = shapeClassifier->getOffsetMap();
228 auto percentileMap = shapeClassifier->getPercentilesMap();
229 auto likelyhoodMap = shapeClassifier->getLikelyhoodMap();
230 for (auto indexAndValue : offsetMap) {
231 // Compute the global shape index
232 auto shapeIndex = indexAndValue.first;
233 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
234 auto globalIndex = globalShapeIndexer->getShapeIndex(shapeName);
235
236 globalShapeClassifier.addShape(globalIndex);
237
238 int etaBin = 0;
239 for (auto offset : indexAndValue.second) {
240 // Copy over percentile
241 auto percentile = percentileMap[shapeIndex][etaBin];
242 globalShapeClassifier.addEtaPercentile(globalIndex, percentile);
243 // Copy over likelyhood
244 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
245 globalShapeClassifier.addEtaLikelyhood(globalIndex, likelyhood);
246 // Copy over offset
247 globalShapeClassifier.addEtaOffset(globalIndex, offset);
248 etaBin++;
249 }
250 }
251 return globalShapeClassifier;
252}
253
255 PXDClusterShapeClassifierPar* shapeClassifier, PXDClusterShapeIndexPar* shapeIndexer)
256{
257
258 auto tree = getObjectPtr<TTree>(treename);
259
260 const auto nEntries = tree->GetEntries();
261 B2INFO("Number of clusters is " << nEntries);
262
263 string* shapeNamePtr = &m_shapeName;
264 string* mirroredShapeNamePtr = &m_mirroredShapeName;
265
266 tree->SetBranchAddress("ShapeName", &shapeNamePtr);
267 tree->SetBranchAddress("MirroredShapeName", &mirroredShapeNamePtr);
268 tree->SetBranchAddress("ClusterEta", &m_clusterEta);
269 tree->SetBranchAddress("OffsetU", &m_positionOffsetU);
270 tree->SetBranchAddress("OffsetV", &m_positionOffsetV);
271 tree->SetBranchAddress("SizeV", &m_sizeV);
272
273 // Vector to enumerate all shapes by unique name and count their
274 // occurence in training data.
275 vector< pair<string, float> > shapeList;
276
277 for (int i = 0; i < nEntries; ++i) {
278 tree->GetEntry(i);
279
280 string shapeName = m_shapeName;
281
282 auto it = std::find_if(shapeList.begin(), shapeList.end(),
283 [&](const pair<string, float>& element) { return element.first == shapeName;});
284
285 //Shape name exists in vector
286 if (it != shapeList.end()) {
287 //increment key in map
288 it->second++;
289 }
290 //Shape name does not exist
291 else {
292 //Not found, insert in vector
293 shapeList.push_back(pair<string, int>(shapeName, 1));
294 // Remember the relation between name of a shape and name of mirrored shape
295 m_mirrorMap[shapeName] = m_mirroredShapeName;
296 // Remember the relation between name of a shape and its size
297 m_sizeMap[shapeName] = m_sizeV;
298 }
299 }
300
301 // Loop over shapeList to select shapes for
302 // next calibration step
303
304 // Vector with eta histograms for selected shapes
305 vector< pair<string, TH1D> > etaHistos;
306
307 // Index for enumerating selected shapes
308 int tmpIndex = 0;
309
310 // Coverage of position offsets on training data
311 double coverage = 0.0;
312
313 for (auto iter : shapeList) {
314 auto name = iter.first;
315 auto counter = iter.second;
316
317 double likelyhood = counter / nEntries;
318
319 if (counter >= minClusterForShapeLikelyhood) {
320 //B2INFO("Adding shape " << name << " with index " << tmpIndex << " and shape likelyhood " << 100*likelyhood << "% and count " << counter);
321 shapeIndexer->addShape(name, tmpIndex);
322 shapeClassifier->addShapeLikelyhood(tmpIndex, likelyhood);
323
324 // Add name of shape to global (all clusterkinds + all angle bins) shape set
325 m_shapeSet.insert(name);
326 // Add name of mirrored shape as well
327 m_shapeSet.insert(m_mirrorMap[name]);
328 // Increment the index
329 tmpIndex++;
330 }
331
332 if (counter >= minClusterForPositionOffset) {
333 coverage += likelyhood;
334 string etaname = str(format("eta_%1%") % name);
335
336 // Single pixel case: Eta value is cluster charge
337 if (name == "SD0.0") {
338 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 255, 0, 255);
339 etaHisto.SetDirectory(0);
340 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
341 }
342 // Multipixel case: Eta value is ratio head/(tail+head) of charges (to be less gain sensitive)
343 else {
344 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 301, 0, 1);
345 etaHisto.SetDirectory(0);
346 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
347 }
348 }
349 }
350
351 B2INFO("Offset coverage is " << 100 * coverage << "%");
352
353 // Loop over the tree is to fill the eta histograms for
354 // selected shapes.
