Belle II Software development
TRGGRLMatchModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9// include
10#include <trg/grl/modules/trggrl/TRGGRLMatchModule.h>
11#include <trg/grl/dataobjects/TRGGRLMATCH.h>
12#include <trg/grl/dataobjects/TRGGRLMATCHKLM.h>
13#include <trg/grl/dataobjects/TRGGRLPHOTON.h>
14#include <trg/cdc/dataobjects/CDCTriggerTrack.h>
15#include <trg/ecl/dataobjects/TRGECLCluster.h>
16#include <trg/klm/dataobjects/KLMTrgSummary.h>
17#include <trg/cdc/dataobjects/CDCTriggerSegmentHit.h>
18#include <trg/grl/dataobjects/TRGGRLInfo.h>
19#include <trg/grl/dataobjects/TRGGRLShortTrack.h>
20#include <trg/grl/dataobjects/TRGGRLInnerTrack.h>
21
22// framework - DataStore
23#include <framework/datastore/StoreArray.h>
24#include <framework/datastore/StoreObjPtr.h>
25
26//framework aux
27#include <framework/logging/Logger.h>
28#include <framework/core/ModuleParamList.templateDetails.h>
29
30#include <stdlib.h>
31
32
33using namespace Belle2;
34//-----------------------------------------------------------------
35// Register the Module
36//-----------------------------------------------------------------
38
39//-----------------------------------------------------------------
40// Implementation
41//-----------------------------------------------------------------
42
44{
45 // Set module properties
46 setDescription("match CDC trigger tracks and ECL trigger clusters");
48 addParam("SimulationMode", m_simulationMode, "TRGGRL simulation switch", 1);
49 addParam("FastSimulationMode", m_fastSimulationMode, "TRGGRL fast simulation mode", 0);
50 addParam("FirmwareSimulationMode", m_firmwareSimulationMode, "TRGGRL firmware simulation mode", 0);
51
52 addParam("DrMatch", m_dr_threshold, "the threshold of dr between track and cluster if they are matched successfully", 25.);
53 addParam("DzMatch", m_dz_threshold, "the threshold of dz between track and cluster if they are matched successfully", 30.);
54 addParam("DphidMatch", m_dphi_d_threshold, "the threshold of dphi_d between track and cluster if they are matched successfully", 2);
55 addParam("Ephoton", m_e_threshold, "the threshold of cluster energy as a photon", 1.0);
57 "the threshold of dphi (in degree) between track and KLM sector if they are matched successfully", 32.5);
58 addParam("2DtrackCollection", m_2d_tracklist, "the 2d track list used in the match", std::string("TRGCDC2DFinderTracks"));
59 addParam("3DtrackCollection", m_3d_tracklist, "the 3d track list used in the match", std::string("TRGCDCNeuroTracks"));
60 addParam("TRGECLClusterCollection", m_clusterlist, "the cluster list used in the match", std::string("TRGECLClusters"));
61 addParam("KLMTrgrSummary", m_klmtrgsummarylist, "the KLM track list used in the match", std::string("KLMTrgSummary"));
62 addParam("2DmatchCollection", m_2dmatch_tracklist, "the 2d tracklist with associated cluster", std::string("TRG2DMatchTracks"));
63 addParam("PhimatchCollection", m_phimatch_tracklist, "the 2d tracklist with associated cluster", std::string("TRGPhiMatchTracks"));
64 addParam("3DmatchCollection", m_3dmatch_tracklist, "the 3d NN tracklist with associated cluster", std::string("TRG3DMatchTracks"));
65 addParam("KLMmatchCollection", m_klmmatch_tracklist, "the 2d tracklist with associated KLM track",
66 std::string("TRGKLMMatchTracks"));
67 addParam("GRLphotonCollection", m_grlphotonlist, "the isolated cluster list", std::string("TRGGRLPhotons"));
68 addParam("hitCollectionName", m_hitCollectionName, "Name of the input StoreArray of CDCTriggerSegmentHits.",
69 std::string(""));
70 addParam("TrgGrlInformation", m_TrgGrlInformationName,
71 "Name of the StoreArray holding the information of tracks and clusters from cdc ecl klm.",
72 std::string("TRGGRLObjects"));
73 addParam("grlstCollectionName", m_grlstCollectionName, "Name of the output StoreArray of TRGGRLShortTrack.",
74 std::string("TRGGRLShortTracks"));
75 addParam("grlitCollectionName", m_grlitCollectionName, "Name of the output StoreArray of TRGGRLInnerTrack.",
76 std::string("TRGGRLInnerTracks"));
77
78
79}
80
84
86{
87 B2DEBUG(100, "TRGGRLMatchModule processing");
90 track2Dlist.isRequired();
91 track3Dlist.isRequired();
93 clusterslist.isRequired();
94 clusterslist.registerRelationTo(track2Dlist);
95 clusterslist.registerRelationTo(track3Dlist);
97 klmtrgsummary.isRequired();
98
100 tslist.isRequired();
101
102 StoreArray<TRGGRLMATCH> track2Dmatch;
104 track2Dmatch.registerRelationTo(track2Dlist);
105 track2Dmatch.registerRelationTo(clusterslist);
106
107 StoreArray<TRGGRLMATCH> trackphimatch;
109 trackphimatch.registerRelationTo(track2Dlist);
110 trackphimatch.registerRelationTo(clusterslist);
111
112 StoreArray<TRGGRLMATCH> track3Dmatch;
114 track3Dmatch.registerRelationTo(clusterslist);
115 track3Dmatch.registerRelationTo(track3Dlist);
116
117 StoreArray<TRGGRLMATCHKLM> trackKLMmatch;
119 trackKLMmatch.registerRelationTo(track2Dlist);
120
121 StoreArray<TRGGRLPHOTON> grlphoton;
123 grlphoton.registerRelationTo(clusterslist);
124
127
130
131 m_TRGGRLInfo.registerInDataStore(m_TrgGrlInformationName);
132
133//-- Fill the patterns for short tracking
134
136
137 for (int p = 0; p < 137; p++) {
138 int x0 = patterns_base2[p][0];
139 int x1 = patterns_base2[p][1];
140 int x2 = 0;
141 int x3 = patterns_base2[p][2];
142 int x4 = patterns_base2[p][3];
143 int d = x2 - x0;
144 x1 += d;
145 x2 += d;
146 x3 += d;
147 x4 += d;
148 patterns_base0.push_back({x1, x2, x3, x4});
149 }
150
151
152}
153
157
159{
160
174 trgInfo.create();
175
176//initialize the phi map
177
178 track_phimap.clear();
179 track_phimap_i.clear();
180 eecl_phimap.clear();
181 eecl_phimap_fwd.clear();
182 eecl_phimap_bwd.clear();
183 eecl_sectormap_fwd.clear();
184 eecl_sectormap_bwd.clear();
185 eklm_sectormap.clear();
186 eklm_sectormap_fwd.clear();
187 eklm_sectormap_bwd.clear();
188
189 for (int i = 0; i < 36; i++) {
190 track_phimap.push_back(false);
191 track_phimap_i.push_back(false);
192 eecl_phimap.push_back(false);
193 eecl_phimap_fwd.push_back(false);
194 eecl_phimap_bwd.push_back(false);
195 }
196 for (int i = 0; i < 4; i++) {
197 eecl_sectormap_fwd.push_back(false);
198 eecl_sectormap_bwd.push_back(false);
199 eklm_sectormap.push_back(false);
200 eklm_sectormap_fwd.push_back(false);
201 eklm_sectormap_bwd.push_back(false);
202 }
203
204//do 2d track match with ECL and KLM cluster
205 int klmtrack_ind_phi_map[8] = {};
206 for (int i = 0; i < track2Dlist.getEntries(); i++) {
207
208 double dr_tmp = 99999.;
209 int dphi_d_tmp = 100;
210 double dphi_klm_tmp = 100;
211 int cluster_ind = -1;
212 int cluster_ind_phi = -1;
213 int klmtrack_ind_phi = -1;
214
215// do 2d track match with KLMTrgSummary
216 sectormatching_klm(track2Dlist[i], klmtrgsummary, dphi_klm_tmp, klmtrack_ind_phi);
217
218 for (int j = 0; j < clusterlist.getEntries(); j++) {
219 // skip the end-cap cluster
220 double _cluster_x = clusterlist[j]->getPositionX();
221 double _cluster_y = clusterlist[j]->getPositionY();
222 double _cluster_z = clusterlist[j]->getPositionZ();
223 double _cluster_theta = atan(_cluster_z / (sqrt(_cluster_x * _cluster_x + _cluster_y * _cluster_y)));
224 _cluster_theta = 0.5 * M_PI - _cluster_theta;
225 if (_cluster_theta < M_PI * 35.0 / 180.0 || _cluster_theta > M_PI * 126.0 / 180.0) continue;
226
227 double ds_ct[2] = {99999., 99999.};
228 calculationdistance(track2Dlist[i], clusterlist[j], ds_ct, 0);
229 int dphi_d = 0;
230 calculationphiangle(track2Dlist[i], clusterlist[j], dphi_d, track_phimap, track_phimap_i);
231
232 if (dr_tmp > ds_ct[0]) {
233 dr_tmp = ds_ct[0];
234 cluster_ind = j;
235 }
236 if (dphi_d_tmp > dphi_d) {
237 dphi_d_tmp = dphi_d;
238 cluster_ind_phi = j;
239 }
240
241 }
242
243 if (dr_tmp < m_dr_threshold && cluster_ind != -1) {
244 TRGGRLMATCH* mat2d = track2Dmatch.appendNew();
245 mat2d->setDeltaR(dr_tmp);
246 mat2d->addRelationTo(track2Dlist[i]);
247 mat2d->addRelationTo(clusterlist[cluster_ind]);
248 // track2Dlist[i]->addRelationTo(clusterlist[cluster_ind]);
249 clusterlist[cluster_ind]->addRelationTo(track2Dlist[i]);
250 }
251 if (dphi_d_tmp < m_dphi_d_threshold && cluster_ind_phi != -1) {
252 TRGGRLMATCH* matphi = trackphimatch.appendNew();
253 matphi->set_dphi_d(dphi_d_tmp);
254 matphi->addRelationTo(track2Dlist[i]);
255 matphi->addRelationTo(clusterlist[cluster_ind_phi]);
256 matphi->set_e(clusterlist[cluster_ind_phi]->getEnergyDep());
257 // track2Dlist[i]->addRelationTo(clusterlist[cluster_ind]);
258 clusterlist[cluster_ind_phi]->addRelationTo(track2Dlist[i]);
259 }
260
261 if (dphi_klm_tmp < m_dphi_klm_threshold * M_PI / 180.0 && klmtrack_ind_phi > -1 && klmtrack_ind_phi < 8) {
262 if (klmtrack_ind_phi_map[klmtrack_ind_phi] == 0) {
263 TRGGRLMATCHKLM* matklm = trackKLMmatch.appendNew();
264 matklm->set_dphi(dphi_klm_tmp);
265 matklm->set_sector(klmtrack_ind_phi);
