Belle II Software development
eclCosmicEAlgorithm Class Reference

class eclCosmiEAlgorithm. More...

#include <eclCosmicEAlgorithm.h>

Inheritance diagram for eclCosmicEAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclCosmicEAlgorithm ()
 Constructor.
 
virtual ~eclCosmicEAlgorithm ()
 Destructor.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Public Attributes

int cellIDLo
 Parameters to control Novosibirsk fit to signal measured in each crystal.
 
int cellIDHi
 Last cellID to be fit.
 
int minEntries
 All crystals to be fit must have at least minEntries events in the fit range.
 
int maxIterations
 no more than maxIteration iterations
 
double tRatioMin
 Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.
 
double tRatioMax
 Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.
 
bool performFits
 if false, input histograms are copied to output, but no fits are done.
 
bool findExpValues
 if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant
 
int storeConst
 controls which values are written to the database.
 

Protected Member Functions

virtual EResult calibrate () override
 Run algorithm on events.
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

int fitOK = 16
 fit is OK
 
int iterations = 8
 fit reached max number of iterations, but is usable
 
int atLimit = 4
 a parameter is at the limit; fit not usable
 
int poorFit = 3
 low chi square; fit not usable
 
int noPeak = 2
 Novosibirsk component of fit is negligible; fit not usable.
 
int notFit = -1
 no fit performed
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

class eclCosmiEAlgorithm.

Analyze histograms of normalized energy for each ECL crystal from cosmic ray events. Code can either find most-likely energy deposit for each crystal using CRY MC or calibration constant for each crystal (data)

Definition at line 24 of file eclCosmicEAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclCosmicEAlgorithm()

Constructor.

Definition at line 55 of file eclCosmicEAlgorithm.cc.

55 : CalibrationAlgorithm("eclCosmicECollector"), cellIDLo(1),
57 minEntries(150), maxIterations(10), tRatioMin(0.2), tRatioMax(0.25), performFits(true), findExpValues(false), storeConst(0)
58{
60 "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by cosmic rays"
61 );
62}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
double tRatioMin
Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.
int storeConst
controls which values are written to the database.
bool performFits
if false, input histograms are copied to output, but no fits are done.
int cellIDHi
Last cellID to be fit.
int cellIDLo
Parameters to control Novosibirsk fit to signal measured in each crystal.
bool findExpValues
if true, fits are used to find expected energy deposit for each crystal instead of the calibration co...
int minEntries
All crystals to be fit must have at least minEntries events in the fit range.
int maxIterations
no more than maxIteration iterations
double tRatioMax
Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.
const int c_NCrystals
Number of crystals.

◆ ~eclCosmicEAlgorithm()

virtual ~eclCosmicEAlgorithm ( )
inlinevirtual

Destructor.

Definition at line 31 of file eclCosmicEAlgorithm.h.

31{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

Run algorithm on events.


..ranges of various fit parameters, and tolerance to determine that fit is at the limit

..Put root into batch mode so that we don't try to open a graphics window


..Clean up existing histograms if necessary


..Histograms containing the data collected by eclCosmicECollectorModule


..Record the number of entries per crystal in each of the two normalized energy histograms and average the constants obtained from DB


..Write out the basic histograms in all cases


..If we have not been asked to do fits, we can quit now


..Check that every crystal has enough entries. If we are finding calibration constants (normal data mode), at least 1 histogram must have sufficient statistics. If we are finding expected values (used with MC), both must have sufficient statistics.


Insufficient data. Quit if we are required to have a successful fit for every crystal


..Some prep for the many fits about to follow

..1D summary histograms

..Histograms to store results for DB


..Loop over specified crystals and performs fits to the two normalized energy distributions

..Extract the 1D normalized energy distribution from the appropriate 2D histogram

..Fit function (xmin, xmax, nparameters) for this histogram

..Estimate initial parameters. For peak, use maximum bin in the allowed range

..Fit range is histogram low edge plus a few bins to peak + 2.5*effective sigma

..Constant from lower edge of plot

..Eta is nominal

..parameters to control iterations. dIter checks if we are stuck in a loop


..Iterate from this point if needed

..Set the initial parameters

..Perform the fit and note the resulting parameters

..The upper fit range should correspond to 20-25% of the peak. Iterate if necessary.

..Check if we are oscillating between two end points

..Many iterations may mean we are stuck in a loop. Try a different end point.

..Set the constant term to 0 if we are close to the limit

..No more than specified number of iterations


..Calculate fit probability. Same as P option in fit, which cannot be used with L


..Fit status

No peak; normalization of Novo component is too small

..poor fit, or relatively poor fit with too many iterations

..parameter at limit

..Store the fit results

..Write out the fit distribution


..Find expected energies from MC, if requested

..Write out expected energies if status is adequate. Check that every crystal has at least one good fit


..Otherwise, find calibration constants

..Find calibration constant separately for the two normalized energy distributions for each crystal

..Peak and uncertainty; assume uncertainties on expected energy and elec calib are negligible

..Find the weighted average of the two constants and store in the histogram

..If both fits failed, use the negative of the initial "same" calibration constant


..Write output to DB if requested and successful

..Store expected energy for each crystal and neighbour type from CRY MC

..Store calibration constant for each crystal (nominally real data)

..Write out some diagnostic histograms

..Histograms containing values written to DB


..Clean up histograms in case Algorithm is called again


..Set the return code appropriately

Implements CalibrationAlgorithm.

Definition at line 64 of file eclCosmicEAlgorithm.cc.

65{
66
69 double limitTol = 0.0005; /*< tolerance for checking if a parameter is at the limit */
70 double minFitLimit = 1e-25; /*< cut off for labeling a fit as poor */
71 double minFitProbIter = 1e-8; /*< cut off for labeling a fit as poor if it also has many iterations */
72 double constRatio = 0.5; /*< Novosibirsk normalization must be greater than constRatio x constant term */
73 double peakMin(0.5), peakMax(1.75); /*< range for peak of measured energy distribution */
74 double peakTol = limitTol * (peakMax - peakMin); /*< fit is at limit if it is within peakTol of min or max */
75 double effSigMin(0.08), effSigMax(0.5); /*< range for effective sigma of measured energy distribution */
76 double effSigTol = limitTol * (effSigMax - effSigMin);
77 double etaMin(-3.), etaMax(1.); /*< Novosibirsk tail parameter range */
78 double etaNom(-0.41); /*< Nominal tail parameter */
79 double etaTol = limitTol * (etaMax - etaMin);
80 double constTol = 0.1; /*< if constant is less than constTol, it will be fixed to 0 */
81
83 gROOT->SetBatch();
84
87 TH1F* dummy;
88 dummy = (TH1F*)gROOT->FindObject("EnvsCrysSameRing");
89 if (dummy) {delete dummy;}
90 dummy = (TH1F*)gROOT->FindObject("EnvsCrysDifferentRing");
91 if (dummy) {delete dummy;}
92 dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysSame");
93 if (dummy) {delete dummy;}
94 dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysDifferent");
95 if (dummy) {delete dummy;}
96 dummy = (TH1F*)gROOT->FindObject("AverageExpECrysSame");
97 if (dummy) {delete dummy;}
98 dummy = (TH1F*)gROOT->FindObject("AverageExpECrysDifferent");
99 if (dummy) {delete dummy;}
100 dummy = (TH1F*)gROOT->FindObject("AverageElecCalibSame");
101 if (dummy) {delete dummy;}
102 dummy = (TH1F*)gROOT->FindObject("AverageElecCalibDifferent");
103 if (dummy) {delete dummy;}
104 dummy = (TH1F*)gROOT->FindObject("AverageInitialCalibSame");
105 if (dummy) {delete dummy;}
106 dummy = (TH1F*)gROOT->FindObject("AverageInitialCalibDifferent");
107 if (dummy) {delete dummy;}
108
111 std::vector<std::shared_ptr<TH2F>> EnvsCrys;
112 EnvsCrys.push_back(getObjectPtr<TH2F>("EnvsCrysSameRing"));
113 EnvsCrys.push_back(getObjectPtr<TH2F>("EnvsCrysDifferentRing"));
114
115 std::vector<std::shared_ptr<TH1F>> ExpEvsCrys;
116 ExpEvsCrys.push_back(getObjectPtr<TH1F>("ExpEvsCrysSameRing"));
117 ExpEvsCrys.push_back(getObjectPtr<TH1F>("ExpEvsCrysDifferentRing"));
118
119 std::vector<std::shared_ptr<TH1F>> ElecCalibvsCrys;
120 ElecCalibvsCrys.push_back(getObjectPtr<TH1F>("ElecCalibvsCrysSameRing"));