355
356 for (int i = 0; i < nEntries; ++i) {
357 tree->GetEntry(i);
358
359 string shapeName = m_shapeName;
360 auto it = std::find_if(etaHistos.begin(), etaHistos.end(),
361 [&](const pair<string, TH1D>& element) { return element.first == shapeName;});
362 //Item exists in map
363 if (it != etaHistos.end()) {
364 // increment key in map
365 it->second.Fill(m_clusterEta);
366 }
367 }
368
369 // Vector for offset histograms stored by offset shape name and eta bin
370 vector< pair< string, vector<TH2D> > > offsetHistosVec;
371
372 for (auto iter : etaHistos) {
373 auto name = iter.first;
374 auto& histo = iter.second;
375 int nClusters = histo.GetEntries();
376
377 // Add shape for offset correction
378 int shapeIndex = shapeIndexer->getShapeIndex(name);
379 shapeClassifier->addShape(shapeIndex);
380
381 // Try to split clusters into n bins with minClusterForPositionOffset clusters
382 int nEtaBins = std::max(int(nClusters / minClusterForPositionOffset), 1);
383 nEtaBins = std::min(nEtaBins, maxEtaBins);
384
385 //B2INFO("SHAPE NAME:" << name << " WITH BINS " << nEtaBins);
386
387 vector< TH2D > offsetHistos;
388
389 for (int i = 0; i < nEtaBins; i++) {
390 // Position where to compute the quantiles in [0,1]
391 double xq = double(i) / nEtaBins;
392 // Double to contain the quantile
393 double yq = 0;
394 histo.GetQuantiles(1, &yq, &xq);
395 //B2INFO(" Quantile at xq =" << xq << " is yq=" << yq);
396 shapeClassifier->addEtaPercentile(shapeIndex, yq);
397
398 string offsetname = str(format("offset_%1%_%2%") % name % i);
399 TH2D offsetHisto(offsetname.c_str(), offsetname.c_str(), 1, 0, 1, 1, 0, 1);
400 offsetHisto.SetDirectory(0);
401 offsetHisto.StatOverflows();
402 offsetHistos.push_back(offsetHisto);
403
404 }
405 offsetHistosVec.push_back(pair< string, vector<TH2D> >(name, offsetHistos));
406 }
407
408 // Loop over the tree is to fill offset histograms
409
410 for (int i = 0; i < nEntries; ++i) {
411 tree->GetEntry(i);
412
413 string shapeName = m_shapeName;
414 auto it = std::find_if(offsetHistosVec.begin(), offsetHistosVec.end(),
415 [&](const pair<string, vector<TH2D>>& element) { return element.first == shapeName;});
416 //Item exists in map
417 if (it != offsetHistosVec.end()) {
418 int shapeIndex = shapeIndexer->getShapeIndex(shapeName);
419 int etaBin = shapeClassifier->getEtaIndex(shapeIndex, m_clusterEta);
420 it->second.at(etaBin).Fill(m_positionOffsetU, m_positionOffsetV);
421 }
422 }
423
424 // Compute the moments of the offset histograms and finalize the shape classifier object
425
426 // Loop over shape names
427 for (auto iter : offsetHistosVec) {
428 auto name = iter.first;
429 auto& histovec = iter.second;
430
431 int shapeIndex = shapeIndexer->getShapeIndex(name);
432
433 // Loop over eta bins
434 for (auto& histo : histovec) {
435 // Compute offset moments
436 double etaLikelyhood = double(histo.GetEntries()) / nEntries;
437 double offsetU = histo.GetMean(1);
438 double offsetV = histo.GetMean(2);
439 double covUV = histo.GetCovariance();
440 double covU = pow(histo.GetRMS(1), 2);
441 double covV = pow(histo.GetRMS(2), 2);
442
443 B2INFO("Name " << name << ", posU=" << offsetU << ", posV=" << offsetV << ", covU=" << covU << ", covV=" << covV << ", covUV=" <<
444 covUV);
445
446 TMatrixDSym HitCov(2);
447 HitCov(0, 0) = covU;
448 HitCov(1, 0) = covUV;
449 HitCov(0, 1) = covUV;
450 HitCov(1, 1) = covV;
451
452 TMatrixDSymEigen HitCovE(HitCov);
453 TVectorD eigenval = HitCovE.GetEigenValues();
454 if (eigenval(0) <= 0 || eigenval(1) <= 0) {
455 B2ERROR("Estimated covariance matrix not positive definite.");
456 }
457
458 auto offset = PXDClusterOffsetPar(offsetU, offsetV, covU, covV, covUV);
459 shapeClassifier->addEtaLikelyhood(shapeIndex, etaLikelyhood);
460 shapeClassifier->addEtaOffset(shapeIndex, offset);
461 }
462 }
463
464 B2INFO("Added shape classifier with coverage " << 100 * coverage << "% on training data sample.");
465
466 return;
467}
468
469
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfully =0 in Python.
The class for PXD cluster position offset payload.
void createShapeClassifier(std::string treename, PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer)
Returns a new classifier and index trained on cluster tree.
std::string m_mirroredShapeName
Name of mirrored cluster shape.
std::vector< int > clusterKinds
Vector of clusterkinds to calibrate.
PXDClusterShapeClassifierPar mirrorShapeClassifier(PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer, int clusterKind)
Returns a mirrored version of shape classifier.
PXDClusterShapeClassifierPar localToGlobal(PXDClusterShapeClassifierPar *localShapeClassifier, PXDClusterShapeIndexPar *localShapeIndexer, PXDClusterShapeIndexPar *globalShapeIndexer)
Returns a shape classifier using global shape indices instead of local ones.
std::map< std::string, int > m_sizeMap
Helper needed to map the name of a shape to the V size of the cluster.
int maxEtaBins
Maximum number of eta bins for estimating cluster position offsets.
int minClusterForPositionOffset
Minimum number of collected clusters for estimating cluster position offsets.
int minClusterForShapeLikelyhood
Minimum number of collected clusters for estimating shape likelyhood.
PXDClusterPositionCalibrationAlgorithm()
Constructor set the prefix to PXDClusterPositionCalibrationAlgorithm.
std::map< int, float > m_pitchMap
Helper needed to map the clusterkind to the V pitch of the sensor.
std::set< std::string > m_shapeSet
Set of unique shape names.
std::map< std::string, std::string > m_mirrorMap
Helper needed to map the name of a shape to the name of the mirrored shape.
The class for PXD cluster position lookup table payload.
void setShapeClassifier(const PXDClusterShapeClassifierPar &classifier, int uBin, int vBin, int clusterkind)
Set shape classifier.
void addGrid(int clusterkind, const TH2F &grid)
Add grid for clusterkind.
The class for PXD cluster shape classifier payload.
void addShapeLikelyhood(int shape_index, float likelyhood)
Add shape likelyhood.
const std::map< int, std::vector< PXDClusterOffsetPar > > & getOffsetMap() const
Return offset map for position correction.
void addEtaLikelyhood(int shape_index, float likelyhood)
Add eta likelyhood to shape for position correction.
const std::map< int, std::vector< float > > & getPercentilesMap() const
Return percentiles map for position correction.
void addEtaPercentile(int shape_index, float percentile)
Add eta percentile to shape for position correction.
const std::map< int, std::vector< float > > & getLikelyhoodMap() const
Return likelyhood map for position correction.
unsigned int getEtaIndex(int shape_index, float eta) const
Get eta index for position correction.
void addShape(int shape_index)
Add shape for position correction.
const std::map< int, float > & getShapeLikelyhoodMap() const
Return shape likelyhood map
void addEtaOffset(int shape_index, PXDClusterOffsetPar &offset)
Add offset to shape for position correction.
The class for PXD cluster shape index payload.
int getShapeIndex(const std::string &name) const
Returns shape index from name.
const std::string & getShapeName(int index) const
Returns shape name from index.
void addShape(const std::string &name, int index)
Add shape with name and index
Abstract base class for different kinds of events.
STL namespace.