266 matklm->addRelationTo(track2Dlist[i]);
267 klmtrack_ind_phi_map[klmtrack_ind_phi] = 1;
268 }
269 }
270
271 }
272
273
274//do 3d track match with cluster
275 for (int i = 0; i < track3Dlist.getEntries(); i++) {
276
277 double dr_tmp = 99999.;
278 double dz_tmp = 99999.;
279 int cluster_ind = -1;
280 for (int j = 0; j < clusterlist.getEntries(); j++) {
281 // skip the end-cap cluster
282 double _cluster_x = clusterlist[j]->getPositionX();
283 double _cluster_y = clusterlist[j]->getPositionY();
284 double _cluster_z = clusterlist[j]->getPositionZ();
285 double _cluster_theta = atan(_cluster_z / (sqrt(_cluster_x * _cluster_x + _cluster_y * _cluster_y)));
286 _cluster_theta = 0.5 * M_PI - _cluster_theta;
287 if (_cluster_theta < M_PI * 35.0 / 180.0 || _cluster_theta > M_PI * 126.0 / 180.0) continue;
288
289 double ds_ct[2] = {99999., 99999.};
290 calculationdistance(track3Dlist[i], clusterlist[j], ds_ct, 1);
291 if (dr_tmp > ds_ct[0]) {
292 dr_tmp = ds_ct[0];
293 dz_tmp = ds_ct[1];
294 cluster_ind = j;
295 }
296 }
297 if (dr_tmp < m_dr_threshold && dz_tmp < m_dz_threshold && cluster_ind != -1) {
298 TRGGRLMATCH* mat3d = track3Dmatch.appendNew();
299 mat3d->setDeltaR(dr_tmp);
300 mat3d->setDeltaZ(dz_tmp);
301 mat3d->addRelationTo(track3Dlist[i]);
302 mat3d->addRelationTo(clusterlist[cluster_ind]);
303 clusterlist[cluster_ind]->addRelationTo(track3Dlist[i]);
304 }
305 }
306
307//pick up isolated clusters as photons with energy threshold
308 for (int j = 0; j < clusterlist.getEntries(); j++) {
309 if (photon_cluster(clusterlist[j], track_phimap, m_e_threshold)) {
310 TRGGRLPHOTON* photon = grlphoton.appendNew();
311 photon->set_e(clusterlist[j]->getEnergyDep());
312 photon->addRelationTo(clusterlist[j]);
313 }
314 }
315
316//endcap cluster map
319
320// Short tracking
321 std::vector<bool> map_veto(64, 0);
322 make_veto_map(track2Dlist, map_veto);
324 patterns_base0, patterns_base2, grlst, trgInfo);
325
326// Inner tracking
327 inner_tracking(tslist, track_phimap_i, eecl_phimap, eklm_sectormap, grlit, trgInfo);
328
329// EECL-EKLM matching
331
332}
333
337
341
342void TRGGRLMatchModule::calculationdistance(CDCTriggerTrack* _track, TRGECLCluster* _cluster, double* ds, int _match3D)
343{
344
345//double _pt = _track->getTransverseMomentum(1.5);
346 double _r = 1.0 / _track->getOmega() ;
347 double _phi = _track->getPhi0() ;
348
349 //-- cluster/TRGECL information
350 double _cluster_x = _cluster->getPositionX();
351 double _cluster_y = _cluster->getPositionY();
352 double _cluster_z = _cluster->getPositionZ();
353 double _R = sqrt(_cluster_x * _cluster_x + _cluster_y * _cluster_y);
354//double _D = sqrt(_cluster_x * _cluster_x + _cluster_y * _cluster_y + _cluster_z * _cluster_z);
355//double _re_scaled_p = _pt * _D / _R;
356
357 //-- calculation
358 if (_R > abs(2 * _r)) {
359 ds[0] = 99999.;
360 } else {
361 double theta0 = _phi - asin(_R / (2 * _r));
362
363 double ex_x0 = _R * cos(theta0), ex_y0 = _R * sin(theta0);
364 ds[0] = sqrt((ex_x0 - _cluster_x) * (ex_x0 - _cluster_x) + (ex_y0 - _cluster_y) * (ex_y0 - _cluster_y));
365 }
366 //z information
367 if (_match3D == 1) {
368 double _z0 = _track->getZ0();
369 double _slope = _track->getCotTheta();
370 double _ex_z = _z0 + _slope * 2 * _r * asin(_R / (2 * _r));
371 ds[1] = fabs(_cluster_z - _ex_z);
372
373 }
374
375}
376
378 std::vector<bool>& phimap, std::vector<bool>& phimap_i)
379{
380
381 //-- 2D track information
382 double _r = 1.0 / _track->getOmega() ;
383 double _phi = _track->getPhi0() ;
384
385 //-- 2D phi angle calculation
386 double phi_p = acos(126.0 / (2 * fabs(_r))); // adjustment angle between 0 to 0.5*M_PI
387 int charge = 0;
388 if (_r > 0) {charge = 1;}
389 else if (_r < 0) {charge = -1;}
390 else {charge = 0;}
391
392 double phi_CDC = 0.0;
393 if (charge == 1) {
394 phi_CDC = _phi + phi_p - 0.5 * M_PI;
395 } else if (charge == -1) {
396 phi_CDC = _phi - phi_p + 0.5 * M_PI;
397 } else {
398 phi_CDC = _phi;
399 }
400
401 if (phi_CDC > 2 * M_PI) {phi_CDC = phi_CDC - 2 * M_PI;}
402 else if (phi_CDC < 0) {phi_CDC = phi_CDC + 2 * M_PI;}
403 if (_phi > 2 * M_PI) {_phi = _phi - 2 * M_PI;}
404 else if (_phi < 0) {_phi = _phi + 2 * M_PI;}
405
406 //-- cluster/TRGECL information
407 double _cluster_x = _cluster->getPositionX();
408 double _cluster_y = _cluster->getPositionY();
409
410 // -- ECL phi angle
411 double phi_ECL = 0.0;
412 if (_cluster_x >= 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x);}
413 else if (_cluster_x < 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
414 else if (_cluster_x < 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
415 else if (_cluster_x >= 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + 2 * M_PI;}
416
417 int phi_ECL_d = 0, phi_CDC_d = 0, phi_i_d = 0;
418 // digitization on both angle
419 for (int i = 0; i < 36; i++) {
420 if (phi_ECL > i * M_PI / 18 && phi_ECL < (i + 1)*M_PI / 18) {phi_ECL_d = i;}
421 if (_phi > i * M_PI / 18 && _phi < (i + 1)*M_PI / 18) {phi_i_d = i;}
422 if (phi_CDC > i * M_PI / 18 && phi_CDC < (i + 1)*M_PI / 18) {phi_CDC_d = i;}
423 }
424
425 phimap[phi_CDC_d] = true;
426 phimap_i[phi_i_d] = true;
427
428 if (abs(phi_ECL_d - phi_CDC_d) == 0 || abs(phi_ECL_d - phi_CDC_d) == 36) {dphi_d = 0;}
429 else if (abs(phi_ECL_d - phi_CDC_d) == 1 || abs(phi_ECL_d - phi_CDC_d) == 35) {dphi_d = 1;}
430 else if (abs(phi_ECL_d - phi_CDC_d) == 2 || abs(phi_ECL_d - phi_CDC_d) == 34) {dphi_d = 2;}
431 else if (abs(phi_ECL_d - phi_CDC_d) == 3 || abs(phi_ECL_d - phi_CDC_d) == 33) {dphi_d = 3;}
432 else if (abs(phi_ECL_d - phi_CDC_d) == 4 || abs(phi_ECL_d - phi_CDC_d) == 32) {dphi_d = 4;}
433 else if (abs(phi_ECL_d - phi_CDC_d) == 5 || abs(phi_ECL_d - phi_CDC_d) == 31) {dphi_d = 5;}
434 else if (abs(phi_ECL_d - phi_CDC_d) == 6 || abs(phi_ECL_d - phi_CDC_d) == 30) {dphi_d = 6;}
435 else if (abs(phi_ECL_d - phi_CDC_d) == 7 || abs(phi_ECL_d - phi_CDC_d) == 29) {dphi_d = 7;}
436 else if (abs(phi_ECL_d - phi_CDC_d) == 8 || abs(phi_ECL_d - phi_CDC_d) == 28) {dphi_d = 8;}
437 else if (abs(phi_ECL_d - phi_CDC_d) == 9 || abs(phi_ECL_d - phi_CDC_d) == 27) {dphi_d = 9;}
438 else if (abs(phi_ECL_d - phi_CDC_d) == 10 || abs(phi_ECL_d - phi_CDC_d) == 26) {dphi_d = 10;}
439 else if (abs(phi_ECL_d - phi_CDC_d) == 11 || abs(phi_ECL_d - phi_CDC_d) == 25) {dphi_d = 11;}
440 else if (abs(phi_ECL_d - phi_CDC_d) == 12 || abs(phi_ECL_d - phi_CDC_d) == 24) {dphi_d = 12;}
441 else if (abs(phi_ECL_d - phi_CDC_d) == 13 || abs(phi_ECL_d - phi_CDC_d) == 23) {dphi_d = 13;}
442 else if (abs(phi_ECL_d - phi_CDC_d) == 14 || abs(phi_ECL_d - phi_CDC_d) == 22) {dphi_d = 14;}
443 else if (abs(phi_ECL_d - phi_CDC_d) == 15 || abs(phi_ECL_d - phi_CDC_d) == 21) {dphi_d = 15;}
444 else if (abs(phi_ECL_d - phi_CDC_d) == 16 || abs(phi_ECL_d - phi_CDC_d) == 20) {dphi_d = 16;}
445 else if (abs(phi_ECL_d - phi_CDC_d) == 17 || abs(phi_ECL_d - phi_CDC_d) == 19) {dphi_d = 17;}
446 else if (abs(phi_ECL_d - phi_CDC_d) == 18) {dphi_d = 18;}
447
448}
449
451 int& phiid_klm)
452{
453
454 //-- 2D track information
455 double _r = 1.0 / _track->getOmega() ;
456 double _phi = _track->getPhi0() ;
457
458 //-- 2D phi angle calculation (extrapolating up to superconducting coil)
459 double phi_p = acos(176.0 / (2 * fabs(_r))); // adjustment angle between 0 to 0.5*M_PI
460 int charge = 0;
461 if (_r > 0) {charge = 1;}
462 else if (_r < 0) {charge = -1;}
463 else {charge = 0;}
464
465 double phi_CDC = 0.0;
466 if (charge == 1) {
467 phi_CDC = _phi + phi_p - 0.5 * M_PI;
468 } else if (charge == -1) {
469 phi_CDC = _phi - phi_p + 0.5 * M_PI;
470 } else {
471 phi_CDC = _phi;
472 }
473
474 if (phi_CDC > 2 * M_PI) {phi_CDC = phi_CDC - 2 * M_PI;}
475 else if (phi_CDC < 0) {phi_CDC = phi_CDC + 2 * M_PI;}
476
477 // KLM track's sector central phi
478 int _sector_mask_fw = _klmtrgsummary->getSector_mask_Forward_Barrel();
479 int _sector_mask_bw = _klmtrgsummary->getSector_mask_Backward_Barrel();
480 int _sector_mask = _sector_mask_fw | _sector_mask_bw;
481 for (int _sector = 0; _sector < 8; _sector++) {
482 if (_sector_mask & (1 << _sector)) {
483 double _sector_central = 0.25 * M_PI * _sector;
484 double dphi_temp;
485 if (fabs(phi_CDC - _sector_central) < M_PI) { dphi_temp = fabs(phi_CDC - _sector_central); }
486 else { dphi_temp = 2 * M_PI - fabs(phi_CDC - _sector_central); }
487 if (dphi_temp < dphi) {
488 dphi = dphi_temp;
489 phiid_klm = _sector;
490 }
491 }
492 }
493
494}
495
496bool TRGGRLMatchModule::photon_cluster(TRGECLCluster* _cluster, std::vector<bool> phimap, double e_threshold)
497{
498
499 //-- cluster/TRGECL information
500 double _cluster_x = _cluster->getPositionX();
501 double _cluster_y = _cluster->getPositionY();
502 double _cluster_z = _cluster->getPositionZ();
503 double _cluster_theta = atan(_cluster_z / (sqrt(_cluster_x * _cluster_x + _cluster_y * _cluster_y)));
504 _cluster_theta = 0.5 * M_PI - _cluster_theta;
505 bool barrel = true;
506 if (_cluster_theta < M_PI * 35.0 / 180.0 || _cluster_theta > M_PI * 126.0 / 180.0) {barrel = false;}
507 double _cluster_e = _cluster->getEnergyDep();
508
509 // -- ECL phi angle
510 double phi_ECL = 0.0;
511 if (_cluster_x >= 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x);}
512 else if (_cluster_x < 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
513 else if (_cluster_x < 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
514 else if (_cluster_x >= 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + 2 * M_PI;}
515
516 int phi_ECL_d = 0;
517 // digitization on both angle
518 for (int i = 0; i < 36; i++) {
519 if (phi_ECL > i * M_PI / 18 && phi_ECL < (i + 1)*M_PI / 18) {phi_ECL_d = i;}
520 }
521
522 int index = phi_ECL_d, index_p = phi_ECL_d + 1, index_m = phi_ECL_d - 1;
523 if (index_p > 35) {index_p = index_p - 36;}
524 if (index_m < 0) {index_m = index_m + 36;}
525
526 if (!phimap[index] && !phimap[index_p] && !phimap[index_m] && _cluster_e >= e_threshold && barrel) {return true;}
527 else if (!barrel) {return true;}
528 else {return false;}
529
530}
531
533{
534 if (x > 63) x -= 64;
535 if (x < 0) x += 64;
536 return x;
537}
538
540{
541 if (x > 35) x -= 36;
542 if (x < 0) x += 36;
543 return x;
544}
545
546void TRGGRLMatchModule::fill_pattern_base2(std::vector< std::vector<int> >& patt)
547{
548 patt.push_back({ 0, 0, 0, 0});
549 patt.push_back({ 0, -1, 0, 0});
550 patt.push_back({ 0, -1, 1, 0});
551 patt.push_back({ 0, -1, -1, 0});
552 patt.push_back({ 0, -2, 0, 0});
553 patt.push_back({ 0, -2, 1, 0});
554 patt.push_back({ 0, -2, 2, 0});
555 patt.push_back({ 0, -2, 3, 0});
556 patt.push_back({ 0, -3, 1, 0});
557 patt.push_back({ 0, -3, 2, 0});
558 patt.push_back({ 0, -3, 3, 0});
559 patt.push_back({ 0, -4, 2, 0});
560 patt.push_back({ 0, -4, 3, 0});
561 patt.push_back({ 0, 0, 0, 1});
562 patt.push_back({ 0, 0, 1, 1});
563 patt.push_back({ 0, -1, 0, 1});
564 patt.push_back({ 0, -1, 1, 1});
565 patt.push_back({ 0, -1, 2, 1});
566 patt.push_back({ 0, -2, 2, 1});
567 patt.push_back({ 0, -2, 3, 1});
568 patt.push_back({ 0, -3, 2, 1});
569 patt.push_back({ 0, -3, 3, 1});
570 patt.push_back({ 0, 0, 0, -1});
571 patt.push_back({ 0, 0, -1, -1});
572 patt.push_back({ 0, -1, 0, -1});
573 patt.push_back({ 0, -1, -1, -1});
574 patt.push_back({ 0, -2, 0, -1});
575 patt.push_back({ 0, -2, 1, -1});
576 patt.push_back({ 0, -3, 1, -1});
577 patt.push_back({ 0, -3, 2, -1});
578 patt.push_back({ -1, -1, 0, 0});
579 patt.push_back({ -1, -1, 1, 0});
580 patt.push_back({ -1, -2, 0, 0});
581 patt.push_back({ -1, -2, 1, 0});
582 patt.push_back({ -1, -3, 1, 0});
583 patt.push_back({ -1, -3, 2, 0});
584 patt.push_back({ -1, -3, 3, 0});
585 patt.push_back({ -1, -4, 2, 0});
586 patt.push_back({ -1, -4, 3, 0});
587 patt.push_back({ 1, 0, 1, 0});
588 patt.push_back({ 1, 0, 0, 0});
589 patt.push_back({ 1, 0, -1, 0});
590 patt.push_back({ 1, -1, 0, 0});
591 patt.push_back({ 1, -1, 1, 0});
592 patt.push_back({ 1, -2, 2, 0});
593 patt.push_back({ 1, -2, 3, 0});
594 patt.push_back({ 1, -3, 2, 0});
595 patt.push_back({ 1, -3, 3, 0});
596 patt.push_back({ -1, -1, 0, 1});
597 patt.push_back({ -1, -1, 1, 1});
598 patt.push_back({ -1, -2, 0, 1});
599 patt.push_back({ -1, -2, 1, 1});
600 patt.push_back({ -1, -2, 2, 1});
601 patt.push_back({ -1, -3, 1, 1});
602 patt.push_back({ -1, -3, 2, 1});
603 patt.push_back({ -1, -3, 3, 1});
604 patt.push_back({ -1, -4, 2, 1});
605 patt.push_back({ -1, -4, 3, 1});
606 patt.push_back({ 1, 0, -1, -1});
607 patt.push_back({ 1, 0, 0, -1});
608 patt.push_back({ 1, -1, -1, -1});
609 patt.push_back({ 1, -1, 0, -1});
610 patt.push_back({ 1, -1, 1, -1});
611 patt.push_back({ 1, -2, 1, -1});
612 patt.push_back({ 1, -2, 2, -1});
613 patt.push_back({ 1, -3, 1, -1});
614 patt.push_back({ 1, -3, 2, -1});
615 patt.push_back({ -1, -1, 1, 2});
616 patt.push_back({ -1, -1, 2, 2});
617 patt.push_back({ -1, -2, 1, 2});
618 patt.push_back({ -1, -2, 2, 2});
619 patt.push_back({ -1, -2, 3, 2});
620 patt.push_back({ -1, -3, 2, 2});
621 patt.push_back({ -1, -3, 3, 2});
622 patt.push_back({ -1, -3, 4, 2});
623 patt.push_back({ 1, 0, -1, -2});
624 patt.push_back({ 1, 0, 0, -2});
625 patt.push_back({ 1, -1, 1, -2});
626 patt.push_back({ 1, -1, 0, -2});
627 patt.push_back({ 1, -1, -1, -2});
628 patt.push_back({ 1, -2, 0, -2});
629 patt.push_back({ 1, -2, 1, -2});
630 patt.push_back({ -2, -2, 0, 1});
631 patt.push_back({ -2, -2, 1, 1});
632 patt.push_back({ -2, -3, 1, 1});
633 patt.push_back({ -2, -3, 2, 1});
634 patt.push_back({ -2, -4, 2, 1});
635 patt.push_back({ -2, -4, 3, 1});
636 patt.push_back({ -2, -5, 3, 1});
637 patt.push_back({ 2, 1, 0, -1});
638 patt.push_back({ 2, 0, 1, -1});
639 patt.push_back({ 2, 0, 0, -1});
640 patt.push_back({ 2, 0, -1, -1});
641 patt.push_back({ 2, -1, 1, -1});
642 patt.push_back({ 2, -1, 0, -1});
643 patt.push_back({ 2, -2, 2, -1});
644 patt.push_back({ 2, -2, 1, -1});
645 patt.push_back({ -2, -2, 1, 2});
646 patt.push_back({ -2, -2, 2, 2});
647 patt.push_back({ -2, -3, 1, 2});
648 patt.push_back({ -2, -3, 2, 2});
649 patt.push_back({ -2, -3, 3, 2});
650 patt.push_back({ -2, -4, 2, 2});
651 patt.push_back({ -2, -4, 3, 2});
652 patt.push_back({ -2, -4, 4, 2});
653 patt.push_back({ 2, 1, 0, -2});
654 patt.push_back({ 2, 1, -1, -2});
655 patt.push_back({ 2, 0, 1, -2});
656 patt.push_back({ 2, 0, 0, -2});
657 patt.push_back({ 2, 0, -1, -2});
658 patt.push_back({ 2, 0, -2, -2});
659 patt.push_back({ 2, -1, 2, -2});
660 patt.push_back({ 2, -1, 1, -2});
661 patt.push_back({ 2, -1, 0, -2});
662 patt.push_back({ 2, -1, -1, -2});
663 patt.push_back({ 2, -2, 0, -2});
664 patt.push_back({ 2, -2, 1, -2});
665 patt.push_back({ -2, -2, 1, 3});
666 patt.push_back({ -2, -2, 2, 3});
667 patt.push_back({ -2, -3, 2, 3});
668 patt.push_back({ -2, -3, 3, 3});
669 patt.push_back({ -2, -3, 4, 3});
670 patt.push_back({ -2, -4, 3, 3});
671 patt.push_back({ -2, -4, 4, 3});
672 patt.push_back({ 2, 1, -1, -3});
673 patt.push_back({ 2, 0, -1, -3});
674 patt.push_back({ 2, 0, -2, -3});
675 patt.push_back({ 2, -1, 0, -3});
676 patt.push_back({ 2, -2, 0, -3});
677 patt.push_back({ 2, -2, 1, -3});
678 patt.push_back({ -2, -2, 2, 4});
679 patt.push_back({ -2, -3, 3, 4});
680 patt.push_back({ -2, -3, 4, 4});
681 patt.push_back({ -2, -4, 4, 4});
682 patt.push_back({ 2, -1, 0, 4});
683 patt.push_back({ 2, -1, -1, 4});
684 patt.push_back({ 2, -2, 0, 4});
685
686}
687
688void TRGGRLMatchModule::make_veto_map(StoreArray<CDCTriggerTrack> track2Dlist, std::vector<bool>& map_veto)
689{
690 for (int i = 0; i < track2Dlist.getEntries(); i++) {
691 int _w = (int)(2271.7 * track2Dlist[i]->getOmega()) ; // omega from -33 to 33
692 if (_w >= 33) { _w = 33;}
693 else if (_w <= -33) { _w = -33;}
694 int _phi = (int)((track2Dlist[i]->getPhi0() + 2 * M_PI) / (M_PI / 32.0)); // phi_i digitized to 0 ~ 63
695
696 int charge = 0;
697 if (_w > 0) {charge = 1;}
698 else if (_w < 0) {charge = -1;}
699 else {charge = 0;}
700
701 _w = abs(_w);
702
703 int L;
704 // cppcheck-suppress knownConditionTrueFalse
705 if (_w >= 0 && _w <= 8) { L = _phi; }
706 else if (_w >= 9 && _w <= 15) {
707 if (charge < 0) { L = _phi + 1; }
708 else { L = _phi; }
709 } else if (_w >= 16 && _w <= 24) {
710 if (charge < 0) { L = _phi + 2; }
711 else { L = _phi; }
712 } else if (_w >= 25 && _w <= 27) {
713 if (charge < 0) { L = _phi + 3; }
714 else { L = _phi; }
715 } else if (_w >= 28 && _w <= 30) {
716 if (charge < 0) { L = _phi + 3; }
717 else { L = _phi + 1; }
718 } else if (_w >= 31 && _w <= 32) {
719 if (charge < 0) { L = _phi + 4; }
720 else { L = _phi + 1; }
721 } else {
722 if (charge < 0) { L = _phi + 5; }
723 else { L = _phi + 1; }
724 }
725
726 int R;
727 // cppcheck-suppress knownConditionTrueFalse
728 if (_w >= 0 && _w <= 8) { R = _phi; }
729 else if (_w >= 9 && _w <= 15) {
730 if (charge < 0) { R = _phi; }
731 else { R = _phi - 1; }
732 } else if (_w >= 16 && _w <= 24) {
733 if (charge < 0) { R = _phi; }
734 else { R = _phi - 2; }
735 } else if (_w >= 25 && _w <= 27) {
736 if (charge < 0) { R = _phi; }
737 else { R = _phi - 3; }
738 } else if (_w >= 28 && _w <= 30) {
739 if (charge < 0) { R = _phi + 1; }
740 else { R = _phi - 3; }
741 } else if (_w >= 21 && _w <= 32) {
742 if (charge < 0) { R = _phi + 1; }
743 else { R = _phi - 4; }
744 } else {
745 if (charge < 0) { R = _phi + 1; }
746 else { R = _phi - 5; }
747 }
748
749 // L should be > R
750 for (int j = R - 1; j < L + 2; j++) {
751 map_veto[N64(j)] = true;
752 }
753 }
754
755}
756
758 std::vector<bool>& ecl_phimap, std::vector<bool>& ecl_phimap_fwd, std::vector<bool>& ecl_phimap_bwd,
759 std::vector<bool>& ecl_sectormap_fwd, std::vector<bool>& ecl_sectormap_bwd)
760{
761 bool ecl_phimap_loose_fwd[36];
762 bool ecl_phimap_loose_bwd[36];
763 for (int i = 0; i < 36; i++) {
764 ecl_phimap_loose_fwd[i] = false;
765 ecl_phimap_loose_bwd[i] = false;
766 }
767
768 for (int iclst = 0; iclst < clusterlist.getEntries(); iclst++) {
769 //-- cluster/TRGECL information
770 double _cluster_x = clusterlist[iclst]->getPositionX();
771 double _cluster_y = clusterlist[iclst]->getPositionY();
772
773 // -- ECL phi angle
774 double phi_ECL = 0.0;
775 if (_cluster_x >= 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x);}
776 else if (_cluster_x < 0 && _cluster_y >= 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
777 else if (_cluster_x < 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + M_PI;}
778 else if (_cluster_x >= 0 && _cluster_y < 0) {phi_ECL = atan(_cluster_y / _cluster_x) + 2 * M_PI;}
779
780 int phi_ECL_d = 0;
781 // digitization on both angle
782 for (int i = 0; i < 36; i++) {
783 if (phi_ECL > i * M_PI / 18 && phi_ECL < (i + 1)*M_PI / 18) {phi_ECL_d = i;}
784 }
785
786 //fill endcap only
787 int _cluster_thetaid = clusterlist[iclst]->getMaxThetaId();
788 if (_cluster_thetaid < 4 || _cluster_thetaid > 15) ecl_phimap[phi_ECL_d] = true;
789 if (_cluster_thetaid < 4) ecl_phimap_fwd[phi_ECL_d] = true;
790 if (_cluster_thetaid > 15) ecl_phimap_bwd[phi_ECL_d] = true;
791 if (_cluster_thetaid < 5) ecl_phimap_loose_fwd[phi_ECL_d] = true;
792 if (_cluster_thetaid > 14) ecl_phimap_loose_bwd[phi_ECL_d] = true;
793 }
794
795 //-- 36b into 4b
796 ecl_sectormap_fwd[0] = ecl_phimap_loose_fwd[35] or ecl_phimap_loose_fwd[0] or ecl_phimap_loose_fwd[1] or ecl_phimap_loose_fwd[2] or
797 ecl_phimap_loose_fwd[3] or ecl_phimap_loose_fwd[4] or ecl_phimap_loose_fwd[5] or ecl_phimap_loose_fwd[6] or
798 ecl_phimap_loose_fwd[7] or ecl_phimap_loose_fwd[8] or ecl_phimap_loose_fwd[9];
799 ecl_sectormap_fwd[1] = ecl_phimap_loose_fwd[8] or ecl_phimap_loose_fwd[9] or ecl_phimap_loose_fwd[10] or ecl_phimap_loose_fwd[11]
800 or
801 ecl_phimap_loose_fwd[12] or ecl_phimap_loose_fwd[13] or ecl_phimap_loose_fwd[14] or ecl_phimap_loose_fwd[15] or
802 ecl_phimap_loose_fwd[16] or ecl_phimap_loose_fwd[17] or ecl_phimap_loose_fwd[18] or ecl_phimap_loose_fwd[19];
803 ecl_sectormap_fwd[2] = ecl_phimap_loose_fwd[18] or ecl_phimap_loose_fwd[19] or ecl_phimap_loose_fwd[20]
804 or ecl_phimap_loose_fwd[21] or
805 ecl_phimap_loose_fwd[22] or ecl_phimap_loose_fwd[23] or ecl_phimap_loose_fwd[24] or ecl_phimap_loose_fwd[25] or
806 ecl_phimap_loose_fwd[26] or ecl_phimap_loose_fwd[27] or ecl_phimap_loose_fwd[28];
807 ecl_sectormap_fwd[3] = ecl_phimap_loose_fwd[26] or ecl_phimap_loose_fwd[27] or ecl_phimap_loose_fwd[28]
808 or ecl_phimap_loose_fwd[29] or
809 ecl_phimap_loose_fwd[30] or ecl_phimap_loose_fwd[31] or ecl_phimap_loose_fwd[32] or ecl_phimap_loose_fwd[33] or
810 ecl_phimap_loose_fwd[34] or ecl_phimap_loose_fwd[35] or ecl_phimap_loose_fwd[0];
811 //-- 36b into 4b
812 ecl_sectormap_bwd[0] = ecl_phimap_loose_bwd[35] or ecl_phimap_loose_bwd[0] or ecl_phimap_loose_bwd[1] or ecl_phimap_loose_bwd[2] or
813 ecl_phimap_loose_bwd[3] or ecl_phimap_loose_bwd[4] or ecl_phimap_loose_bwd[5] or ecl_phimap_loose_bwd[6] or
814 ecl_phimap_loose_bwd[7] or ecl_phimap_loose_bwd[8] or ecl_phimap_loose_bwd[9];
815 ecl_sectormap_bwd[1] = ecl_phimap_loose_bwd[8] or ecl_phimap_loose_bwd[9] or ecl_phimap_loose_bwd[10] or ecl_phimap_loose_bwd[11]
816 or
817 ecl_phimap_loose_bwd[12] or ecl_phimap_loose_bwd[13] or ecl_phimap_loose_bwd[14] or ecl_phimap_loose_bwd[15] or
818 ecl_phimap_loose_bwd[16] or ecl_phimap_loose_bwd[17] or ecl_phimap_loose_bwd[18] or ecl_phimap_loose_bwd[19];
819 ecl_sectormap_bwd[2] = ecl_phimap_loose_bwd[18] or ecl_phimap_loose_bwd[19] or ecl_phimap_loose_bwd[20]
820 or ecl_phimap_loose_bwd[21] or
821 ecl_phimap_loose_bwd[22] or ecl_phimap_loose_bwd[23] or ecl_phimap_loose_bwd[24] or ecl_phimap_loose_bwd[25] or
822 ecl_phimap_loose_bwd[26] or ecl_phimap_loose_bwd[27] or ecl_phimap_loose_bwd[28];
823 ecl_sectormap_bwd[3] = ecl_phimap_loose_bwd[26] or ecl_phimap_loose_bwd[27] or ecl_phimap_loose_bwd[28]
824 or ecl_phimap_loose_bwd[29] or
825 ecl_phimap_loose_bwd[30] or ecl_phimap_loose_bwd[31] or ecl_phimap_loose_bwd[32] or ecl_phimap_loose_bwd[33] or
826 ecl_phimap_loose_bwd[34] or ecl_phimap_loose_bwd[35] or ecl_phimap_loose_bwd[0];
827
828}
829
831 std::vector<bool>& _eklm_sectormap, std::vector<bool>& _eklm_sectormap_fwd, std::vector<bool>& _eklm_sectormap_bwd)
832{
833
834 int _sector_mask_fw = _klmtrgsummary->getSector_mask_Forward_Endcap();
835 int _sector_mask_bw = _klmtrgsummary->getSector_mask_Backward_Endcap();
836
837 for (int _sector = 0; _sector < 4; _sector++) {
838 //if(_sector_mask_fw & (1<<_sector) ) _eklm_sectormap_fwd[_sector]=true;
839 if (_sector_mask_bw & (1 << _sector)) _eklm_sectormap_bwd[_sector] = true;
840 //if(_sector_mask & (1<<_sector) ) _eklm_sectormap[_sector]=true;
841 }
842 if (_sector_mask_fw & (1 << 0)) _eklm_sectormap_fwd[1] = true;
843 if (_sector_mask_fw & (1 << 1)) _eklm_sectormap_fwd[0] = true;
844 if (_sector_mask_fw & (1 << 2)) _eklm_sectormap_fwd[3] = true;
845 if (_sector_mask_fw & (1 << 3)) _eklm_sectormap_fwd[2] = true;
846
847 for (int _sector = 0; _sector < 4; _sector++) {
848 _eklm_sectormap[_sector] = (_eklm_sectormap_fwd[_sector] || _eklm_sectormap_bwd[_sector]);
849 }
850}
851
852
854 std::vector<bool> phimap_i,
855 std::vector<bool> ecl_phimap_fwd,
856 std::vector<bool> ecl_phimap_bwd,
857 std::vector<bool> klm_sectormap_fwd,
858 std::vector<bool> klm_sectormap_bwd,
859 std::vector< std::vector<int> >& pattern_base0, std::vector< std::vector<int> >& pattern_base2,
862{
863 std::vector<bool> SL0(64, 0);
864 std::vector<bool> SL1(64, 0);
865 std::vector<bool> SL2(64, 0);
866 std::vector<bool> SL3(64, 0);
867 std::vector<bool> SL4(64, 0);
868 std::vector<bool> ST0(64, 0);
869 std::vector<bool> ST0_36b(36, 0);
870 std::vector<bool> ST2(64, 0);
871 std::vector<int> patt_ID(64, -1);
872
873 std::vector<bool> st_ec1(64, 0);
874 std::vector<bool> st_ec1_36b(36, 0);
875 std::vector<bool> st_ec1_4b(4, 0);
876 std::vector<bool> st_ec2(64, 0);
877 std::vector<bool> st_ec2_36b(36, 0);
878 std::vector<bool> st_ec2_4b(4, 0);
879
880//-- collecting TSF info in SL0~4
881 for (int i = 0; i < tslist.getEntries(); i++) {
882 int id = tslist[i]->getSegmentID();
883 int sl = 0;
884 if (id >= 0 * 32 && id < 5 * 32) {sl = 0; id -= 0;}
885 else if (id >= 5 * 32 && id < 10 * 32) {sl = 1; id -= 5 * 32;}
886 else if (id >= 10 * 32 && id < 16 * 32) {sl = 2; id -= 10 * 32;}
887 else if (id >= 16 * 32 && id < 23 * 32) {sl = 3; id -= 16 * 32;}
888 else if (id >= 23 * 32 && id < 31 * 32) {sl = 4; id -= 23 * 32;}
889 else continue;
890
891 if (sl == 0) {
892 int X = (int)(id / 5), Y = id % 5;
893 if (Y == 0 || Y == 1) { SL0[2 * X] = true; }
894 else if (Y == 3 || Y == 4) { SL0[2 * X + 1] = true; }
895 else { SL0[2 * X] = true; SL0[2 * X + 1] = true; }
896 } else if (sl == 1) {
897 int X = (int)(id / 5), Y = id % 5;
898 if (Y == 0 || Y == 1) { SL1[2 * X] = true; }
899 else if (Y == 3 || Y == 4) { SL1[2 * X + 1] = true; }
900 else { SL1[2 * X] = true; SL1[2 * X + 1] = true; }
901 } else if (sl == 2) {
902 int X = (int)(id / 3);
903 SL2[X] = true;
904 } else if (sl == 3) {
905 int X = (int)(id / 7), Y = id % 7;
906 if (Y == 0 || Y == 1 || Y == 2) { SL3[2 * X] = true; }
907 else if (Y == 4 || Y == 5 || Y == 6) { SL3[2 * X + 1] = true; }
908 else { SL3[2 * X] = true; SL3[2 * X + 1] = true; }
909 } else if (sl == 4) {
910 int X = (int)(id / 4);
911 SL4[X] = true;
912 }
913
914 }
915
916//-- making veto
917 for (int i = 0; i < 64; i++) {
918 if (map_veto[i]) {SL0[i] = false; SL1[i] = false; SL2[i] = false;}
919 }
920 /*
921 for (int i = 0; i < 64; i++) { std::cout<<map_veto[63-i]; if((64-i)%10==1) std::cout<<" ";}
922 std::cout<<std::endl;
923 for (int i = 0; i < 64; i++) { std::cout<<SL4[63-i]; if((64-i)%10==1) std::cout<<" ";}
924 std::cout<<std::endl;
925 for (int i = 0; i < 64; i++) { std::cout<<SL3[63-i]; if((64-i)%10==1) std::cout<<" ";}
926 std::cout<<std::endl;
927 for (int i = 0; i < 64; i++) { std::cout<<SL2[63-i]; if((64-i)%10==1) std::cout<<" ";}
928 std::cout<<std::endl;
929 for (int i = 0; i < 64; i++) { std::cout<<SL1[63-i]; if((64-i)%10==1) std::cout<<" ";}
930 std::cout<<std::endl;
931 for (int i = 0; i < 64; i++) { std::cout<<SL0[63-i]; if((64-i)%10==1) std::cout<<" ";}
932 std::cout<<std::endl;
933 */
934//-- doing short tracking
935
936 std::vector< std::vector<int> > stlist_buf(0);
937
938 // -- ST finding with SL2
939 for (int i = 0; i < 64; i++) {
940
941 int ID0 = 0;
942 int ID1 = 0;
943 int ID2 = 0;
944 int ID3 = 0;
945 int ID4 = 0;
946 stlist_buf.push_back({0, 0, 0, 0, 0, 0});
947
948 if (!SL2[i]) continue;
949 bool SL2_already_found = false;
950
951 for (int p = 0; p < 137; p++) {
952
953 // following patterns will not be used.
954 if (p == 4) continue;
955 if (p == 5) continue;
956 if (p == 17) continue;
957 if (p == 26) continue;
958 if (p == 38) continue;
959 if (p == 41) continue;
960 if (p == 42) continue;
961 if (p == 47) continue;
962 if (p == 50) continue;
963 if (p == 60) continue;
964 if (p == 63) continue;
965 if (p == 64) continue;
966 if (p == 74) continue;
967 if (p == 93) continue;
968 if (p == 94) continue;
969 if (p == 95) continue;
970 if (p == 96) continue;
971 if (p == 104) continue;
972 if (p == 113) continue;
973 if (p == 114) continue;
974 if (p == 115) continue;
975 if (p == 123) continue;
976 if (p == 134) continue;
977 if (p == 135) continue;
978 if (p == 136) continue;
979
980 int x0 = pattern_base2[p][0];
981 int x1 = pattern_base2[p][1];
982 int x3 = pattern_base2[p][2];
983 int x4 = pattern_base2[p][3];
984
985
986 if (SL2[i] && SL0[N64(i + x0)] && SL1[N64(i + x1)] && SL3[N64(i + x3)] && SL4[N64(i + x4)] && !SL2_already_found) {
987 ST2[i] = true;
988 ID0 = N64(i + x0);
989 ID1 = N64(i + x1);
990 ID2 = i;
991 ID3 = N64(i + x3);
992 ID4 = N64(i + x4);
993 SL2_already_found = true; // if it has been found in previous pattern, no need to do it again.
994 }
995
996 // if a pattern is found, no need to look for other pattern
997 if (SL2_already_found) break;
998
999 }
1000
1001 if (SL2_already_found) {
1002 stlist_buf[i][0] = 1;
1003 stlist_buf[i][1] = ID0;
1004 stlist_buf[i][2] = ID1;
1005 stlist_buf[i][3] = ID2;
1006 stlist_buf[i][4] = ID3;
1007 stlist_buf[i][5] = ID4;
1008 }
1009 }
1011//-- ST finding with SL0
1012 for (int i = 0; i < 64; i++) {
1013
1014 if (!SL0[i]) continue;
1015 bool SL0_already_found = false;
1016
1017 for (int p = 0; p < 137; p++) {
1018
1019 // following patterns will not be used.
1020 if (p == 4) continue;
1021 if (p == 5) continue;
1022 if (p == 17) continue;
1023 if (p == 26) continue;
1024 if (p == 38) continue;
1025 if (p == 41) continue;
1026 if (p == 42) continue;
1027 if (p == 47) continue;
1028 if (p == 50) continue;
1029 if (p == 60) continue;
1030 if (p == 63) continue;
1031 if (p == 64) continue;
1032 if (p == 74) continue;
1033 if (p == 93) continue;
1034 if (p == 94) continue;
1035 if (p == 95) continue;
1036 if (p == 96) continue;
1037 if (p == 104) continue;
1038 if (p == 113) continue;
1039 if (p == 114) continue;
1040 if (p == 115) continue;
1041 if (p == 123) continue;
1042 if (p == 134) continue;
1043 if (p == 135) continue;
1044 if (p == 136) continue;
1045
1046 int y1 = pattern_base0[p][0];
1047 int y2 = pattern_base0[p][1];
1048 int y3 = pattern_base0[p][2];
1049 int y4 = pattern_base0[p][3];
1050
1051 if (SL0[i] && SL1[N64(i + y1)] && SL2[N64(i + y2)] && SL3[N64(i + y3)] && SL4[N64(i + y4)] && !SL0_already_found) {
1052 ST0[i] = true;
1053 if (patt_ID[i] < 0) { patt_ID[i] = p; }
1054 SL0_already_found = true; // if it has been found in previous pattern, no need to do it again.
1055 }
1056
1057 // if a pattern is found, no need to look for other pattern
1058 if (SL0_already_found) break;
1059
1060 }
1061
1062 }
1064//-- extrapolation
1065 for (int i = 0; i < 64; i++) {
1066 if (patt_ID[i] == -1) continue;
1067
1068 int ec = 0, l = 0, r = 0;
1069 extrapolation(patt_ID[i], l, r, ec);
1070 if (ec == 1) {
1071 for (int e = l; e <= r; e++) { st_ec1[N64(i + e)] = true; }
1072 }
1073 if (ec == 2) {
1074 for (int e = l; e <= r; e++) { st_ec2[N64(i + e)] = true; }
1075 }
1076
1077 }
1078//-- 64b into 36b
1079 for (int i = 0; i < 4; i++) {
1080 ST0_36b[0 + 9 * i] = ST0[0 + 16 * i] or ST0[1 + 16 * i];
1081 ST0_36b[1 + 9 * i] = ST0[1 + 16 * i] or ST0[2 + 16 * i] or ST0[3 + 16 * i];
1082 ST0_36b[2 + 9 * i] = ST0[3 + 16 * i] or ST0[4 + 16 * i] or ST0[5 + 16 * i];
1083 ST0_36b[3 + 9 * i] = ST0[5 + 16 * i] or ST0[6 + 16 * i] or ST0[7 + 16 * i];
1084 ST0_36b[4 + 9 * i] = ST0[7 + 16 * i] or ST0[8 + 16 * i];
1085 ST0_36b[5 + 9 * i] = ST0[8 + 16 * i] or ST0[9 + 16 * i] or ST0[10 + 16 * i];
1086 ST0_36b[6 + 9 * i] = ST0[10 + 16 * i] or ST0[11 + 16 * i] or ST0[12 + 16 * i];
1087 ST0_36b[7 + 9 * i] = ST0[12 + 16 * i] or ST0[13 + 16 * i] or ST0[14 + 16 * i];
1088 ST0_36b[8 + 9 * i] = ST0[14 + 16 * i] or ST0[15 + 16 * i];
1089 st_ec1_36b[0 + 9 * i] = st_ec1[0 + 16 * i] or st_ec1[1 + 16 * i];
1090 st_ec1_36b[1 + 9 * i] = st_ec1[1 + 16 * i] or st_ec1[2 + 16 * i] or st_ec1[3 + 16 * i];
1091 st_ec1_36b[2 + 9 * i] = st_ec1[3 + 16 * i] or st_ec1[4 + 16 * i] or st_ec1[5 + 16 * i];
1092 st_ec1_36b[3 + 9 * i] = st_ec1[5 + 16 * i] or st_ec1[6 + 16 * i] or st_ec1[7 + 16 * i];
1093 st_ec1_36b[4 + 9 * i] = st_ec1[7 + 16 * i] or st_ec1[8 + 16 * i];
1094 st_ec1_36b[5 + 9 * i] = st_ec1[8 + 16 * i] or st_ec1[9 + 16 * i] or st_ec1[10 + 16 * i];
1095 st_ec1_36b[6 + 9 * i] = st_ec1[10 + 16 * i] or st_ec1[11 + 16 * i] or st_ec1[12 + 16 * i];
1096 st_ec1_36b[7 + 9 * i] = st_ec1[12 + 16 * i] or st_ec1[13 + 16 * i] or st_ec1[14 + 16 * i];
1097 st_ec1_36b[8 + 9 * i] = st_ec1[14 + 16 * i] or st_ec1[15 + 16 * i];
1098
1099 st_ec2_36b[0 + 9 * i] = st_ec2[0 + 16 * i] or st_ec2[1 + 16 * i];
1100 st_ec2_36b[1 + 9 * i] = st_ec2[1 + 16 * i] or st_ec2[2 + 16 * i] or st_ec2[3 + 16 * i];
1101 st_ec2_36b[2 + 9 * i] = st_ec2[3 + 16 * i] or st_ec2[4 + 16 * i] or st_ec2[5 + 16 * i];
1102 st_ec2_36b[3 + 9 * i] = st_ec2[5 + 16 * i] or st_ec2[6 + 16 * i] or st_ec2[7 + 16 * i];
1103 st_ec2_36b[4 + 9 * i] = st_ec2[7 + 16 * i] or st_ec2[8 + 16 * i];
1104 st_ec2_36b[5 + 9 * i] = st_ec2[8 + 16 * i] or st_ec2[9 + 16 * i] or st_ec2[10 + 16 * i];
1105 st_ec2_36b[6 + 9 * i] = st_ec2[10 + 16 * i] or st_ec2[11 + 16 * i] or st_ec2[12 + 16 * i];
1106 st_ec2_36b[7 + 9 * i] = st_ec2[12 + 16 * i] or st_ec2[13 + 16 * i] or st_ec2[14 + 16 * i];
1107 st_ec2_36b[8 + 9 * i] = st_ec2[14 + 16 * i] or st_ec2[15 + 16 * i];
1108 }
1109//-- 36b into 4b
1110 st_ec1_4b[0] = st_ec1_36b[35] or st_ec1_36b[0] or st_ec1_36b[1] or st_ec1_36b[2] or st_ec1_36b[3] or st_ec1_36b[4] or st_ec1_36b[5]
1111 or st_ec1_36b[6] or st_ec1_36b[7] or st_ec1_36b[8] or st_ec1_36b[9];
1112 st_ec1_4b[1] = st_ec1_36b[8] or st_ec1_36b[9] or st_ec1_36b[10] or st_ec1_36b[11] or st_ec1_36b[12] or st_ec1_36b[13]
1113 or st_ec1_36b[14] or st_ec1_36b[15] or st_ec1_36b[16] or st_ec1_36b[17] or st_ec1_36b[18] or st_ec1_36b[19];
1114 st_ec1_4b[2] = st_ec1_36b[18] or st_ec1_36b[19] or st_ec1_36b[20] or st_ec1_36b[21] or st_ec1_36b[22] or st_ec1_36b[23]
1115 or st_ec1_36b[24] or st_ec1_36b[25] or st_ec1_36b[26] or st_ec1_36b[27] or st_ec1_36b[28];
1116 st_ec1_4b[3] = st_ec1_36b[26] or st_ec1_36b[27] or st_ec1_36b[28] or st_ec1_36b[29] or st_ec1_36b[30] or st_ec1_36b[31]
1117 or st_ec1_36b[32] or st_ec1_36b[33] or st_ec1_36b[34] or st_ec1_36b[35] or st_ec1_36b[0];
1118 st_ec2_4b[0] = st_ec2_36b[35] or st_ec2_36b[0] or st_ec2_36b[1] or st_ec2_36b[2] or st_ec2_36b[3] or st_ec2_36b[4] or st_ec2_36b[5]
1119 or st_ec2_36b[6] or st_ec2_36b[7] or st_ec2_36b[8] or st_ec2_36b[9];
1120 st_ec2_4b[1] = st_ec2_36b[8] or st_ec2_36b[9] or st_ec2_36b[10] or st_ec2_36b[11] or st_ec2_36b[12] or st_ec2_36b[13]
1121 or st_ec2_36b[14] or st_ec2_36b[15] or st_ec2_36b[16] or st_ec2_36b[17] or st_ec2_36b[18] or st_ec2_36b[19];
1122 st_ec2_4b[2] = st_ec2_36b[18] or st_ec2_36b[19] or st_ec2_36b[20] or st_ec2_36b[21] or st_ec2_36b[22] or st_ec2_36b[23]
1123 or st_ec2_36b[24] or st_ec2_36b[25] or st_ec2_36b[26] or st_ec2_36b[27] or st_ec2_36b[28];
1124 st_ec2_4b[3] = st_ec2_36b[26] or st_ec2_36b[27] or st_ec2_36b[28] or st_ec2_36b[29] or st_ec2_36b[30] or st_ec2_36b[31]
1125 or st_ec2_36b[32] or st_ec2_36b[33] or st_ec2_36b[34] or st_ec2_36b[35] or st_ec2_36b[0];
1126
1127
1128
1129
1130//-- Summary info
1131
1132 int N_ST = 0;
1133 int N_ST_fwd = 0;
1134 int N_ST_bwd = 0;
1135 bool s2s3 = false;
1136 bool s2s5 = false;
1137 bool s2so = false;
1138 bool s2s30 = false;
1139 bool s2f3 = false;
1140 bool s2f5 = false;
1141 bool s2fo = false;
1142 bool s2f30 = false;
1143 int secl = 0;
1144 int secl_fwd = 0;
1145 int secl_bwd = 0;
1146 int sklm = 0;
1147 int sklm_fwd = 0;
1148 int sklm_bwd = 0;
1149
1150//-- short track counting on ST2
1151 for (int i = 0; i < 64; i++) {
1152 if (ST2[i]) {
1153 N_ST++;
1154 ST2[i] = false;
1155 int L = i - 1, R = i + 1;
1156 while (ST2[N64(L)]) {
1157 ST2[N64(L)] = false;
1158 L--;
1159 }
1160 while (ST2[N64(R)]) {
1161 ST2[N64(R)] = false;
1162 R++;
1163 }
1164
1165 //-- Fill the store array
1166 L++; R--;
1167 int index = N64((L + R) / 2); // fill the middle one when multiple ST is found continuously in the map
1168 TRGGRLShortTrack* st = grlst.appendNew();
1169 st->set_TS_ID(0, stlist_buf[index][1]);
1170 st->set_TS_ID(1, stlist_buf[index][2]);
1171 st->set_TS_ID(2, stlist_buf[index][3]);
1172 st->set_TS_ID(3, stlist_buf[index][4]);
1173 st->set_TS_ID(4, stlist_buf[index][5]);
1174 }
1175 }
1176 for (int i = 0; i < 64; i++) {
1177 if (st_ec1[i]) N_ST_fwd++;
1178 }
1179 for (int i = 0; i < 64; i++) {
1180 if (st_ec2[i]) N_ST_bwd++;
1181 }
1182
1183//-- b2b info with ST0 and phi_i map
1184 for (int i = 0; i < 36; i++) {
1185 s2s3 = (ST0_36b[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)])) or s2s3;
1186 s2s5 = (ST0_36b[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1187 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)])) or s2s5;
1188 s2so = (ST0_36b[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1189 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)]
1190 or ST0_36b[N36(i + 15)] or ST0_36b[N36(i + 21)]
1191 or ST0_36b[N36(i + 14)] or ST0_36b[N36(i + 22)]
1192 or ST0_36b[N36(i + 13)] or ST0_36b[N36(i + 23)]
1193 or ST0_36b[N36(i + 12)] or ST0_36b[N36(i + 24)]
1194 or ST0_36b[N36(i + 11)] or ST0_36b[N36(i + 25)]
1195 or ST0_36b[N36(i + 10)] or ST0_36b[N36(i + 26)]
1196 or ST0_36b[N36(i + 9)] or ST0_36b[N36(i + 27)])) or s2so ;
1197 s2s30 = (ST0_36b[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1198 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)]
1199 or ST0_36b[N36(i + 15)] or ST0_36b[N36(i + 21)]
1200 or ST0_36b[N36(i + 14)] or ST0_36b[N36(i + 22)]
1201 or ST0_36b[N36(i + 13)] or ST0_36b[N36(i + 23)]
1202 or ST0_36b[N36(i + 12)] or ST0_36b[N36(i + 24)]
1203 or ST0_36b[N36(i + 11)] or ST0_36b[N36(i + 25)]
1204 or ST0_36b[N36(i + 10)] or ST0_36b[N36(i + 26)]
1205 or ST0_36b[N36(i + 9)] or ST0_36b[N36(i + 27)]
1206 or ST0_36b[N36(i + 8)] or ST0_36b[N36(i + 28)]
1207 or ST0_36b[N36(i + 7)] or ST0_36b[N36(i + 29)]
1208 or ST0_36b[N36(i + 6)] or ST0_36b[N36(i + 30)]
1209 or ST0_36b[N36(i + 5)] or ST0_36b[N36(i + 31)]
1210 or ST0_36b[N36(i + 4)] or ST0_36b[N36(i + 32)]
1211 or ST0_36b[N36(i + 3)] or ST0_36b[N36(i + 33)])) or s2s30 ;
1212
1213
1214 s2f3 = (phimap_i[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)])) or s2f3;
1215 s2f5 = (phimap_i[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1216 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)])) or s2f5;
1217 s2fo = (phimap_i[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1218 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)]
1219 or ST0_36b[N36(i + 15)] or ST0_36b[N36(i + 21)]
1220 or ST0_36b[N36(i + 14)] or ST0_36b[N36(i + 22)]
1221 or ST0_36b[N36(i + 13)] or ST0_36b[N36(i + 23)]
1222 or ST0_36b[N36(i + 12)] or ST0_36b[N36(i + 24)]
1223 or ST0_36b[N36(i + 11)] or ST0_36b[N36(i + 25)]
1224 or ST0_36b[N36(i + 10)] or ST0_36b[N36(i + 26)]
1225 or ST0_36b[N36(i + 9)] or ST0_36b[N36(i + 27)])) or s2fo ;
1226 s2f30 = (phimap_i[i] and (ST0_36b[N36(i + 18)] or ST0_36b[N36(i + 17)] or ST0_36b[N36(i + 19)]
1227 or ST0_36b[N36(i + 16)] or ST0_36b[N36(i + 20)]
1228 or ST0_36b[N36(i + 15)] or ST0_36b[N36(i + 21)]
1229 or ST0_36b[N36(i + 14)] or ST0_36b[N36(i + 22)]
1230 or ST0_36b[N36(i + 13)] or ST0_36b[N36(i + 23)]
1231 or ST0_36b[N36(i + 12)] or ST0_36b[N36(i + 24)]
1232 or ST0_36b[N36(i + 11)] or ST0_36b[N36(i + 25)]
1233 or ST0_36b[N36(i + 10)] or ST0_36b[N36(i + 26)]
1234 or ST0_36b[N36(i + 9)] or ST0_36b[N36(i + 27)]
1235 or ST0_36b[N36(i + 8)] or ST0_36b[N36(i + 28)]
1236 or ST0_36b[N36(i + 7)] or ST0_36b[N36(i + 29)]
1237 or ST0_36b[N36(i + 6)] or ST0_36b[N36(i + 30)]
1238 or ST0_36b[N36(i + 5)] or ST0_36b[N36(i + 31)]
1239 or ST0_36b[N36(i + 4)] or ST0_36b[N36(i + 32)]
1240 or ST0_36b[N36(i + 3)] or ST0_36b[N36(i + 33)])) or s2f30 ;
1241
1242 }
1243
1244//short-ecl matching at endcap
1245 for (int i = 0; i < 36; i++) {
1246 if (ecl_phimap_fwd[i] and st_ec1_36b[i])secl_fwd++;
1247 }
1248 for (int i = 0; i < 36; i++) {
1249 if (ecl_phimap_bwd[i] and st_ec2_36b[i])secl_bwd++;
1250 }
1251 secl = secl_fwd + secl_bwd;
1252
1253//short-klm matching at endcap
1254 for (int i = 0; i < 4; i++) {
1255 if (klm_sectormap_fwd[i] and st_ec1_4b[i])sklm_fwd++;
1256 }
1257 for (int i = 0; i < 4; i++) {
1258 if (klm_sectormap_bwd[i] and st_ec2_4b[i])sklm_bwd++;
1259 }
1260 sklm = sklm_fwd + sklm_bwd;
1261
1262//-- set results
1263 trgInfo->setNshorttrk(N_ST);
1264 trgInfo->setNshorttrk_fwd(N_ST_fwd);
1265 trgInfo->setNshorttrk_bwd(N_ST_bwd);
1266 trgInfo->sets2s3(s2s3);
1267 trgInfo->sets2s5(s2s5);
1268 trgInfo->sets2so(s2so);
1269 trgInfo->sets2s30(s2s30);
1270 trgInfo->sets2f3(s2f3);
1271 trgInfo->sets2f5(s2f5);
1272 trgInfo->sets2fo(s2fo);
1273 trgInfo->sets2f30(s2f30);
1274 trgInfo->setbwdsb(0);
1275 trgInfo->setbwdnb(0);
1276 trgInfo->setfwdsb(0);
1277 trgInfo->setfwdnb(0);
1278 trgInfo->setbrlfb(0);
1279 trgInfo->setbrlnb(0);
1280 trgInfo->setNsecl(secl);
1281 trgInfo->setNsecl_fwd(secl_fwd);
1282 trgInfo->setNsecl_bwd(secl_bwd);
1283 trgInfo->setNsklm(sklm);
1284 trgInfo->setNsklm_fwd(sklm_fwd);
1285 trgInfo->setNsklm_bwd(sklm_bwd);
1286
1287 //for (int i = 0; i < 64; i++) {
1288 // std::cout << st_ec1[i] << " ";
1289 //}
1290 //std::cout << std::endl;
1291 //for (int i = 0; i < 64; i++) {
1292 // std::cout << st_ec2[i] << " ";
1293 //}
1294 //std::cout << std::endl;
1295 //for (int i = 0; i < 36; i++) {
1296 // std::cout << st_ec1_36b[i] << " ";
1297 //}
1298 //std::cout << std::endl;
1299 //for (int i = 0; i < 36; i++) {
1300 // std::cout << st_ec2_36b[i] << " ";
1301 //}
1302 //std::cout << std::endl;
1303 //for (int i = 0; i < 36; i++) {
1304 // std::cout << ecl_phimap_fwd[i] << " ";
1305 //}
1306 //std::cout << std::endl;
1307 //for (int i = 0; i < 36; i++) {
1308 // std::cout << ecl_phimap_bwd[i] << " ";
1309 //}
1310 //std::cout << std::endl;
1311 //std::cout << secl << " " << secl_fwd << " " << secl_bwd << std::endl;
1312
1313}
1314
1315
1316void TRGGRLMatchModule::inner_tracking(StoreArray<CDCTriggerSegmentHit> tslist,
1317 std::vector<bool> phimap_i,
1318 std::vector<bool> ecl_phimap,
1319 std::vector<bool> klm_sectormap,
1322{
1323 std::vector<bool> SL0(64, 0);
1324 std::vector<bool> SL1(64, 0);
1325 std::vector<bool> SL2(64, 0);
1326 std::vector<bool> IT0(64, 0);
1327 std::vector<bool> IT0_36b(36, 0);
1328 std::vector<bool> IT0_4b(4, 0);
1329
1330 //-- collecting TSF info in SL0~2
1331 for (int i = 0; i < tslist.getEntries(); i++) {
1332 int id = tslist[i]->getSegmentID();
1333 int sl = 0;
1334 if (id >= 0 * 32 && id < 5 * 32) {sl = 0; id -= 0;}
1335 else if (id >= 5 * 32 && id < 10 * 32) {sl = 1; id -= 5 * 32;}
1336 else if (id >= 10 * 32 && id < 16 * 32) {sl = 2; id -= 10 * 32;}
1337 else continue;
1338
1339 if (sl == 0) {
1340 int X = (int)(id / 5), Y = id % 5;
1341 if (Y == 0 || Y == 1) { SL0[2 * X] = true; }
1342 else if (Y == 3 || Y == 4) { SL0[2 * X + 1] = true; }
1343 else { SL0[2 * X] = true; SL0[2 * X + 1] = true; }
1344 } else if (sl == 1) {
1345 int X = (int)(id / 5), Y = id % 5;
1346 if (Y == 0 || Y == 1) { SL1[2 * X] = true; }
1347 else if (Y == 3 || Y == 4) { SL1[2 * X + 1] = true; }
1348 else { SL1[2 * X] = true; SL1[2 * X + 1] = true; }
1349 } else if (sl == 2) {
1350 int X = (int)(id / 3);
1351 SL2[X] = true;
1352 }
1353 }
1354
1355
1356 // -- Inner Track finding with SL0
1357 for (int i = 0; i < 64; i++) {
1358 int j1 = i - 4;
1359 if (j1 < 0) j1 = j1 + 64;
1360 int j2 = i - 3;
1361 if (j2 < 0) j2 = j2 + 64;
1362 int j3 = i - 2;
1363 if (j3 < 0) j3 = j3 + 64;
1364 int j4 = i - 1;
1365 if (j4 < 0) j4 = j4 + 64;
1366 int j5 = i;
1367 int j6 = i + 1;
1368 if (j6 > 63)j6 = j6 - 64;
1369 int j7 = i + 2;
1370 if (j7 > 63)j7 = j7 - 64;
1371 if (
1372 SL0[i] &&
1373 (SL1[j1] || SL1[j2] || SL1[j3] || SL1[j4] || SL1[j5]) &&
1374 (SL2[j3] || SL2[j4] || SL2[j5] || SL2[j6] || SL2[j7])
1375 ) {
1376 IT0[i] = true;
1377 } else {
1378 IT0[i] = false;
1379 }
1380 }
1381
1382 //-- 64b into 36b
1383 for (int i = 0; i < 4; i++) {
1384 IT0_36b[0 + 9 * i] = IT0[0 + 16 * i] or IT0[1 + 16 * i];
1385 IT0_36b[1 + 9 * i] = IT0[1 + 16 * i] or IT0[2 + 16 * i] or IT0[3 + 16 * i];
1386 IT0_36b[2 + 9 * i] = IT0[3 + 16 * i] or IT0[4 + 16 * i] or IT0[5 + 16 * i];
1387 IT0_36b[3 + 9 * i] = IT0[5 + 16 * i] or IT0[6 + 16 * i] or IT0[7 + 16 * i];
1388 IT0_36b[4 + 9 * i] = IT0[7 + 16 * i] or IT0[8 + 16 * i];
1389 IT0_36b[5 + 9 * i] = IT0[8 + 16 * i] or IT0[9 + 16 * i] or IT0[10 + 16 * i];
1390 IT0_36b[6 + 9 * i] = IT0[10 + 16 * i] or IT0[11 + 16 * i] or IT0[12 + 16 * i];
1391 IT0_36b[7 + 9 * i] = IT0[12 + 16 * i] or IT0[13 + 16 * i] or IT0[14 + 16 * i];
1392 IT0_36b[8 + 9 * i] = IT0[14 + 16 * i] or IT0[15 + 16 * i];
1393 }
1394
1395 //-- 36b into 4b
1396 IT0_4b[0] = IT0_36b[35] or IT0_36b[0] or IT0_36b[1] or IT0_36b[2] or IT0_36b[3] or IT0_36b[4] or IT0_36b[5] or IT0_36b[6]
1397 or IT0_36b[7] or IT0_36b[8] or IT0_36b[9];
1398 IT0_4b[1] = IT0_36b[8] or IT0_36b[9] or IT0_36b[10] or IT0_36b[11] or IT0_36b[12] or IT0_36b[13] or IT0_36b[14] or IT0_36b[15]
1399 or IT0_36b[16] or IT0_36b[17] or IT0_36b[18] or IT0_36b[19];
1400 IT0_4b[2] = IT0_36b[18] or IT0_36b[19] or IT0_36b[20] or IT0_36b[21] or IT0_36b[22] or IT0_36b[23] or IT0_36b[24] or IT0_36b[25]
1401 or IT0_36b[26] or IT0_36b[27] or IT0_36b[28];
1402 IT0_4b[3] = IT0_36b[26] or IT0_36b[27] or IT0_36b[28] or IT0_36b[29] or IT0_36b[30] or IT0_36b[31] or IT0_36b[32] or IT0_36b[33]
1403 or IT0_36b[34] or IT0_36b[36] or IT0_36b[0];
1404
1405 //-- Summary info
1406 int N_IT = 0;
1407 bool i2fo = false;
1408 bool i2io = false;
1409 int iecl = 0;
1410 int iklm = 0;
1411
1412 //-- inner track counting
1413 for (int i = 0; i < 64; i++) {
1414 if (IT0[i]) N_IT++;
1415 TRGGRLInnerTrack* it = grlit.appendNew();
1416 it->set_TS_ID(0, i);
1417 }
1418
1419 //-- b2b info with IT0 and phi_i map
1420 for (int i = 0; i < 36; i++) {
1421 i2fo = (phimap_i[i] and (IT0_36b[N36(i + 18)] or IT0_36b[N36(i + 17)] or IT0_36b[N36(i + 19)]
1422 or IT0_36b[N36(i + 16)] or IT0_36b[N36(i + 20)]
1423 or IT0_36b[N36(i + 15)] or IT0_36b[N36(i + 21)]
1424 or IT0_36b[N36(i + 14)] or IT0_36b[N36(i + 22)]
1425 or IT0_36b[N36(i + 13)] or IT0_36b[N36(i + 23)]
1426 or IT0_36b[N36(i + 12)] or IT0_36b[N36(i + 24)]
1427 or IT0_36b[N36(i + 11)] or IT0_36b[N36(i + 25)]
1428 or IT0_36b[N36(i + 10)] or IT0_36b[N36(i + 26)]
1429 or IT0_36b[N36(i + 9)] or IT0_36b[N36(i + 27)])) or i2fo ;
1430 }
1431 //-- b2b info with IT0
1432 for (int i = 0; i < 36; i++) {
1433 i2io = (IT0_36b[i] and (IT0_36b[N36(i + 18)] or IT0_36b[N36(i + 17)] or IT0_36b[N36(i + 19)]
1434 or IT0_36b[N36(i + 16)] or IT0_36b[N36(i + 20)]
1435 or IT0_36b[N36(i + 15)] or IT0_36b[N36(i + 21)]
1436 or IT0_36b[N36(i + 14)] or IT0_36b[N36(i + 22)]
1437 or IT0_36b[N36(i + 13)] or IT0_36b[N36(i + 23)]
1438 or IT0_36b[N36(i + 12)] or IT0_36b[N36(i + 24)]
1439 or IT0_36b[N36(i + 11)] or IT0_36b[N36(i + 25)]
1440 or IT0_36b[N36(i + 10)] or IT0_36b[N36(i + 26)]
1441 or IT0_36b[N36(i + 9)] or IT0_36b[N36(i + 27)])) or i2io ;
1442 }
1443 //inner-ecl matching at endcap
1444
1445 bool IT0_36b_temp[44] = {false};
1446 for (int i = 4; i < 40; i++) {
1447 IT0_36b_temp[i] = IT0_36b[i - 4];
1448 }
1449 IT0_36b_temp[0] = IT0_36b[32];
1450 IT0_36b_temp[1] = IT0_36b[33];
1451 IT0_36b_temp[2] = IT0_36b[34];
1452 IT0_36b_temp[3] = IT0_36b[35];
1453 IT0_36b_temp[40] = IT0_36b[0];
1454 IT0_36b_temp[41] = IT0_36b[1];
1455 IT0_36b_temp[42] = IT0_36b[2];
1456 IT0_36b_temp[43] = IT0_36b[3];
1457
1458 for (int i = 4; i < 40; i++) {
1459 if (ecl_phimap[i - 4] and (IT0_36b_temp[i - 4] or IT0_36b_temp[i - 3] or IT0_36b_temp[i - 2] or IT0_36b_temp[i - 1]
1460 or IT0_36b_temp[i] or IT0_36b_temp[i + 1] or IT0_36b_temp[i + 2] or IT0_36b_temp[i + 3] or IT0_36b_temp[i + 4])) {
1461 iecl++;
1462 }
1463 }
1464
1465
1466 //std::cout << "sector map " ;
1467 //for (int i = 0; i < 4; i++) {
1468 // std::cout << " " << i << " " << IT0_4b[i] << " " << klm_sectormap[i];
1469 //}
1470 //std::cout << std::endl;
1471
1472 //inner-klm matching at endcap
1473 for (int i = 0; i < 4; i++) {
1474 if (klm_sectormap[i] and IT0_4b[i])iklm++;
1475 }
1476 //-- set results
1477 trgInfo->setNinnertrk(N_IT);
1478 trgInfo->seti2fo(i2fo);
1479 trgInfo->seti2io(i2io);
1480 trgInfo->setNiecl(iecl);
1481 trgInfo->setNiklm(iklm);
1482
1483 //for (int i = 0; i < 64; i++) {
1484 // std::cout << SL0[i] << " ";
1485 //}
1486 //std::cout << std::endl;
1487 //for (int i = 0; i < 64; i++) {
1488 // std::cout << SL1[i] << " ";
1489 //}
1490 //std::cout << std::endl;
1491 //for (int i = 0; i < 64; i++) {
1492 // std::cout << SL2[i] << " ";
1493 //}
1494 //std::cout << std::endl;
1495 //for (int i = 0; i < 64; i++) {
1496 // std::cout << IT0[i] << " ";
1497 //}
1498 //std::cout << std::endl;
1499 //for (int i = 0; i < 36; i++) {
1500 // std::cout << IT0_36b[i] << " ";
1501 //}
1502 //std::cout << std::endl;
1503 //for (int i = 0; i < 36; i++) {
1504 // std::cout << phimap_i[i] << " ";
1505 //}
1506 //std::cout << std::endl;
1507 //for (int i = 0; i < 36; i++) {
1508 // std::cout << ecl_phimap[i] << " ";
1509 //}
1510 //std::cout << std::endl;
1511 //std::cout << i2fo << " " << iecl << std::endl;
1512
1513}
1514
1515void TRGGRLMatchModule::matching_eecl_eklm(std::vector<bool> _eecl_sectormap_fw,
1516 std::vector<bool> _eecl_sectormap_bw,
1517 std::vector<bool> _eklm_sectormap_fw,
1518 std::vector<bool> _eklm_sectormap_bw,
1520{
1521 int ieclklm = 0;
1522 for (int i = 0; i < 4; i++) {
1523 if (_eklm_sectormap_fw[i] && _eecl_sectormap_fw[i])ieclklm++;
1524 if (_eklm_sectormap_bw[i] && _eecl_sectormap_bw[i])ieclklm++;
1525 }
1526
1527 trgInfo->setNeecleklm(ieclklm);
1528
1529}
1530
1531void
1532TRGGRLMatchModule::extrapolation(int pattern, int& l, int& r, int& ec)
1533{
1534 if (pattern == 6) {ec = 1; l = 0; r = 1;}
1535 if (pattern == 7) {ec = 1; l = 0; r = 1;}
1536 if (pattern == 8) {ec = 1; l = 0; r = 1;}
1537 if (pattern == 9) {ec = 1; l = 0; r = 2;}
1538 if (pattern == 10) {ec = 1; l = 0; r = 2;}
1539 if (pattern == 11) {ec = 1; l = 0; r = 1;}
1540 if (pattern == 12) {ec = 1; l = 0; r = 2;}
1541 if (pattern == 18) {ec = 1; l = 0; r = 2;}
1542 if (pattern == 19) {ec = 1; l = 0; r = 2;}
1543 if (pattern == 20) {ec = 1; l = 0; r = 4;}
1544 if (pattern == 21) {ec = 1; l = 0; r = 4;}
1545 if (pattern == 28) {ec = 1; l = -4; r = 0;}
1546 if (pattern == 29) {ec = 1; l = -3; r = 0;}
1547 if (pattern == 34) {ec = 1; l = 0; r = 1;}
1548 if (pattern == 35) {ec = 1; l = 0; r = 3;}
1549 if (pattern == 36) {ec = 1; l = 1; r = 3;}
1550 if (pattern == 37) {ec = 1; l = 0; r = 3;}
1551 if (pattern == 44) {ec = 1; l = -4; r = 0;}
1552 if (pattern == 45) {ec = 1; l = -2; r = 0;}
1553 if (pattern == 46) {ec = 1; l = -3; r = 0;}
1554 if (pattern == 54) {ec = 1; l = 1; r = 7;}
1555 if (pattern == 55) {ec = 1; l = 1; r = 6;}
1556 if (pattern == 56) {ec = 1; l = 1; r = 5;}
1557 if (pattern == 57) {ec = 1; l = 1; r = 5;}
1558 if (pattern == 64) {ec = 1; l = -6; r = -1;}
1559 if (pattern == 73) {ec = 1; l = 3; r = 13;}
1560 if (pattern == 81) {ec = 1; l = -10; r = -3;}
1561 if (pattern == 86) {ec = 1; l = 3; r = 12;}
1562 if (pattern == 87) {ec = 1; l = 3; r = 6;}
1563 if (pattern == 100) {ec = 1; l = 7; r = 20;}
1564 if (pattern == 101) {ec = 1; l = 5; r = 20;}
1565 if (pattern == 102) {ec = 1; l = 5; r = 20;}
1566 if (pattern == 103) {ec = 1; l = 4; r = 14;}
1567 if (pattern == 111) {ec = 1; l = -12; r = -5;}
1568 if (pattern == 112) {ec = 1; l = -18; r = -5;}
1569 if (pattern == 116) {ec = 1; l = -11; r = -6;}
1570 if (pattern == 120) {ec = 1; l = 7; r = 21;}
1571 if (pattern == 121) {ec = 1; l = 7; r = 14;}
1572 if (pattern == 122) {ec = 1; l = 7; r = 21;}
1573 if (pattern == 127) {ec = 1; l = -21; r = -8;}
1574 if (pattern == 128) {ec = 1; l = -15; r = -7;}
1575 if (pattern == 129) {ec = 1; l = -12; r = -7;}
1576 if (pattern == 132) {ec = 1; l = 10; r = 18;}
1577 if (pattern == 133) {ec = 1; l = 8; r = 18;}
1578
1579 if (pattern == 0) {ec = 2; l = -3; r = 1;}
1580 if (pattern == 1) {ec = 2; l = -3; r = 1;}
1581 if (pattern == 3) {ec = 2; l = -3; r = 0;}
1582 if (pattern == 13) {ec = 2; l = 0; r = 3;}
1583 if (pattern == 14) {ec = 2; l = 0; r = 4;}
1584 if (pattern == 15) {ec = 2; l = 0; r = 5;}
1585 if (pattern == 22) {ec = 2; l = -4; r = -1;}
1586 if (pattern == 23) {ec = 2; l = -5; r = -1;}
1587 if (pattern == 24) {ec = 2; l = -3; r = 0;}
1588 if (pattern == 25) {ec = 2; l = -4; r = 0;}
1589 if (pattern == 30) {ec = 2; l = 1; r = 5;}
1590 if (pattern == 39) {ec = 2; l = -2; r = 0;}
1591 if (pattern == 40) {ec = 2; l = -2; r = 0;}
1592 if (pattern == 48) {ec = 2; l = 2; r = 6;}
1593 if (pattern == 49) {ec = 2; l = 3; r = 8;}
1594 if (pattern == 58) {ec = 2; l = -9; r = -3;}
1595 if (pattern == 59) {ec = 2; l = -9; r = -3;}
1596 if (pattern == 67) {ec = 2; l = 5; r = 11;}
1597 if (pattern == 75) {ec = 2; l = -13; r = -6;}
1598 if (pattern == 82) {ec = 2; l = 5; r = 9;}
1599 if (pattern == 83) {ec = 2; l = 5; r = 9;}
1600 if (pattern == 89) {ec = 2; l = -10; r = -4;}
1601 if (pattern == 92) {ec = 2; l = -10; r = -4;}
1602 if (pattern == 97) {ec = 2; l = 7; r = 19;}
1603 if (pattern == 105) {ec = 2; l = -16; r = -10;}
1604 if (pattern == 106) {ec = 2; l = -17; r = -7;}
1605 if (pattern == 109) {ec = 2; l = -17; r = -6;}
1606 if (pattern == 111) {ec = 2; l = -16; r = -7;}
1607 if (pattern == 117) {ec = 2; l = 9; r = 19;}
1608 if (pattern == 118) {ec = 2; l = 9; r = 19;}
1609 if (pattern == 124) {ec = 2; l = -17; r = -8;}
1610 if (pattern == 125) {ec = 2; l = -17; r = -8;}
1611 if (pattern == 126) {ec = 2; l = -17; r = -8;}
1612
1613}
1614
1615
double R
typedef autogenerated by FFTW
Track created by the CDC trigger.
void setDescription(const std::string &description)
Sets the description of the module.
Definition Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition Module.cc:208
Module()
Constructor.
Definition Module.cc:30
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition Module.h:80
void addRelationTo(const RelationsInterface< BASE > *object, float weight=1.0, const std::string &namedRelation="") const
Add a relation from this object to another object (with caching).
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
bool create(bool replace=false)
Create a default object in the data store.
Accessor to arrays stored in the data store.
Definition StoreArray.h:113
T * appendNew()
Construct a new T object at the end of the array.
Definition StoreArray.h:246
int getEntries() const
Get the number of objects in the array.
Definition StoreArray.h:216
bool registerRelationTo(const StoreArray< TO > &toArray, DataStore::EDurability durability=DataStore::c_Event, DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut, const std::string &namedRelation="") const
Register a relation to the given StoreArray.
Definition StoreArray.h:140
Type-safe access to single objects in the data store.
Definition StoreObjPtr.h:96
Example Detector.
double getPositionZ() const
Get Energy weighted position Z.
double getEnergyDep() const
The method to get deposited energy.
double getPositionX() const
The method to get hit average time Get Energy weighted position X.
double getPositionY() const
Get Energy weighted position Y.
void set_TS_ID(int i, int id)
set TS ID of SL i
a class for CDC2D-KLM Matching in TRGGRL
void set_sector(int sector)
set the klm sector id
void set_dphi(double dphi)
set the dphi
a class for CDC2D-ECL Matching in TRGGRL
Definition TRGGRLMATCH.h:21
void set_dphi_d(double dphi_d)
set the dphi_d
Definition TRGGRLMATCH.h:49
void setDeltaZ(double deltaz)
set the Delta Z
Definition TRGGRLMATCH.h:46
void set_e(double e)
set the cluster energy
Definition TRGGRLMATCH.h:52
void setDeltaR(double deltar)
set the Delta R
Definition TRGGRLMATCH.h:43
std::string m_klmtrgsummarylist
the KLM track list
std::vector< bool > eklm_sectormap
8 bits phi map of KLM clusters at endcap
StoreObjPtr< TRGGRLInfo > m_TRGGRLInfo
output for TRGGRLInfo
std::string m_2dmatch_tracklist
the distance in phi direction between track and cluster
int m_fastSimulationMode
Switch for the fast simulation.
int N36(int x)
Force an int to be witnin 0 to 35.
int m_simulationMode
Mode for TRGGRL simulation.
std::string m_grlitCollectionName
GRL inner track list.
int m_firmwareSimulationMode
Switch for the firmware simulation. 0:do nothing, 1:do everything.
double m_dr_threshold
max value of dr to be identified as match
int m_dphi_d_threshold
max value of dphi_d to be identified as match, 1 digit = 10 degrees
std::vector< std::vector< int > > patterns_base2
Short tracking patterns based on SL2.
virtual void initialize() override
Initialize the parameters.
std::string m_phimatch_tracklist
the matched 2d track list by phi matching
std::vector< std::vector< int > > patterns_base0
Short tracking patterns based on SL0.
std::vector< bool > track_phimap_i
36 bits phi map of all 2D tracks
bool photon_cluster(TRGECLCluster *cluster, std::vector< bool > track_phimap, double e_threshold)
determine photon from isolated cluster
std::vector< bool > eecl_phimap
36 bits phi map of ECL clusters at endcap
virtual void event() override
Event processor.
void make_veto_map(StoreArray< CDCTriggerTrack > track2Dlist, std::vector< bool > &map_veto)
Make the full track phi veto map for short tracking.
std::vector< bool > eklm_sectormap_fwd
8 bits sector map of KLM clusters at forward endcap
virtual void endRun() override
End-of-run action.
void calculationdistance(CDCTriggerTrack *track, TRGECLCluster *cluster, double *ds, int _match3D)
calculate dr and dz between track and cluster
void calculationphiangle(CDCTriggerTrack *track, TRGECLCluster *cluster, int &dphi_d, std::vector< bool > &track_phimap, std::vector< bool > &track_phimap_i)
calculate dphi_d between track and cluster
virtual void terminate() override
Termination action.
virtual ~TRGGRLMatchModule()
Destructor.
double m_dz_threshold
max value of dz to be identified as match
void short_tracking(StoreArray< CDCTriggerSegmentHit > tslist, std::vector< bool > map_veto, std::vector< bool > phimap_i, std::vector< bool > ecl_phimap_fwd, std::vector< bool > ecl_phimap_bwd, std::vector< bool > klm_sectormap_fwd, std::vector< bool > klm_sectormap_bwd, std::vector< std::vector< int > > &pattern_base0, std::vector< std::vector< int > > &pattern_base2, StoreArray< TRGGRLShortTrack > grlst, StoreObjPtr< TRGGRLInfo > trgInfo)
Short tracking logic.
std::vector< bool > eecl_sectormap_fwd
8 bits sector map of ECL clusters at forward endcap
std::string m_2d_tracklist
the 2D finder track list
virtual void beginRun() override
Called when entering a new run.
void extrapolation(int pattern, int &l, int &r, int &ec)
Short track extrapolation (to endcap) function.
std::string m_grlstCollectionName
GRL short track list.
std::string m_klmmatch_tracklist
the matched 2d track list by KLM matching
double m_dphi_klm_threshold
max value of dphi (CDC track to KLM sector) to be identified as match (in degrees)
std::string m_TrgGrlInformationName
Name of the StoreArray holding projects information from grl.
int N64(int x)
Force an int to be witnin 0 to 63.
TRGGRLMatchModule()
Constructor: Sets the description, the properties and the parameters of the module.
std::vector< bool > track_phimap
36 bits phi map of all 2D tracks
void make_eecl_map(StoreArray< TRGECLCluster > clusterlist, std::vector< bool > &ecl_phimap, std::vector< bool > &ecl_phimap_fwd, std::vector< bool > &ecl_phimap_bwd, std::vector< bool > &ecl_sectormap_fwd, std::vector< bool > &ecl_sectormap_bwd)
Make the ecl endcap phi map for inner/short track matching.
void sectormatching_klm(CDCTriggerTrack *track, StoreObjPtr< KLMTrgSummary > klmtrgsummary, double &dphi, int &klmtrack_ind_phi)
calculate dphi between 2D track and KLM track
std::string m_grlphotonlist
Non-matched cluster list at GRL.
std::vector< bool > eecl_phimap_bwd
36 bits phi map of ECL clusters at backward endcap
std::vector< bool > eecl_phimap_fwd
36 bits phi map of ECL clusters at forward endcap
void fill_pattern_base2(std::vector< std::vector< int > > &patt)
Fill the patterns in short tracking logic.
std::string m_3d_tracklist
the 3D NN track list
double m_e_threshold
min value of isolated cluster energy
std::vector< bool > eklm_sectormap_bwd
8 bits sector map of KLM clusters at backward endcap
std::string m_clusterlist
the ecl cluster list
std::string m_hitCollectionName
Track Segment list.
std::vector< bool > eecl_sectormap_bwd
8 bits sector map of ECL clusters at backward endcap
void make_eklm_map(StoreObjPtr< KLMTrgSummary > klmtrgsummary, std::vector< bool > &eklm_sectormap, std::vector< bool > &eklm_sectormap_fwd, std::vector< bool > &eklm_sectormap_bwd)
Make the klm endcap phi map for inner/short track matching.
std::string m_3dmatch_tracklist
the matched 3d track list
A class to represent a matching candidate in TRGGRL A matching candidate consists of a TRGCDCTrack an...
Definition TRGGRLMatch.h:24
a class for neutral ECL cluster in TRGGRL
void set_e(double e)
set energy
a class for neutral ECL cluster in TRGGRL
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition Module.h:559
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition Module.h:649
double atan(double a)
atan for double
Definition beamHelpers.h:34
double sqrt(double a)
sqrt for double
Definition beamHelpers.h:28
Abstract base class for different kinds of events.