121 ElecCalibvsCrys.push_back(getObjectPtr<TH1F>("ElecCalibvsCrysDifferentRing"));
122
123 std::vector<std::shared_ptr<TH1F>> InitialCalibvsCrys;
124 InitialCalibvsCrys.push_back(getObjectPtr<TH1F>("InitialCalibvsCrysSameRing"));
125 InitialCalibvsCrys.push_back(getObjectPtr<TH1F>("InitialCalibvsCrysDifferentRing"));
126
127 std::vector<std::shared_ptr<TH1F>> CalibEntriesvsCrys;
128 CalibEntriesvsCrys.push_back(getObjectPtr<TH1F>("CalibEntriesvsCrysSameRing"));
129 CalibEntriesvsCrys.push_back(getObjectPtr<TH1F>("CalibEntriesvsCrysDifferentRing"));
130
131 auto RawDigitAmpvsCrys = getObjectPtr<TH2F>("RawDigitAmpvsCrys");
132
136 TH1F* IntegralVsCrys[2];
137 IntegralVsCrys[0] = new TH1F("IntegralVsCrysSame", "Integral of EnVsCrys for each crystal, same theta ring;Crystal ID",
140 IntegralVsCrys[1] = new TH1F("IntegralVsCrysDifferent", "Integral of EnVsCrys for each crystal, different theta rings;Crystal ID",
142
143 TH1F* AverageExpECrys[2];
144 AverageExpECrys[0] = new TH1F("AverageExpECrysSame",
145 "Average expected E per crys from collector, same theta ring;Crystal ID;Energy (GeV)", ECLElementNumbers::c_NCrystals, 0,
147 AverageExpECrys[1] = new TH1F("AverageExpECrysDifferent",
148 "Average expected E per crys from collector, different theta ring;Crystal ID;Energy (GeV)", ECLElementNumbers::c_NCrystals, 0,
150
151 TH1F* AverageElecCalib[2];
152 AverageElecCalib[0] = new TH1F("AverageElecCalibSame",
153 "Average electronics calib const vs crys, same theta ring;Crystal ID;Calibration constant", ECLElementNumbers::c_NCrystals, 0,
155 AverageElecCalib[1] = new TH1F("AverageElecCalibDifferent",
156 "Average electronics calib const vs crys, different theta rings;Crystal ID;Calibration constant", ECLElementNumbers::c_NCrystals, 0,
158
159 TH1F* AverageInitialCalib[2];
160 AverageInitialCalib[0] = new TH1F("AverageInitialCalibSame",
161 "Average initial cosmic calib const vs crys, same theta ring;Crystal ID;Calibration constant", ECLElementNumbers::c_NCrystals, 0,
163 AverageInitialCalib[1] = new TH1F("AverageInitialCalibDifferent",
164 "Average initial cosmic calib const vs crys, different theta rings;Crystal ID;Calibration constant", ECLElementNumbers::c_NCrystals,
166
167 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
168 int histbin = crysID + 1;
169 for (int idir = 0; idir < 2; idir++) {
170 TH1D* hEnergy = EnvsCrys[idir]->ProjectionY("hEnergy", histbin, histbin);
171 int Integral = hEnergy->Integral();
172 IntegralVsCrys[idir]->SetBinContent(histbin, Integral);
173
174 double TotEntries = CalibEntriesvsCrys[idir]->GetBinContent(histbin);
175
176 double expectedE = 0.;
177 if (TotEntries > 0.) {expectedE = ExpEvsCrys[idir]->GetBinContent(histbin) / TotEntries;}
178 AverageExpECrys[idir]->SetBinContent(histbin, expectedE);
179 AverageExpECrys[idir]->SetBinError(histbin, 0.);
180
181 double calibconst = 0.;
182 if (TotEntries > 0.) {calibconst = ElecCalibvsCrys[idir]->GetBinContent(histbin) / TotEntries;}
183 AverageElecCalib[idir]->SetBinContent(histbin, calibconst);
184 AverageElecCalib[idir]->SetBinError(histbin, 0);
185
186 calibconst = 0.;
187 if (TotEntries > 0.) {calibconst = InitialCalibvsCrys[idir]->GetBinContent(histbin) / TotEntries;}
188 AverageInitialCalib[idir]->SetBinContent(histbin, calibconst);
189 AverageInitialCalib[idir]->SetBinError(histbin, 0);
190 }
191 }
192
195 TFile* histfile = new TFile("eclCosmicEAlgorithm.root", "recreate");
196 for (int idir = 0; idir < 2; idir++) {
197 EnvsCrys[idir]->Write();
198 IntegralVsCrys[idir]->Write();
199 AverageExpECrys[idir]->Write();
200 AverageElecCalib[idir]->Write();
201 AverageInitialCalib[idir]->Write();
202 }
203 RawDigitAmpvsCrys->Write();
204
207 if (!performFits) {
208 B2INFO("eclCosmicEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
209 histfile->Close();
210 return c_NotEnoughData;
211 }
212
217 bool sufficientData = true;
218 for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
219 int histbin = crysID + 1;
220 bool SameLow = IntegralVsCrys[0]->GetBinContent(histbin) < minEntries;
221 bool DifferentLow = IntegralVsCrys[1]->GetBinContent(histbin) < minEntries;
222 if ((SameLow && DifferentLow) || (findExpValues && (SameLow || DifferentLow))) {
223 if (storeConst == 1) {B2INFO("eclCosmicEAlgorithm: cellID " << histbin << " has insufficient statistics: " << IntegralVsCrys[0]->GetBinContent(histbin) << " and " << IntegralVsCrys[1]->GetBinContent(histbin) << ". Requirement is " << minEntries);}
224 sufficientData = false;
225 break;
226 }
227 }
228
231 if (!sufficientData && storeConst == 1) {
232 histfile->Close();
233 return c_NotEnoughData;
234 }
235
238 const TString preName[2] = {"SameRing", "DifferentRing"};
239
240 TH1F* PeakperCrys[2];
241 PeakperCrys[0] = new TH1F("PeakperCrysSame", "Fit peak per crystal, same theta ring;Crystal ID;Peak normalized energy",
244 PeakperCrys[1] = new TH1F("PeakperCrysDifferent", "Fit peak per crystal, different theta ring;Crystal ID;Peak normalized energy",
246
247 TH1F* SigmaperCrys[2];
248 SigmaperCrys[0] = new TH1F("SigmaperCrysSame", "Fit sigma per crysal, same theta ring;Crystal ID;Sigma (ADC)",
250 SigmaperCrys[1] = new TH1F("SigmaperCrysDifferent", "Fit sigma per crysal, different theta ring;Crystal ID;Sigma (ADC)",
253
254 TH1F* EtaperCrys[2];
255 EtaperCrys[0] = new TH1F("EtaperCrysSame", "Fit eta per crysal, same theta ring;Crystal ID;Eta", ECLElementNumbers::c_NCrystals, 0,
257 EtaperCrys[1] = new TH1F("EtaperCrysDifferent", "Fit eta per crysal, different theta ring;Crystal ID;Eta",
259
260 TH1F* ConstperCrys[2];
261 ConstperCrys[0] = new TH1F("ConstperCrysSame", "Fit constant per crystal, same theta ring;Crystal ID;Constant",
263 ConstperCrys[1] = new TH1F("ConstperCrysDifferent", "Fit constant per crystal, different theta ring;Crystal ID;Constant",
266
267 TH1F* StatusperCrys[2];
268 StatusperCrys[0] = new TH1F("StatusperCrysSame", "Fit status, same theta ring;Crystal ID;Status", ECLElementNumbers::c_NCrystals, 0,
270 StatusperCrys[1] = new TH1F("StatusperCrysDifferent", "Fit status, different theta ring;Crystal ID;Status",
272
274 TH1F* hStatus[2];
275 hStatus[0] = new TH1F("StatusSame", "Fit status, same theta ring", 25, -5, 20);
276 hStatus[1] = new TH1F("StatusDifferent", "Fit status, different theta ring", 25, -5, 20);
277
278 TH1F* fracPeakUnc[2];
279 fracPeakUnc[0] = new TH1F("fracPeakUncSame", "Fractional uncertainty on peak location, same theta ring", 100, 0, 0.1);
280 fracPeakUnc[1] = new TH1F("fracPeakUncDifferent", "Fractional uncertainty on peak location, different theta ring", 100, 0, 0.1);
281
282 TH1F* hfitProb[2];
283 hfitProb[0] = new TH1F("fitProbSame", "Probability of fit, same theta ring", 200, 0, 0.02);
284 hfitProb[1] = new TH1F("fitProbDifferent", "Probability of fit, different theta ring", 200, 0, 0.02);
285
287 TH1F* ExpEnergyperCrys[2];
288 ExpEnergyperCrys[0] = new TH1F("ExpEnergyperCrysSame", "Expected energy per crystal, same theta ring;Crystal ID;Peak energy (GeV)",
290 ExpEnergyperCrys[1] = new TH1F("ExpEnergyperCrysDifferent",
291 "Expected energy per crystal, different theta ring;Crystal ID;Peak energy (GeV)", ECLElementNumbers::c_NCrystals, 0,
293
294 TH1F* CalibvsCrys = new TH1F("CalibvsCrys", "Energy calibration constant from cosmics;Crystal ID;Calibration constant",
297
300 bool allFitsOK = true;
301 for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
302 int histbin = crysID + 1;
303 for (int idir = 0; idir < 2; idir++) {
304
306 TString hname = preName[idir];
307 hname += "Enormalized";
308 hname += crysID;
309 TH1D* hEnergy = EnvsCrys[idir]->ProjectionY(hname, histbin, histbin);
310
312 double histMin = hEnergy->GetXaxis()->GetXmin();
313 double histMax = hEnergy->GetXaxis()->GetXmax();
314 TF1* func = new TF1("eclCosmicNovoConst", eclCosmicNovoConst, histMin, histMax, 5);
315 func->SetParNames("normalization", "peak", "effSigma", "eta", "const");
316 func->SetParLimits(1, peakMin, peakMax);
317 func->SetParLimits(2, effSigMin, effSigMax);
318 func->SetParLimits(3, etaMin, etaMax);
319
321 hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
322 int maxBin = hEnergy->GetMaximumBin();
323 double peakE = hEnergy->GetBinLowEdge(maxBin);
324 double peakEUnc = 0.;
325 double normalization = hEnergy->GetMaximum();
326 double effSigma = hEnergy->GetRMS();
327 double sigmaUnc = 0.;
328 hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
329
331 double fitlow = 0.25;
332 double fithigh = peakE + 2.5 * effSigma;
333
335 int il0 = hEnergy->GetXaxis()->FindBin(fitlow);
336 int il1 = hEnergy->GetXaxis()->FindBin(fitlow + 0.1);
337 double constant = hEnergy->Integral(il0, il1) / (1 + il1 - il0);
338 double constUnc = 0.;
339
341 double eta = etaNom;
342 double etaUnc = 0.;
343
345 double dIter = 0.1 * (histMax - histMin) / hEnergy->GetNbinsX();
346 double highold(0.), higholdold(0.);
347 double fitProb(0.);
348 double fitProbDefault(0.);
349 bool fitHist = IntegralVsCrys[idir]->GetBinContent(histbin) >= minEntries; /* fit only if enough events */
350 bool fixConst = false;
351 int nIter = 0;
352
355 while (fitHist) {
356 nIter++;
357
359 func->SetParameters(normalization, peakE, effSigma, eta, constant);
360 if (fixConst) { func->FixParameter(4, 0); }
361
363 hEnergy->Fit(func, "LIQ", "", fitlow, fithigh);
364 normalization = func->GetParameter(0);
365 peakE = func->GetParameter(1);
366 peakEUnc = func->GetParError(1);
367 effSigma = func->GetParameter(2);
368 sigmaUnc = func->GetParError(2);
369 eta = func->GetParameter(3);
370 etaUnc = func->GetParError(3);
371 constant = func->GetParameter(4);
372 constUnc = func->GetParError(4);
373 fitProbDefault = func->GetProb();
374
376 fitHist = false;
377 double peak = func->Eval(peakE) - constant;
378 double tRatio = (func->Eval(fithigh) - constant) / peak;
379 if (tRatio < tRatioMin || tRatio > tRatioMax) {
380 double targetY = constant + 0.5 * (tRatioMin + tRatioMax) * peak;
381 higholdold = highold;
382 highold = fithigh;
383 fithigh = func->GetX(targetY, peakE, histMax);
384 fitHist = true;
385
387 if (abs(fithigh - higholdold) < dIter) {fithigh = 0.5 * (highold + higholdold); }
388
390 if (nIter > maxIterations - 3) {fithigh = 0.33333 * (fithigh + highold + higholdold); }
391 }
392
394 if (constant < constTol && !fixConst) {
395 constant = 0;
396 fixConst = true;
397 fitHist = true;
398 }
399
401 if (nIter == maxIterations) {fitHist = false;}
402 B2DEBUG(200, "cellID = " << histbin << " " << nIter << " " << preName[idir] << " " << peakE << " " << constant << " " << tRatio <<
403 " " << fithigh);
404
405 }
406
409 fitProb = 0.;
410 if (nIter > 0) {
411 int lowbin = hEnergy->GetXaxis()->FindBin(fitlow);
412 int highbin = hEnergy->GetXaxis()->FindBin(fithigh);
413 int npar = 5;
414 if (fixConst) {npar = 4;}
415 int ndeg = (highbin - lowbin) + 1 - npar;
416 double chisq = 0.;
417 double halfbinwidth = 0.5 * hEnergy->GetBinWidth(1);
418 for (int ib = lowbin; ib <= highbin; ib++) {
419 double yexp = func->Eval(hEnergy->GetBinLowEdge(ib) + halfbinwidth);
420 double yobs = hEnergy->GetBinContent(ib);
421 double dchi2 = (yexp - yobs) * (yexp - yobs) / yexp;
422 chisq += dchi2;
423 }
424 fitProb = 0.5 * (TMath::Prob(chisq, ndeg) + fitProbDefault);
425 }
426
429 int iStatus = fitOK; // success
430 if (nIter == maxIterations) {iStatus = iterations;} // too many iterations
431
433 if (normalization < constRatio * constant) {iStatus = noPeak;}
434
436 if (fitProb <= minFitLimit || (fitProb < minFitProbIter && iStatus == iterations)) {iStatus = poorFit;}
437
439 if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus = atLimit;}
440 if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus = atLimit;}
441 if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus = atLimit;}
442
443 //**..No fit
444 if (nIter == 0) {iStatus = notFit;} // not fit
445
447 PeakperCrys[idir]->SetBinContent(histbin, peakE);
448 PeakperCrys[idir]->SetBinError(histbin, peakEUnc);
449 SigmaperCrys[idir]->SetBinContent(histbin, effSigma);
450 SigmaperCrys[idir]->SetBinError(histbin, sigmaUnc);
451 EtaperCrys[idir]->SetBinContent(histbin, eta);
452 EtaperCrys[idir]->SetBinError(histbin, etaUnc);
453 ConstperCrys[idir]->SetBinContent(histbin, constant);
454 ConstperCrys[idir]->SetBinError(histbin, constUnc);
455 StatusperCrys[idir]->SetBinContent(histbin, iStatus);
456 hStatus[idir]->Fill(iStatus);
457 fracPeakUnc[idir]->Fill(peakEUnc / peakE);
458 hfitProb[idir]->Fill(fitProb);
459
461 B2INFO("cellID " << histbin << " " << preName[idir] << " status = " << iStatus << " fit probability = " << fitProb);
462 histfile->cd();
463 hEnergy->Write();
464 }
465 }
466
469 if (findExpValues) {
470
472 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
473 int histbin = crysID + 1;
474 bool atLeastOneOK = false;
475 for (int idir = 0; idir < 2; idir++) {
476 double fitstatus = StatusperCrys[idir]->GetBinContent(histbin);
477 double peakE = PeakperCrys[idir]->GetBinContent(histbin);
478 double peakEUnc = PeakperCrys[idir]->GetBinError(histbin);
479
480 //**..For failed fits, store the negative of the input expected energy */
481 if (fitstatus < iterations) {
482 if (histbin >= cellIDLo && histbin <= cellIDHi) {
483 B2INFO("eclCosmicEAlgorithm: crystal " << crysID << " " << preName[idir] << " is not a successful fit. Status = " << fitstatus);
484 }
485 peakE = -1.;
486 peakEUnc = 0.;
487 } else {
488 atLeastOneOK = true;
489 }
490 double inputExpE = abs(AverageExpECrys[idir]->GetBinContent(histbin));
491 ExpEnergyperCrys[idir]->SetBinContent(histbin, inputExpE * peakE);
492 ExpEnergyperCrys[idir]->SetBinError(histbin, inputExpE * peakEUnc / peakE);
493 }
494 if (!atLeastOneOK) {allFitsOK = false;}
495 }
496
499 } else {
500
502 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
503 int histbin = crysID + 1;
504 double calibConst[2] = {};
505 double calibConstUnc[2] = {999999., 999999.};
506 double weight[2] = {};
507 bool bothFitsBad = true;
508 for (int idir = 0; idir < 2; idir++) {
509
511 double peakE = PeakperCrys[idir]->GetBinContent(histbin);
512 double fracPeakEUnc = PeakperCrys[idir]->GetBinError(histbin) / peakE;
513 double inputConst = AverageInitialCalib[idir]->GetBinContent(histbin);
514 double fitstatus = StatusperCrys[idir]->GetBinContent(histbin);
515 double inputExpE = AverageExpECrys[idir]->GetBinContent(histbin);
516 if (fitstatus >= iterations && inputConst == 0) {B2FATAL("eclCosmicEAlgorithm: input calibration = 0 for idir = " << idir << " and crysID = " << crysID);}
517
518 //** Find constant only if fit was successful and we have a value for the expected energy */
519 if (fitstatus >= iterations && inputExpE > 0.) {
520 calibConst[idir] = abs(inputConst) / peakE;
521 calibConstUnc[idir] = calibConst[idir] * fracPeakEUnc / peakE;
522 weight[idir] = 1. / (calibConstUnc[idir] * calibConstUnc[idir]);
523 bothFitsBad = false;
524 }
525 if (fitstatus < iterations && histbin >= cellIDLo && histbin <= cellIDHi) {
526 B2INFO("eclCosmicEAlgorithm: cellID " << histbin << " " << preName[idir] << " is not a successful fit. Status = " << fitstatus);
527 } else if (inputExpE < 0. && histbin >= cellIDLo && histbin <= cellIDHi) {
528 B2WARNING("eclCosmicEAlgorithm: cellID " << histbin << " " << preName[idir] << " has no expected energy. Status = " << fitstatus);
529 }
530 }
531
532
534 double averageConst;
535 double averageConstUnc;
536
538 if (bothFitsBad) {
539 if (histbin >= cellIDLo && histbin <= cellIDHi) {B2INFO("eclCosmicEAlgorithm: no constant found for cellID = " << histbin << " status = " << StatusperCrys[0]->GetBinContent(histbin) << " and " << StatusperCrys[1]->GetBinContent(histbin));}
540 averageConst = -1.*abs(AverageInitialCalib[0]->GetBinContent(histbin));
541 averageConstUnc = 0.;
542 } else {
543 averageConst = (calibConst[0] * weight[0] + calibConst[1] * weight[1]) / (weight[0] + weight[1]);
544 averageConstUnc = 1. / sqrt(weight[0] + weight[1]);
545 }
546 CalibvsCrys->SetBinContent(histbin, averageConst);
547 CalibvsCrys->SetBinError(histbin, averageConstUnc);
548 }
549 }
550
553 bool DBsuccess = false;
554 if (storeConst == 0 || (storeConst == 1 && allFitsOK)) {
555 DBsuccess = true;
556
558 if (findExpValues) {
559 std::vector<std::string> DBname = {"ECLExpCosmicESame", "ECLExpCosmicEDifferent"};
560 for (int idir = 0; idir < 2; idir++) {
561 std::vector<float> tempE;
562 std::vector<float> tempUnc;
563 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
564 int histbin = crysID + 1;
565 tempE.push_back(ExpEnergyperCrys[idir]->GetBinContent(histbin));
566 tempUnc.push_back(ExpEnergyperCrys[idir]->GetBinError(histbin));
567 }
568 ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
569 ExpectedE->setCalibVector(tempE, tempUnc);
570 saveCalibration(ExpectedE, DBname[idir]);
571 B2INFO("eclCosmicEAlgorithm: successfully stored expected values for " << DBname[idir]);
572 }
573
575 } else {
576 std::vector<float> tempCalib;
577 std::vector<float> tempCalibUnc;
578 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
579 int histbin = crysID + 1;
580 tempCalib.push_back(CalibvsCrys->GetBinContent(histbin));
581 tempCalibUnc.push_back(CalibvsCrys->GetBinError(histbin));
582 }
583 ECLCrystalCalib* CosmicECalib = new ECLCrystalCalib();
584 CosmicECalib->setCalibVector(tempCalib, tempCalibUnc);
585 saveCalibration(CosmicECalib, "ECLCrystalEnergyCosmic");
586 B2INFO("eclCosmicEAlgorithm: successfully stored calibration constants");
587 }
588 }
589
591 for (int idir = 0; idir < 2; idir++) {
592 PeakperCrys[idir]->Write();
593 SigmaperCrys[idir]->Write();
594 EtaperCrys[idir]->Write();
595 ConstperCrys[idir]->Write();
596 StatusperCrys[idir]->Write();
597 hStatus[idir]->Write();
598 fracPeakUnc[idir]->Write();
599 hfitProb[idir]->Write();
600 }
601
603 if (findExpValues) {
604 ExpEnergyperCrys[0]->Write();
605 ExpEnergyperCrys[1]->Write();
606 } else {
607 CalibvsCrys->Write();
608 }
609 histfile->Close();
610
613 dummy = (TH1F*)gROOT->FindObject("PeakperCrysSame"); delete dummy;
614 dummy = (TH1F*)gROOT->FindObject("SigmaperCrysSame"); delete dummy;
615 dummy = (TH1F*)gROOT->FindObject("EtaperCrysSame"); delete dummy;
616 dummy = (TH1F*)gROOT->FindObject("ConstperCrysSame"); delete dummy;
617 dummy = (TH1F*)gROOT->FindObject("StatusperCrysSame"); delete dummy;
618 dummy = (TH1F*)gROOT->FindObject("StatusSame"); delete dummy;
619 dummy = (TH1F*)gROOT->FindObject("fracPeakUncSame"); delete dummy;
620 dummy = (TH1F*)gROOT->FindObject("fitProbSame"); delete dummy;
621 dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrysSame"); delete dummy;
622 dummy = (TH1F*)gROOT->FindObject("PeakperCrysDifferent"); delete dummy;
623 dummy = (TH1F*)gROOT->FindObject("SigmaperCrysDifferent"); delete dummy;
624 dummy = (TH1F*)gROOT->FindObject("EtaperCrysDifferent"); delete dummy;
625 dummy = (TH1F*)gROOT->FindObject("ConstperCrysDifferent"); delete dummy;
626 dummy = (TH1F*)gROOT->FindObject("StatusperCrysDifferent"); delete dummy;
627 dummy = (TH1F*)gROOT->FindObject("StatusDifferent"); delete dummy;
628 dummy = (TH1F*)gROOT->FindObject("fracPeakUncDifferent"); delete dummy;
629 dummy = (TH1F*)gROOT->FindObject("fitProbDifferent"); delete dummy;
630 dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrysDifferent"); delete dummy;
631 dummy = (TH1F*)gROOT->FindObject("CalibvsCrys"); delete dummy;
632
635 if (storeConst == -1) {
636 B2INFO("eclCosmicEAlgorithm performed fits but was not asked to store constants");
637 return c_Failure;
638 } else if (!DBsuccess) {
639 if (findExpValues) { B2INFO("eclCosmicEAlgorithm: failed to store expected values"); }
640 else { B2INFO("eclCosmicEAlgorithm: failed to store calibration constants"); }
641 return c_Failure;
642 }
643 return c_OK;
644}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
int poorFit
low chi square; fit not usable
int iterations
fit reached max number of iterations, but is usable
int noPeak
Novosibirsk component of fit is negligible; fit not usable.
int atLimit
a parameter is at the limit; fit not usable
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ atLimit

int atLimit = 4
private

a parameter is at the limit; fit not usable

Definition at line 55 of file eclCosmicEAlgorithm.h.

◆ cellIDHi

int cellIDHi

Last cellID to be fit.

Definition at line 35 of file eclCosmicEAlgorithm.h.

◆ cellIDLo

int cellIDLo

Parameters to control Novosibirsk fit to signal measured in each crystal.

First cellID to be fit

Definition at line 34 of file eclCosmicEAlgorithm.h.

◆ findExpValues

bool findExpValues

if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant

Definition at line 41 of file eclCosmicEAlgorithm.h.

◆ fitOK

int fitOK = 16
private

fit is OK

Definition at line 53 of file eclCosmicEAlgorithm.h.

◆ iterations

int iterations = 8
private

fit reached max number of iterations, but is usable

Definition at line 54 of file eclCosmicEAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ maxIterations

int maxIterations

no more than maxIteration iterations

Definition at line 37 of file eclCosmicEAlgorithm.h.

◆ minEntries

int minEntries

All crystals to be fit must have at least minEntries events in the fit range.

Definition at line 36 of file eclCosmicEAlgorithm.h.

◆ noPeak

int noPeak = 2
private

Novosibirsk component of fit is negligible; fit not usable.

Definition at line 57 of file eclCosmicEAlgorithm.h.

◆ notFit

int notFit = -1
private

no fit performed

Definition at line 58 of file eclCosmicEAlgorithm.h.

◆ performFits

bool performFits

if false, input histograms are copied to output, but no fits are done.

Definition at line 40 of file eclCosmicEAlgorithm.h.

◆ poorFit

int poorFit = 3
private

low chi square; fit not usable

Definition at line 56 of file eclCosmicEAlgorithm.h.

◆ storeConst

int storeConst

controls which values are written to the database.

0 (default): store value found by successful fits, or -|input value| otherwise; -1 : do not store values 1 : store values if every fit for [cellIDLo,cellIDHi] was successful

Definition at line 42 of file eclCosmicEAlgorithm.h.

◆ tRatioMax

double tRatioMax

Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 39 of file eclCosmicEAlgorithm.h.

◆ tRatioMin

double tRatioMin

Fit range is adjusted so that fit at upper endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 38 of file eclCosmicEAlgorithm.h.


The documentation for this class was generated from the following files: