Belle II Software development
PXDClusterPositionCalibrationAlgorithm Class Reference

Class implementing the PXD cluster position calibration algorithm. More...

#include <PXDClusterPositionCalibrationAlgorithm.h>

Inheritance diagram for PXDClusterPositionCalibrationAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 PXDClusterPositionCalibrationAlgorithm ()
 Constructor set the prefix to PXDClusterPositionCalibrationAlgorithm.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int minClusterForShapeLikelyhood
 Minimum number of collected clusters for estimating shape likelyhood.
 
int minClusterForPositionOffset
 Minimum number of collected clusters for estimating cluster position offsets.
 
int maxEtaBins
 Maximum number of eta bins for estimating cluster position offsets.
 
std::vector< int > clusterKinds
 Vector of clusterkinds to calibrate.
 

Protected Member Functions

virtual EResult calibrate () override
 Run algo on data.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T>
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T>
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T>
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T>
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T>
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

void createShapeClassifier (std::string treename, PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer)
 Returns a new classifier and index trained on cluster tree.
 
PXDClusterShapeClassifierPar mirrorShapeClassifier (PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer, int clusterKind)
 Returns a mirrored version of shape classifier.
 
PXDClusterShapeClassifierPar localToGlobal (PXDClusterShapeClassifierPar *localShapeClassifier, PXDClusterShapeIndexPar *localShapeIndexer, PXDClusterShapeIndexPar *globalShapeIndexer)
 Returns a shape classifier using global shape indices instead of local ones.
 
std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::string m_shapeName
 Branches for tree.
 
std::string m_mirroredShapeName
 Name of mirrored cluster shape.
 
float m_clusterEta
 Eta value of cluster.
 
float m_positionOffsetU
 Position offset u of cluster.
 
float m_positionOffsetV
 Position offset v of cluster.
 
int m_sizeV
 Size in V.
 
float m_pitchV
 Branches for pitchtree.
 
int m_clusterKind
 Pitch in V.
 
std::map< int, float > m_pitchMap
 Helper needed to map the clusterkind to the V pitch of the sensor.
 
std::map< std::string, std::string > m_mirrorMap
 Helper needed to map the name of a shape to the name of the mirrored shape.
 
std::map< std::string, int > m_sizeMap
 Helper needed to map the name of a shape to the V size of the cluster.
 
std::set< std::string > m_shapeSet
 Set of unique shape names.
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Class implementing the PXD cluster position calibration algorithm.

Definition at line 26 of file PXDClusterPositionCalibrationAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
43 c_NotEnoughData,
44 c_Failure,
45 c_Undefined
46 };

Constructor & Destructor Documentation

◆ PXDClusterPositionCalibrationAlgorithm()

Constructor set the prefix to PXDClusterPositionCalibrationAlgorithm.

Definition at line 27 of file PXDClusterPositionCalibrationAlgorithm.cc.

27 :
28 CalibrationAlgorithm("PXDClusterPositionCollector"),
30 // Branches from TTree
33{
35 " -------------------------- PXDClusterPositionCalibrationAlgorithm ----------------------\n"
36 " \n"
37 " Algorithm for estimating cluster position offsets and shape likelyhoods. \n"
38 " ----------------------------------------------------------------------------------------\n"
39 );
40}
void setDescription(const std::string &description)
Set algorithm description (in constructor)
CalibrationAlgorithm(const std::string &collectorModuleName)
Constructor - sets the prefix for collected objects (won't be accesses until execute(....
int maxEtaBins
Maximum number of eta bins for estimating cluster position offsets.
int minClusterForPositionOffset
Minimum number of collected clusters for estimating cluster position offsets.
int minClusterForShapeLikelyhood
Minimum number of collected clusters for estimating shape likelyhood.

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun > ,
int  )
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, SVDCoGTimeCalibrationAlgorithm, TestBoundarySettingAlgorithm, and TestCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Run algo on data.

Implements CalibrationAlgorithm.

Definition at line 42 of file PXDClusterPositionCalibrationAlgorithm.cc.

43{
44
45 // Read back the V pitch of all cluster kinds in source data
46 // This avoids relying on VXD::GeoCache.
47 auto pitchtree = getObjectPtr<TTree>("pitchtree");
48 pitchtree->SetBranchAddress("PitchV", &m_pitchV);
49 pitchtree->SetBranchAddress("ClusterKind", &m_clusterKind);
50
51 for (int i = 0; i < pitchtree->GetEntries(); ++i) {
52 pitchtree->GetEntry(i);
54 }
55
56 // Buffer temporary payloads for shape calibration for all
57 // clusterkinds and angle bins
58 typedef tuple<int, int, int> bufferkey_t;
59 typedef pair<PXDClusterShapeIndexPar, PXDClusterShapeClassifierPar> buffervalue_t;
60 map<bufferkey_t, buffervalue_t> localCalibrationMap;
61
62 for (auto clusterKind : clusterKinds) {
63
64 B2INFO("Start calibration of clusterkind=" << clusterKind << " ...");
65
66 string gridname = str(format("GridKind_%1%") % clusterKind);
67 auto grid = getObjectPtr<TH2F>(gridname);
68
69 for (auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
70 for (auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
71
72 // Bin is centered around angles
73 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
74 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
75
76 if (thetaV < 0) {
77 B2INFO("Skip training estimator on thetaU=" << thetaU << ", thetaV=" << thetaV);
78 continue;
79 } else {
80 B2INFO("Start training estimator on thetaU=" << thetaU << ", thetaV=" << thetaV);
81 }
82
83 string treename = str(format("tree_%1%_%2%_%3%") % clusterKind % uBin % vBin);
84
85 auto localShapeIndexer = PXDClusterShapeIndexPar();
86 auto localShapeClassifier = PXDClusterShapeClassifierPar();
87 createShapeClassifier(treename, &localShapeClassifier, &localShapeIndexer);
88
89 bufferkey_t key = std::make_tuple(clusterKind, uBin, vBin);
90 localCalibrationMap[key] = buffervalue_t(localShapeIndexer, localShapeClassifier);
91 }
92 }
93 }
94
95 // Create a ShapeIndexer payload
96 PXDClusterShapeIndexPar* shapeIndexer = new PXDClusterShapeIndexPar();
97
98 int globalShapeIndex = 0;
99 for (auto it = m_shapeSet.begin(); it != m_shapeSet.end(); ++it) {
100 shapeIndexer->addShape(*it, globalShapeIndex);
101 globalShapeIndex++;
102 }
103
104 B2INFO("Number of cluster shapes is " << globalShapeIndex);
105
106 // Save the cluster shape index table to database.
107 saveCalibration(shapeIndexer, "PXDClusterShapeIndexPar");
108
109 // Create position estimator
110 PXDClusterPositionEstimatorPar* positionEstimator = new PXDClusterPositionEstimatorPar();
111
112 for (auto clusterKind : clusterKinds) {
113
114 string gridname = str(format("GridKind_%1%") % clusterKind);
115 auto grid = getObjectPtr<TH2F>(gridname);
116
117 positionEstimator->addGrid(clusterKind, *grid);
118
119 for (auto uBin = 1; uBin <= grid->GetXaxis()->GetNbins(); uBin++) {
120 for (auto vBin = 1; vBin <= grid->GetYaxis()->GetNbins(); vBin++) {
121
122 // Bin is centered around angles
123 auto thetaU = grid->GetXaxis()->GetBinCenter(uBin);
124 auto thetaV = grid->GetYaxis()->GetBinCenter(vBin);
125
126 if (thetaV < 0) {
127 // We skipped this part in training before
128 continue;
129 }
130
131 // Find the local calibration results
132 auto iter = localCalibrationMap.find(std::make_tuple(clusterKind, uBin, vBin));
133 auto localShapeIndexer = iter->second.first;
134 auto localShapeClassifer = iter->second.second;
135
136 // Require that all shape classifiers use a common shape indexer
137 auto shapeClassifier = localToGlobal(&localShapeClassifer, &localShapeIndexer, shapeIndexer);
138
139 // Mirror the shape classifier along v
140 auto mirror_vBin = grid->GetYaxis()->FindBin(-thetaV);
141 auto mirroredClassifier = mirrorShapeClassifier(&shapeClassifier, shapeIndexer, clusterKind);
142
143 // and fill into position estimator payload
144 B2INFO("Add shape classifier for angles thetaU=" << thetaU << ", thetaV=" << thetaV << ", clusterkind=" << clusterKind);
145 positionEstimator->setShapeClassifier(shapeClassifier, uBin, vBin, clusterKind);
146 B2INFO("Add mirrored shape classifier for angles thetaU=" << thetaU << ", thetaV=" << -thetaV << ", clusterkind=" << clusterKind);
147 positionEstimator->setShapeClassifier(mirroredClassifier, uBin, mirror_vBin, clusterKind);
148 }
149 }
150 }
151
152 // Save the cluster positions to database.
153 saveCalibration(positionEstimator, "PXDClusterPositionEstimatorPar");
154
155 B2INFO("PXDClusterPosition Calibration Successful");
156 return c_OK;
157}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
@ c_OK
Finished successfully =0 in Python.
void createShapeClassifier(std::string treename, PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer)
Returns a new classifier and index trained on cluster tree.
std::vector< int > clusterKinds
Vector of clusterkinds to calibrate.
PXDClusterShapeClassifierPar mirrorShapeClassifier(PXDClusterShapeClassifierPar *shapeClassifier, PXDClusterShapeIndexPar *shapeIndexer, int clusterKind)
Returns a mirrored version of shape classifier.
PXDClusterShapeClassifierPar localToGlobal(PXDClusterShapeClassifierPar *localShapeClassifier, PXDClusterShapeIndexPar *localShapeIndexer, PXDClusterShapeIndexPar *globalShapeIndexer)
Returns a shape classifier using global shape indices instead of local ones.
std::map< int, float > m_pitchMap
Helper needed to map the clusterkind to the V pitch of the sensor.
std::set< std::string > m_shapeSet
Set of unique shape names.
void setShapeClassifier(const PXDClusterShapeClassifierPar &classifier, int uBin, int vBin, int clusterkind)
Set shape classifier.
void addGrid(int clusterkind, const TH2F &grid)
Add grid for clusterkind.
void addShape(const std::string &name, int index)
Add shape with name and index.
std::shared_ptr< T > getObjectPtr(const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
Get calibration data object by name and list of runs, the Merge function will be called to generate t...

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject * pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

324{m_data.clearCalibrationData();}

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition Database.cc:41
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition Database.cc:140

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery > payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject * pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}

◆ createShapeClassifier()

void createShapeClassifier ( std::string treename,
PXDClusterShapeClassifierPar * shapeClassifier,
PXDClusterShapeIndexPar * shapeIndexer )
private

Returns a new classifier and index trained on cluster tree.

Definition at line 256 of file PXDClusterPositionCalibrationAlgorithm.cc.

258{
259
260 auto tree = getObjectPtr<TTree>(treename);
261
262 const auto nEntries = tree->GetEntries();
263 B2INFO("Number of clusters is " << nEntries);
264
265 string* shapeNamePtr = &m_shapeName;
266 string* mirroredShapeNamePtr = &m_mirroredShapeName;
267
268 tree->SetBranchAddress("ShapeName", &shapeNamePtr);
269 tree->SetBranchAddress("MirroredShapeName", &mirroredShapeNamePtr);
270 tree->SetBranchAddress("ClusterEta", &m_clusterEta);
271 tree->SetBranchAddress("OffsetU", &m_positionOffsetU);
272 tree->SetBranchAddress("OffsetV", &m_positionOffsetV);
273 tree->SetBranchAddress("SizeV", &m_sizeV);
274
275 // Vector to enumerate all shapes by unique name and count their
276 // occurrence in training data.
277 vector< pair<string, float> > shapeList;
278
279 for (int i = 0; i < nEntries; ++i) {
280 tree->GetEntry(i);
281
282 string shapeName = m_shapeName;
283
284 auto it = std::find_if(shapeList.begin(), shapeList.end(),
285 [&](const pair<string, float>& element) { return element.first == shapeName;});
286
287 //Shape name exists in vector
288 if (it != shapeList.end()) {
289 //increment key in map
290 it->second++;
291 }
292 //Shape name does not exist
293 else {
294 //Not found, insert in vector
295 shapeList.push_back(pair<string, int>(shapeName, 1));
296 // Remember the relation between name of a shape and name of mirrored shape
297 m_mirrorMap[shapeName] = m_mirroredShapeName;
298 // Remember the relation between name of a shape and its size
299 m_sizeMap[shapeName] = m_sizeV;
300 }
301 }
302
303 // Loop over shapeList to select shapes for
304 // next calibration step
305
306 // Vector with eta histograms for selected shapes
307 vector< pair<string, TH1D> > etaHistos;
308
309 // Index for enumerating selected shapes
310 int tmpIndex = 0;
311
312 // Coverage of position offsets on training data
313 double coverage = 0.0;
314
315 for (auto iter : shapeList) {
316 auto name = iter.first;
317 auto counter = iter.second;
318
319 double likelyhood = counter / nEntries;
320
321 if (counter >= minClusterForShapeLikelyhood) {
322 //B2INFO("Adding shape " << name << " with index " << tmpIndex << " and shape likelyhood " << 100*likelyhood << "% and count " << counter);
323 shapeIndexer->addShape(name, tmpIndex);
324 shapeClassifier->addShapeLikelyhood(tmpIndex, likelyhood);
325
326 // Add name of shape to global (all clusterkinds + all angle bins) shape set
327 m_shapeSet.insert(name);
328 // Add name of mirrored shape as well
329 m_shapeSet.insert(m_mirrorMap[name]);
330 // Increment the index
331 tmpIndex++;
332 }
333
334 if (counter >= minClusterForPositionOffset) {
335 coverage += likelyhood;
336 string etaname = str(format("eta_%1%") % name);
337
338 // Single pixel case: Eta value is cluster charge
339 if (name == "SD0.0") {
340 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 255, 0, 255);
341 etaHisto.SetDirectory(0);
342 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
343 }
344 // Multipixel case: Eta value is ratio head/(tail+head) of charges (to be less gain sensitive)
345 else {
346 TH1D etaHisto(etaname.c_str(), etaname.c_str(), 301, 0, 1);
347 etaHisto.SetDirectory(0);
348 etaHistos.push_back(pair<string, TH1D>(name, etaHisto));
349 }
350 }
351 }
352
353 B2INFO("Offset coverage is " << 100 * coverage << "%");
354
355 // Loop over the tree is to fill the eta histograms for
356 // selected shapes.
357
358 for (int i = 0; i < nEntries; ++i) {
359 tree->GetEntry(i);
360
361 string shapeName = m_shapeName;
362 auto it = std::find_if(etaHistos.begin(), etaHistos.end(),
363 [&](const pair<string, TH1D>& element) { return element.first == shapeName;});
364 //Item exists in map
365 if (it != etaHistos.end()) {
366 // increment key in map
367 it->second.Fill(m_clusterEta);
368 }
369 }
370
371 // Vector for offset histograms stored by offset shape name and eta bin
372 vector< pair< string, vector<TH2D> > > offsetHistosVec;
373
374 for (auto iter : etaHistos) {
375 auto name = iter.first;
376 auto& histo = iter.second;
377 int nClusters = histo.GetEntries();
378
379 // Add shape for offset correction
380 int shapeIndex = shapeIndexer->getShapeIndex(name);
381 shapeClassifier->addShape(shapeIndex);
382
383 // Try to split clusters into n bins with minClusterForPositionOffset clusters
384 int nEtaBins = std::max(int(nClusters / minClusterForPositionOffset), 1);
385 nEtaBins = std::min(nEtaBins, maxEtaBins);
386
387 //B2INFO("SHAPE NAME:" << name << " WITH BINS " << nEtaBins);
388
389 vector< TH2D > offsetHistos;
390
391 for (int i = 0; i < nEtaBins; i++) {
392 // Position where to compute the quantiles in [0,1]
393 double xq = double(i) / nEtaBins;
394 // Double to contain the quantile
395 double yq = 0;
396 histo.GetQuantiles(1, &yq, &xq);
397 //B2INFO(" Quantile at xq =" << xq << " is yq=" << yq);
398 shapeClassifier->addEtaPercentile(shapeIndex, yq);
399
400 string offsetname = str(format("offset_%1%_%2%") % name % i);
401 TH2D offsetHisto(offsetname.c_str(), offsetname.c_str(), 1, 0, 1, 1, 0, 1);
402 offsetHisto.SetDirectory(0);
403 offsetHisto.StatOverflows();
404 offsetHistos.push_back(offsetHisto);
405
406 }
407 offsetHistosVec.push_back(pair< string, vector<TH2D> >(name, offsetHistos));
408 }
409
410 // Loop over the tree is to fill offset histograms
411
412 for (int i = 0; i < nEntries; ++i) {
413 tree->GetEntry(i);
414
415 string shapeName = m_shapeName;
416 auto it = std::find_if(offsetHistosVec.begin(), offsetHistosVec.end(),
417 [&](const pair<string, vector<TH2D>>& element) { return element.first == shapeName;});
418 //Item exists in map
419 if (it != offsetHistosVec.end()) {
420 int shapeIndex = shapeIndexer->getShapeIndex(shapeName);
421 int etaBin = shapeClassifier->getEtaIndex(shapeIndex, m_clusterEta);
422 it->second.at(etaBin).Fill(m_positionOffsetU, m_positionOffsetV);
423 }
424 }
425
426 // Compute the moments of the offset histograms and finalize the shape classifier object
427
428 // Loop over shape names
429 for (auto iter : offsetHistosVec) {
430 auto name = iter.first;
431 auto& histovec = iter.second;
432
433 int shapeIndex = shapeIndexer->getShapeIndex(name);
434
435 // Loop over eta bins
436 for (auto& histo : histovec) {
437 // Compute offset moments
438 double etaLikelyhood = double(histo.GetEntries()) / nEntries;
439 double offsetU = histo.GetMean(1);
440 double offsetV = histo.GetMean(2);
441 double covUV = histo.GetCovariance();
442 double covU = pow(histo.GetRMS(1), 2);
443 double covV = pow(histo.GetRMS(2), 2);
444
445 B2INFO("Name " << name << ", posU=" << offsetU << ", posV=" << offsetV << ", covU=" << covU << ", covV=" << covV << ", covUV=" <<
446 covUV);
447
448 TMatrixDSym HitCov(2);
449 HitCov(0, 0) = covU;
450 HitCov(1, 0) = covUV;
451 HitCov(0, 1) = covUV;
452 HitCov(1, 1) = covV;
453
454 TMatrixDSymEigen HitCovE(HitCov);
455 TVectorD eigenval = HitCovE.GetEigenValues();
456 if (eigenval(0) <= 0 || eigenval(1) <= 0) {
457 B2ERROR("Estimated covariance matrix not positive definite.");
458 }
459
460 auto offset = PXDClusterOffsetPar(offsetU, offsetV, covU, covV, covUV);
461 shapeClassifier->addEtaLikelyhood(shapeIndex, etaLikelyhood);
462 shapeClassifier->addEtaOffset(shapeIndex, offset);
463 }
464 }
465
466 B2INFO("Added shape classifier with coverage " << 100 * coverage << "% on training data sample.");
467
468 return;
469}
std::map< std::string, int > m_sizeMap
Helper needed to map the name of a shape to the V size of the cluster.
std::map< std::string, std::string > m_mirrorMap
Helper needed to map the name of a shape to the name of the mirrored shape.
void addShapeLikelyhood(int shape_index, float likelyhood)
Add shape likelihood.
void addEtaLikelyhood(int shape_index, float likelyhood)
Add eta likelyhood to shape for position correction.
void addEtaPercentile(int shape_index, float percentile)
Add eta percentile to shape for position correction.
unsigned int getEtaIndex(int shape_index, float eta) const
Get eta index for position correction.
void addShape(int shape_index)
Add shape for position correction.
void addEtaOffset(int shape_index, PXDClusterOffsetPar &offset)
Add offset to shape for position correction.
int getShapeIndex(const std::string &name) const
Returns shape index from name.

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject * runs,
int iteration = 0,
IntervalOfValidity iov = IntervalOfValidity() )
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
100 m_data.setResult(c_Failure);
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
108 m_data.setResult(c_Failure);
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun > runs = {},
int iteration = 0,
IntervalOfValidity iov = IntervalOfValidity() )
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
124 m_data.setResult(c_Failure);
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
144 m_data.setResult(c_Failure);
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
152 m_data.setRequestedRuns(runs);
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
157 m_data.setRequestedIov(iov);
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
@ c_Undefined
Not yet known (before execution) =4 in Python.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun > runs,
int iteration = 0 )
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
558 m_data.clearCalibrationData();
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun & expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string & name,
Calibration::ExpRun expRun ) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}

◆ getInputJsonValue()

template<class T>
const T getInputJsonValue ( const std::string & key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }

◆ getObjectPtr()

template<class T>
std::shared_ptr< T > getObjectPtr ( std::string name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
288 fillRunToInputFilesMap();
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }

◆ getOutputJsonValue()

template<class T>
const T getOutputJsonValue ( const std::string & key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string & key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun & )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, SVDCoGTimeCalibrationAlgorithm, TestBoundarySettingAlgorithm, and TestCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string & jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ localToGlobal()

PXDClusterShapeClassifierPar localToGlobal ( PXDClusterShapeClassifierPar * localShapeClassifier,
PXDClusterShapeIndexPar * localShapeIndexer,
PXDClusterShapeIndexPar * globalShapeIndexer )
private

Returns a shape classifier using global shape indices instead of local ones.

Definition at line 211 of file PXDClusterPositionCalibrationAlgorithm.cc.

213{
214 // Create a shape classifier using global shape indices
215 auto globalShapeClassifier = PXDClusterShapeClassifierPar();
216
217 // Re-index the the shape likelyhood map
218 auto shapeLikelyhoodMap = shapeClassifier->getShapeLikelyhoodMap();
219 for (auto indexAndValue : shapeLikelyhoodMap) {
220 // Compute the global shape index
221 auto shapeIndex = indexAndValue.first;
222 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
223 auto globalIndex = globalShapeIndexer->getShapeIndex(shapeName);
224 // Store the result
225 globalShapeClassifier.addShapeLikelyhood(globalIndex, indexAndValue.second);
226 }
227
228 // Re-index the offset related maps
229 auto offsetMap = shapeClassifier->getOffsetMap();
230 auto percentileMap = shapeClassifier->getPercentilesMap();
231 auto likelyhoodMap = shapeClassifier->getLikelyhoodMap();
232 for (auto indexAndValue : offsetMap) {
233 // Compute the global shape index
234 auto shapeIndex = indexAndValue.first;
235 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
236 auto globalIndex = globalShapeIndexer->getShapeIndex(shapeName);
237
238 globalShapeClassifier.addShape(globalIndex);
239
240 int etaBin = 0;
241 for (auto offset : indexAndValue.second) {
242 // Copy over percentile
243 auto percentile = percentileMap[shapeIndex][etaBin];
244 globalShapeClassifier.addEtaPercentile(globalIndex, percentile);
245 // Copy over likelyhood
246 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
247 globalShapeClassifier.addEtaLikelyhood(globalIndex, likelyhood);
248 // Copy over offset
249 globalShapeClassifier.addEtaOffset(globalIndex, offset);
250 etaBin++;
251 }
252 }
253 return globalShapeClassifier;
254}

◆ mirrorShapeClassifier()

PXDClusterShapeClassifierPar mirrorShapeClassifier ( PXDClusterShapeClassifierPar * shapeClassifier,
PXDClusterShapeIndexPar * shapeIndexer,
int clusterKind )
private

Returns a mirrored version of shape classifier.

Definition at line 160 of file PXDClusterPositionCalibrationAlgorithm.cc.

162{
163 // Create a mirrored shape classifier
164 auto mirroredShapeClassifier = PXDClusterShapeClassifierPar();
165
166 // Mirror the shape likelyhood map
167 auto shapeLikelyhoodMap = shapeClassifier->getShapeLikelyhoodMap();
168 for (auto indexAndValue : shapeLikelyhoodMap) {
169 // Compute the mirrored shape index
170 auto shapeIndex = indexAndValue.first;
171 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
172 auto mirroredName = m_mirrorMap[shapeName];
173 auto mirroredIndex = shapeIndexer->getShapeIndex(mirroredName);
174 // Store the result
175 mirroredShapeClassifier.addShapeLikelyhood(mirroredIndex, indexAndValue.second);
176 }
177
178 // Mirror the offset related maps
179 auto offsetMap = shapeClassifier->getOffsetMap();
180 auto percentileMap = shapeClassifier->getPercentilesMap();
181 auto likelyhoodMap = shapeClassifier->getLikelyhoodMap();
182 for (auto indexAndValue : offsetMap) {
183 // Compute the mirrored shape index
184 auto shapeIndex = indexAndValue.first;
185 auto shapeName = shapeIndexer->getShapeName(shapeIndex);
186 auto mirroredName = m_mirrorMap[shapeName];
187 auto mirroredIndex = shapeIndexer->getShapeIndex(mirroredName);
188
189 mirroredShapeClassifier.addShape(mirroredIndex);
190
191 int etaBin = 0;
192 for (auto offset : indexAndValue.second) {
193 // Copy over percentile
194 auto percentile = percentileMap[shapeIndex][etaBin];
195 mirroredShapeClassifier.addEtaPercentile(mirroredIndex, percentile);
196 // Copy over likelyhood
197 auto likelyhood = likelyhoodMap[shapeIndex][etaBin];
198 mirroredShapeClassifier.addEtaLikelyhood(mirroredIndex, likelyhood);
199 // Mirror the offset: v offset shifts and covariance swaps sign
200 double shift = (m_sizeMap[shapeName] - 1) * m_pitchMap[clusterKind];
201 auto mirroredOffset = PXDClusterOffsetPar(offset.getU(), shift - offset.getV(), offset.getUSigma2(), offset.getVSigma2(),
202 -offset.getUVCovariance());
203 mirroredShapeClassifier.addEtaOffset(mirroredIndex, mirroredOffset);
204 etaBin++;
205 }
206 }
207
208 return mirroredShapeClassifier;
209}
const std::map< int, std::vector< PXDClusterOffsetPar > > & getOffsetMap() const
Return offset map for position correction.
const std::map< int, std::vector< float > > & getPercentilesMap() const
Return percentiles map for position correction.
const std::map< int, std::vector< float > > & getLikelyhoodMap() const
Return likelyhood map for position correction.
const std::map< int, float > & getShapeLikelyhoodMap() const
Return shape likelyhood map.
const std::string & getShapeName(int index) const
Returns shape name from index.

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray * data,
const std::string & name )
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
299 saveCalibration(data, name, m_data.getRequestedIov());
300}

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray * data,
const std::string & name,
const IntervalOfValidity & iov )
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject * data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition DataStore.cc:150

◆ saveCalibration() [4/6]

void saveCalibration ( TObject * data,
const IntervalOfValidity & iov )
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject * data,
const std::string & name )
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
294 saveCalibration(data, name, m_data.getRequestedIov());
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject * data,
const std::string & name,
const IntervalOfValidity & iov )
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string & description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject * inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string > inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setOutputJsonValue()

template<class T>
void setOutputJsonValue ( const std::string & key,
const T & value )
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string & prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int event = 1,
const int run = 0,
const int experiment = 0 )
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
static DBStore & Instance()
Instance of a singleton DBStore.
Definition DBStore.cc:26
void updateEvent()
Updates all intra-run dependent objects.
Definition DBStore.cc:140
void update()
Updates all objects that are outside their interval of validity.
Definition DBStore.cc:77

Member Data Documentation

◆ clusterKinds

std::vector<int> clusterKinds

Vector of clusterkinds to calibrate.

Definition at line 42 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_clusterEta

float m_clusterEta
private

Eta value of cluster.

Definition at line 69 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_clusterKind

int m_clusterKind
private

Pitch in V.

Definition at line 81 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

385{""};

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_mirroredShapeName

std::string m_mirroredShapeName
private

Name of mirrored cluster shape.

Definition at line 67 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_mirrorMap

std::map<std::string, std::string> m_mirrorMap
private

Helper needed to map the name of a shape to the name of the mirrored shape.

Definition at line 87 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_pitchMap

std::map<int, float> m_pitchMap
private

Helper needed to map the clusterkind to the V pitch of the sensor.

Definition at line 85 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_pitchV

float m_pitchV
private

Branches for pitchtree.

Pitch in V

Definition at line 79 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_positionOffsetU

float m_positionOffsetU
private

Position offset u of cluster.

Definition at line 71 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_positionOffsetV

float m_positionOffsetV
private

Position offset v of cluster.

Definition at line 73 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

388{""};

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_shapeName

std::string m_shapeName
private

Branches for tree.

Name of cluster shape

Definition at line 65 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_shapeSet

std::set<std::string> m_shapeSet
private

Set of unique shape names.

Definition at line 91 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_sizeMap

std::map<std::string, int> m_sizeMap
private

Helper needed to map the name of a shape to the V size of the cluster.

Definition at line 89 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ m_sizeV

int m_sizeV
private

Size in V.

Definition at line 75 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ maxEtaBins

int maxEtaBins

Maximum number of eta bins for estimating cluster position offsets.

Definition at line 39 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ minClusterForPositionOffset

int minClusterForPositionOffset

Minimum number of collected clusters for estimating cluster position offsets.

Definition at line 36 of file PXDClusterPositionCalibrationAlgorithm.h.

◆ minClusterForShapeLikelyhood

int minClusterForShapeLikelyhood

Minimum number of collected clusters for estimating shape likelyhood.

Definition at line 33 of file PXDClusterPositionCalibrationAlgorithm.h.


The documentation for this class was generated from the following files: