Belle II Software development
eclGammaGammaEAlgorithm Class Reference

Calibrate ecl crystals using gamma pair events. More...

#include <eclGammaGammaEAlgorithm.h>

Inheritance diagram for eclGammaGammaEAlgorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclGammaGammaEAlgorithm ()
 ..Constructor
 
virtual ~eclGammaGammaEAlgorithm ()
 ..Destructor
 
void setOutputName (const std::string &outputName)
 Setter for m_outputName.
 
std::string getOutputName ()
 Getter for m_outputName.
 
void setCellIDLo (int cellIDLo)
 Setter for m_cellIDLo.
 
int getCellIDLo ()
 Getter for m_cellIDLo.
 
void setCellIDHi (int cellIDHi)
 Setter for m_cellIDHi.
 
int getCellIDHi ()
 Getter for m_cellIDHi.
 
void setMinEntries (int minEntries)
 Setter for m_minEntries.
 
int getMinEntries ()
 Getter for m_minEntries.
 
void setMaxIterations (int maxIterations)
 Setter for m_maxIterations.
 
int getMaxIterations ()
 Getter for m_maxIterations.
 
void setTRatioMin (double tRatioMin)
 Setter for m_tRatioMinNom.
 
double getTRatioMin ()
 Getter for m_tRatioMinNom.
 
void setTRatioMax (double tRatioMax)
 Setter for m_tRatioMaxNom.
 
double getTRatioMax ()
 Getter for m_tRatioMaxNom.
 
void setTRatioMinHiStat (double tRatioMin)
 Setter for m_tRatioMinHiStat.
 
double getTRatioMinHiStat ()
 Getter for m_tRatioMinHiStat.
 
void setTRatioMaxHiStat (double tRatioMax)
 Setter for m_tRatioMaxHiStat.
 
double getTRatioMaxHiStat ()
 Getter for m_tRatioMaxHiStat.
 
void setUpperEdgeThresh (double upperEdgeThresh)
 Setter for m_upperEdgeThresh.
 
double getUpperEdgeThresh ()
 Getter for m_upperEdgeThresh.
 
void setPerformFits (bool performFits)
 Setter for m_performFits.
 
bool getPerformFits ()
 Getter for m_performFits.
 
void setFindExpValues (bool findExpValues)
 Setter for m_findExpValues.
 
bool getFindExpValues ()
 Getter for m_findExpValues.
 
void setStoreConst (int storeConst)
 Setter for m_storeConst.
 
int getStoreConst ()
 Getter for m_storeConst.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 ..Run algorithm on events
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::string m_outputName = "eclGammaGammaEAlgorithm.root"
 ..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
 
int m_cellIDLo = 1
 First cellID to be fit.
 
int m_cellIDHi = ECLElementNumbers::c_NCrystals
 Last cellID to be fit.
 
int m_minEntries = 150
 Minimum entries to fit a crystal.
 
int m_highStatEntries = 25000
 Adjust fit range above this many entries.
 
int m_maxIterations = 10
 no more than maxIteration iterations
 
double m_tRatioMinNom
 Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
 
double m_tRatioMaxNom = 0.70
 Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
 
double m_tRatioMinHiStat
 Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
 
double m_tRatioMaxHiStat
 Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
 
double m_upperEdgeThresh = 0.02
 Upper edge is where the fit = upperEdgeThresh * peak value.
 
bool m_performFits = true
 if false, input histograms are copied to output, but no fits are done
 
bool m_findExpValues
 if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant
 
int m_storeConst = 0
 controls which values are written to the database.
 
int fitOK = 16
 Characterize fit status.
 
int iterations = 8
 fit reached max number of iterations, but is usable
 
int atLimit = 4
 a parameter is at the limit; upper edge is found from histogram, not fit
 
int poorFit = 3
 low chi square; upper edge is found from histogram, not fit
 
int noPeak = 2
 Novosibirsk component of fit is negligible; upper edge is found from histogram, not fit.
 
int notFit = -1
 no fit performed; no constants found for this crystal
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Calibrate ecl crystals using gamma pair events.

Definition at line 25 of file eclGammaGammaEAlgorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclGammaGammaEAlgorithm()

..Constructor


Definition at line 58 of file eclGammaGammaEAlgorithm.cc.

58 : CalibrationAlgorithm("eclGammaGammaECollector")
59{
61 "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by photons in e+e- --> gamma gamma"
62 );
63}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~eclGammaGammaEAlgorithm()

virtual ~eclGammaGammaEAlgorithm ( )
inlinevirtual

..Destructor

Definition at line 32 of file eclGammaGammaEAlgorithm.h.

32{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events


ranges of various fit parameters, and tolerance to determine that fit is at the limit

Put root into batch mode so that we don't try to open a graphics window


Write out the job parameters


Clean up existing histograms if necessary


Histograms containing the data collected by eclGammaGammaECollectorModule


Record the number of entries per crystal in the normalized energy histogram and calculate the average expected energy per crystal and calibration constants from Collector


Write out the basic histograms in all cases


If we have not been asked to do fits, we can quit now


Check that every crystal has enough entries, if so requested

Insufficient data. Quit if we are required to have a successful fit for every crystal


Some prep for the many fits about to follow

histograms to store results for database

Diagnostic histograms

1D summary histograms


Fits are requested and there is sufficient data. Loop over specified crystals and performs fits to the amplitude distributions

Project 1D histogram of energy in this crystal

Fit function (xmin, xmax, nparameters) for this histogram

Estimate initial parameters from the histogram. For peak, use maximum bin in the allowed range

Fit range is just below peak to the histogram maximum

eta and constant are nominal values

Parameters to control iterations. dIter checks if we are stuck in a loop

Use a smaller fit range for high statistics histograms


Iterate from this point

Set the initial parameters

Fit

The lower fit range should correspond the specified fraction of the peak. Iterate if necessary.

Check if we are oscillating between two end points

Many iterations may mean we are stuck in a loop. Try a different end point.

Set the constant term to 0 if we are close to the limit

No more than specified number of iterations


..Manually calculate a more meaningful fit probability. Same as P option in fit, which cannot be used with L

only include this bin if meaningful


Fit status

No peak; normalization of Novo component is too small

poor fit, or relatively poor fit with too many iterations

parameter at limit


Find upper edge of Novosibirsk fit, if possible

Look for the fit to drop to specified fraction of peak.

bins on either side of this value

look for the target value between these two points

Fit was not successful despite sufficient statistics; find upper edge from bin contents


fill diagnostic histograms

1D summary histograms

Store histogram with fit


Interpret results of fit as expected energy or calibration constant

if no fit, set upperEdge to -1, so that output calib = -1 * abs(input calib)

Find expected energies from MC, if requested

Otherwise, calibration constant


Write output to DB if requested and successful

Store expected energies

Store calibration constants


Write out diagnostic histograms

Histograms containing values written to DB


Clean up histograms in case Algorithm is called again


Set the return code appropriately

Implements CalibrationAlgorithm.

Definition at line 65 of file eclGammaGammaEAlgorithm.cc.

66{
69 const double limitTol = 0.0005; /*< tolerance for checking if a parameter is at the limit */
70 const double minFitLimit = 1e-25; /*< cut off for labeling a fit as poor */
71 const double minFitProbIter = 1e-8; /*< cut off for labeling a fit as poor if it also has many iterations */
72 const double constRatio = 0.5; /*< Novosibirsk normalization must be greater than constRatio x constant term */
73 const double peakMin(0.4), peakMax(2.2); /*< range for peak of normalized energy distribution */
74 const double peakTol = limitTol * (peakMax - peakMin); /*< fit is at limit if it is within peakTol of min or max */
75 const double effSigMin(0.02), effSigMax(0.4); /*< range for effective sigma of normalized energy distribution */
76 const double effSigTol = limitTol * (effSigMax - effSigMin); /*< fit is at limit if it is within effSigTol of min or max */
77 const double etaNom(0.41); /*< Nominal tail parameter */
78 const double etaMin(0.), etaMax(5.0); /*< Novosibirsk tail parameter range */
79 const double etaTol = limitTol * (etaMax - etaMin); /*< fit is at limit if it is within etaTol of min or max */
80 const double constTol = 0.001; /*< if constant is less than constTol, it will be fixed to 0 */
81
83 gROOT->SetBatch();
84
87 B2INFO("eclGammaGammaAlgorithm parameters:");
88 B2INFO("outputName = " << m_outputName);
89 B2INFO("cellIDLo = " << m_cellIDLo);
90 B2INFO("cellIDHi = " << m_cellIDHi);
91 B2INFO("minEntries = " << m_minEntries);
92 B2INFO("highStatEntries = " << m_highStatEntries);
93 B2INFO("maxIterations = " << m_maxIterations);
94 B2INFO("tRatioMinNom = " << m_tRatioMinNom);
95 B2INFO("tRatioMaxNom = " << m_tRatioMaxNom);
96 B2INFO("tRatioMinHiStat = " << m_tRatioMinHiStat);
97 B2INFO("tRatioMaxHiStat = " << m_tRatioMaxHiStat);
98 B2INFO("upperEdgeThresh = " << m_upperEdgeThresh);
99 B2INFO("performFits = " << m_performFits);
100 B2INFO("findExpValues = " << m_findExpValues);
101 B2INFO("storeConst = " << m_storeConst);
102
105 TH1F* dummy;
106 dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysID");
107 if (dummy) {delete dummy;}
108 dummy = (TH1F*)gROOT->FindObject("AverageExpECrys");
109 if (dummy) {delete dummy;}
110 dummy = (TH1F*)gROOT->FindObject("AverageElecCalib");
111 if (dummy) {delete dummy;}
112 dummy = (TH1F*)gROOT->FindObject("AverageInitCalib");
113 if (dummy) {delete dummy;}
114
117 auto EnVsCrysID = getObjectPtr<TH2F>("EnVsCrysID");
118 auto ExpEvsCrys = getObjectPtr<TH1F>("ExpEvsCrys");
119 auto ElecCalibvsCrys = getObjectPtr<TH1F>("ElecCalibvsCrys");
120 auto InitialCalibvsCrys = getObjectPtr<TH1F>("InitialCalibvsCrys");
121 auto CalibEntriesvsCrys = getObjectPtr<TH1F>("CalibEntriesvsCrys");
122
126 TH1F* IntegralVsCrysID = new TH1F("IntegralVsCrysID", "Integral of EnVsCrysID for each crystal;crystal ID;Entries",
128 TH1F* AverageExpECrys = new TH1F("AverageExpECrys", "Average expected E per crys from collector;Crystal ID;Energy (GeV)",
131 TH1F* AverageElecCalib = new TH1F("AverageElecCalib", "Average electronics calib const vs crystal;Crystal ID;Calibration constant",
133 TH1F* AverageInitCalib = new TH1F("AverageInitCalib", "Average initial calib const vs crystal;Crystal ID;Calibration constant",
135
136 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
137 TH1D* hEnergy = EnVsCrysID->ProjectionY("hEnergy", crysID + 1, crysID + 1);
138 int Integral = hEnergy->Integral();
139 IntegralVsCrysID->SetBinContent(crysID + 1, Integral);
140
141 double TotEntries = CalibEntriesvsCrys->GetBinContent(crysID + 1);
142
143 double expectedE = 0.;
144 if (TotEntries > 0.) {expectedE = ExpEvsCrys->GetBinContent(crysID + 1) / TotEntries;}
145 AverageExpECrys->SetBinContent(crysID + 1, expectedE);
146
147 double calibconst = 0.;
148 if (TotEntries > 0.) {calibconst = ElecCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
149 AverageElecCalib->SetBinContent(crysID + 1, calibconst);
150
151 calibconst = 0.;
152 if (TotEntries > 0.) {calibconst = InitialCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
153 AverageInitCalib->SetBinContent(crysID + 1, calibconst);
154 }
155
158 TString fName = m_outputName;
159 TFile* histfile = new TFile(fName, "recreate");
160 EnVsCrysID->Write();
161 IntegralVsCrysID->Write();
162 AverageExpECrys->Write();
163 AverageElecCalib->Write();
164 AverageInitCalib->Write();
165
168 if (!m_performFits) {
169 B2INFO("eclGammaGammaEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
170 histfile->Close();
171 return c_NotEnoughData;
172 }
173
176 bool sufficientData = true;
177 for (int crysID = m_cellIDLo - 1; crysID < m_cellIDHi; crysID++) {
178 if (IntegralVsCrysID->GetBinContent(crysID + 1) < m_minEntries) {
179 if (m_storeConst == 1) {B2INFO("eclGammaGammaEAlgorithm: crystal " << crysID << " has insufficient statistics: " << IntegralVsCrysID->GetBinContent(crysID + 1) << ". Requirement is " << m_minEntries);}
180 sufficientData = false;
181 break;
182 }
183 }
184
186 if (!sufficientData && m_storeConst == 1) {
187 histfile->Close();
188 return c_NotEnoughData;
189 }
190
195 TH1F* CalibVsCrysID = new TH1F("CalibVsCrysID", "Calibration constant vs crystal ID;crystal ID;counts per GeV",
197 TH1F* ExpEnergyperCrys = new TH1F("ExpEnergyperCrys", "Expected energy per crystal;Crystal ID;Peak energy (GeV)",
199
201 TH1F* PeakVsCrysID = new TH1F("PeakVsCrysID", "Peak of Novo fit vs crystal ID;crystal ID;Peak normalized energy",
203 TH1F* EdgeVsCrysID = new TH1F("EdgeVsCrysID", "Upper edge of Novo fit vs crystal ID;crystal ID;Maximum normalized energy",
206 TH1F* effSigVsCrysID = new TH1F("effSigVsCrysID", "effSigma vs crystal ID;crystal ID;sigma)", ECLElementNumbers::c_NCrystals, 0,
208 TH1F* etaVsCrysID = new TH1F("etaVsCrysID", "eta vs crystal ID;crystal ID;Novo eta parameter", ECLElementNumbers::c_NCrystals, 0,
210 TH1F* constVsCrysID = new TH1F("constVsCrysID", "fit constant vs crystal ID;crystal ID;fit constant",
212 TH1F* normVsCrysID = new TH1F("normVsCrysID", "Novosibirsk normalization vs crystal ID;crystal ID;normalization",
214 TH1F* fitLimitVsCrysID = new TH1F("fitLimitVsCrysID", "fit range lower limit vs crystal ID;crystal ID;upper fit limit",
217 TH1F* StatusVsCrysID = new TH1F("StatusVsCrysID", "Fit status vs crystal ID;crystal ID;Fit status", ECLElementNumbers::c_NCrystals,
219 TH1F* FitProbVsCrysID = new TH1F("FitProbVsCrysID", "Fit probability vs crystal id;crystal ID;Fit probability",
221
223 TH1F* hStatus = new TH1F("hStatus", "Fit status", 25, -5, 20);
224 TH1F* hPeak = new TH1F("hPeak", "Peaks of normalized energy distributions, successful fits;Peak of Novosibirsk fit", 200, 0.8, 1.2);
225 TH1F* fracPeakUnc = new TH1F("fracPeakUnc", "Fractional uncertainty on peak uncertainty, successful fits;Uncertainty on peak", 100,
226 0, 0.1);
227 TH1F* nIterations = new TH1F("nIterations", "Number of times histogram was fit;Number of iterations", 20, -0.5, 19.5);
228
229
232 bool allFitsOK = true;
233 for (int crysID = m_cellIDLo - 1; crysID < m_cellIDHi; crysID++) {
234
236 TString name = "Enormalized";
237 name += crysID;
238 TH1D* hEnergy = EnVsCrysID->ProjectionY(name, crysID + 1, crysID + 1);
239
241 double histMin = hEnergy->GetXaxis()->GetXmin();
242 double histMax = hEnergy->GetXaxis()->GetXmax();
243 TF1* func = new TF1("eclGammaGammaNovoConst", eclGammaGammaNovoConst, histMin, histMax, 5);
244 func->SetParNames("normalization", "peak", "effSigma", "eta", "const");
245 func->SetParLimits(1, peakMin, peakMax);
246 func->SetParLimits(2, effSigMin, effSigMax);
247 func->SetParLimits(3, etaMin, etaMax);
248 func->SetParLimits(4, 0., hEnergy->GetMaximum());
249
251 hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
252 int maxBin = hEnergy->GetMaximumBin();
253 double peakE = hEnergy->GetBinLowEdge(maxBin);
254 double peakEUnc = 0.;
255 double normalization = hEnergy->GetMaximum();
256 double normUnc = 0.;
257 double effSigma = hEnergy->GetRMS();
258 double sigmaUnc = 0.;
259 hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
260
262 double fitlow = peakE - effSigma;
263 double fithigh = histMax;
264
266 double eta = etaNom;
267 double etaUnc = 0.;
268 double constant = 0.01 * normalization;
269 double constUnc = 0.;
270
272 double dIter = 0.1 * (histMax - histMin) / hEnergy->GetNbinsX();
273 double fitProb(0.);
274 double fitProbDefault(0.);
275 double lowold(0.), lowoldold(0.);
276 bool fixConst = false;
277 int nIter = 0;
278 double histIntegral = IntegralVsCrysID->GetBinContent(crysID + 1);
279 bool fitHist = histIntegral >= m_minEntries; /* fit only if enough events */
280
282 double m_tRatioMin = m_tRatioMinNom;
283 double m_tRatioMax = m_tRatioMaxNom;
284 if (histIntegral > m_highStatEntries) {
285 m_tRatioMin = m_tRatioMinHiStat;
286 m_tRatioMax = m_tRatioMaxHiStat;
287 }
288
291 while (fitHist) {
292
294 func->SetParameters(normalization, peakE, effSigma, eta, constant);
295 if (fixConst) { func->FixParameter(4, 0); }
296
298 hEnergy->Fit(func, "LIQ", "", fitlow, fithigh);
299 nIter++;
300 fitHist = false;
301 normalization = func->GetParameter(0);
302 normUnc = func->GetParError(0);
303 peakE = func->GetParameter(1);
304 peakEUnc = func->GetParError(1);
305 effSigma = func->GetParameter(2);
306 sigmaUnc = func->GetParError(2);
307 eta = func->GetParameter(3);
308 etaUnc = func->GetParError(3);
309 constant = func->GetParameter(4);
310 constUnc = func->GetParError(4);
311 fitProbDefault = func->GetProb();
312
314 double peak = func->Eval(peakE) - constant;
315 double tRatio = (func->Eval(fitlow) - constant) / peak;
316 if (tRatio < m_tRatioMin || tRatio > m_tRatioMax) {
317 double targetY = constant + 0.5 * (m_tRatioMin + m_tRatioMax) * peak;
318 lowoldold = lowold;
319 lowold = fitlow;
320 fitlow = func->GetX(targetY, histMin, peakE);
321 fitHist = true;
322
324 if (abs(fitlow - lowoldold) < dIter) {fitlow = 0.5 * (lowold + lowoldold); }
325
327 if (nIter > m_maxIterations - 3) {fitlow = 0.33333 * (fitlow + lowold + lowoldold); }
328 }
329
331 if (constant < constTol && !fixConst) {
332 constant = 0;
333 fixConst = true;
334 fitHist = true;
335 }
336
338 if (nIter == m_maxIterations) {fitHist = false;}
339 B2DEBUG(10, crysID << " " << nIter << " " << peakE << " " << constant << " " << tRatio << " " << fitlow);
340 }
341
344 fitProb = 0.;
345 if (nIter > 0) {
346 int lowbin = hEnergy->GetXaxis()->FindBin(fitlow);
347 int highbin = hEnergy->GetXaxis()->FindBin(fithigh);
348 int npar = 5;
349 if (fixConst) {npar = 4;}
350 int ndeg = -npar;
351 double chisq = 0.;
352 double binwidth = hEnergy->GetBinWidth(1);
353 for (int ib = lowbin; ib <= highbin; ib++) {
354 double xlow = hEnergy->GetBinLowEdge(ib);
355 double yexp = func->Integral(xlow, xlow + binwidth) / binwidth;
356
358 if (yexp > constTol) {
359 double yobs = hEnergy->GetBinContent(ib);
360 double dnom = yexp;
361 if (yexp < 0.9999 && yobs > yexp) {dnom = yobs;}
362 double dchi2 = (yexp - yobs) * (yexp - yobs) / dnom;
363 chisq += dchi2;
364 ndeg++;
365 }
366 }
367 fitProb = TMath::Prob(chisq, ndeg);
368 }
369
372 int iStatus = fitOK; // success
373 if (nIter == m_maxIterations) {iStatus = iterations;} // too many iterations
374
376 if (normalization < constRatio * constant) {iStatus = noPeak;}
377
379 if (fitProb <= minFitLimit || (fitProb < minFitProbIter && iStatus == iterations)) {iStatus = poorFit;}
380
382 if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus = atLimit;}
383 if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus = atLimit;}
384 if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus = atLimit;}
385
386 //** No fit
387 if (nIter == 0) {iStatus = notFit;} // not fit
388
391 double upperEdge = peakE;
392 double edgeUnc = peakEUnc;
393
394 if (iStatus >= iterations) {
395
397 double targetY = constant + m_upperEdgeThresh * (func->Eval(peakE) - constant);
398
400 int iLow = hEnergy->GetXaxis()->FindBin(peakE) + 1;
401 int iHigh = hEnergy->GetNbinsX();
402 int iLast = iLow;
403 for (int ibin = iLow; ibin < iHigh; ibin++) {
404 double xc = hEnergy->GetBinCenter(ibin);
405 if (func->Eval(xc) > targetY) {iLast = ibin;}
406 }
407 double xLow = hEnergy->GetBinCenter(iLast);
408 double xHigh = hEnergy->GetBinCenter(iLast + 1);
409
411 func->SetNpx(1000);
412 upperEdge = func->GetX(targetY, xLow, xHigh);
413
414
415 } else if (iStatus > notFit) {
416
418 int iLast = -1;
419 int thisBin = hEnergy->GetBinContent(1);
420 for (int ibin = 2; ibin < hEnergy->GetNbinsX(); ibin++) {
421 int prevBin = thisBin;
422 thisBin = hEnergy->GetBinContent(ibin);
423 if (thisBin > 0 && thisBin + prevBin >= 2) {iLast = ibin;}
424 }
425 if (iLast > 0) {upperEdge = hEnergy->GetBinLowEdge(iLast);} // lower edge is a better estimate than center
426 }
427
430 int histbin = crysID + 1;
431 PeakVsCrysID->SetBinContent(histbin, peakE);
432 PeakVsCrysID->SetBinError(histbin, peakEUnc);
433 EdgeVsCrysID->SetBinContent(histbin, upperEdge);
434 EdgeVsCrysID->SetBinError(histbin, edgeUnc);
435 effSigVsCrysID->SetBinContent(histbin, effSigma);
436 effSigVsCrysID->SetBinError(histbin, sigmaUnc);
437 etaVsCrysID->SetBinContent(histbin, eta);
438 etaVsCrysID->SetBinError(histbin, etaUnc);
439 constVsCrysID->SetBinContent(histbin, constant);
440 constVsCrysID->SetBinError(histbin, constUnc);
441 normVsCrysID->SetBinContent(histbin, normalization);
442 normVsCrysID->SetBinError(histbin, normUnc);
443 fitLimitVsCrysID->SetBinContent(histbin, fitlow);
444 fitLimitVsCrysID->SetBinError(histbin, 0);
445 StatusVsCrysID->SetBinContent(histbin, iStatus);
446 StatusVsCrysID->SetBinError(histbin, 0);
447 FitProbVsCrysID->SetBinContent(histbin, fitProb);
448 FitProbVsCrysID->SetBinError(histbin, 0);
449
451 hStatus->Fill(iStatus);
452 nIterations->Fill(nIter);
453 if (iStatus >= iterations) {
454 hPeak->Fill(peakE);
455 fracPeakUnc->Fill(peakEUnc / peakE);
456 }
457
459 B2INFO("cellID " << crysID + 1 << " status = " << iStatus << " fit probability = " << fitProb << " default prob = " <<
460 fitProbDefault);
461 histfile->cd();
462 hEnergy->Write();
463
464 } /* end of loop over crystals */
465
468 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
469 int histbin = crysID + 1;
470 double fitstatus = StatusVsCrysID->GetBinContent(histbin);
471 double upperEdge = EdgeVsCrysID->GetBinContent(histbin);
472 double fracEdgeUnc = EdgeVsCrysID->GetBinError(histbin) / upperEdge;
473
475 if (fitstatus < 0) {
476 upperEdge = -1.;
477 fracEdgeUnc = 0.;
478 if (histbin >= m_cellIDLo && histbin <= m_cellIDHi) {
479 B2INFO("eclGammaGammaEAlgorithm: cellID " << histbin << " is not a successful fit. Status = " << fitstatus);
480 allFitsOK = false;
481 }
482 }
483
485 if (m_findExpValues) {
486 double inputExpE = abs(AverageExpECrys->GetBinContent(histbin));
487 ExpEnergyperCrys->SetBinContent(histbin, inputExpE * upperEdge);
488 ExpEnergyperCrys->SetBinError(histbin, fracEdgeUnc * inputExpE * upperEdge);
489 } else {
490
492 double inputCalib = abs(AverageInitCalib->GetBinContent(histbin));
493 CalibVsCrysID->SetBinContent(histbin, inputCalib / upperEdge);
494 CalibVsCrysID->SetBinError(histbin, fracEdgeUnc * inputCalib / upperEdge);
495 }
496 }
497
500 bool DBsuccess = false;
501 if (m_storeConst == 0 || (m_storeConst == 1 && allFitsOK)) {
502 DBsuccess = true;
503 if (m_findExpValues) {
504
506 std::vector<float> tempE;
507 std::vector<float> tempUnc;
508 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
509 tempE.push_back(ExpEnergyperCrys->GetBinContent(crysID + 1));
510 tempUnc.push_back(ExpEnergyperCrys->GetBinError(crysID + 1));
511 }
512 ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
513 ExpectedE->setCalibVector(tempE, tempUnc);
514 saveCalibration(ExpectedE, "ECLExpGammaGammaE");
515 B2INFO("eclCosmicEAlgorithm: successfully stored expected energies ECLExpGammaGammaE");
516
517 } else {
518
520 std::vector<float> tempCalib;
521 std::vector<float> tempCalibUnc;
522 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
523 tempCalib.push_back(CalibVsCrysID->GetBinContent(crysID + 1));
524 tempCalibUnc.push_back(CalibVsCrysID->GetBinError(crysID + 1));
525 }
526 ECLCrystalCalib* GammaGammaECalib = new ECLCrystalCalib();
527 GammaGammaECalib->setCalibVector(tempCalib, tempCalibUnc);
528 saveCalibration(GammaGammaECalib, "ECLCrystalEnergyGammaGamma");
529 B2INFO("eclGammaGammaEAlgorithm: successfully stored ECLCrystalEnergyGammaGamma calibration constants");
530 }
531 }
532
536 PeakVsCrysID->Write();
537 EdgeVsCrysID->Write();
538 effSigVsCrysID->Write();
539 etaVsCrysID->Write();
540 constVsCrysID->Write();
541 normVsCrysID->Write();
542 fitLimitVsCrysID->Write();
543 StatusVsCrysID->Write();
544 FitProbVsCrysID->Write();
545 hPeak->Write();
546 fracPeakUnc->Write();
547 nIterations->Write();
548 hStatus->Write();
549
551 if (m_findExpValues) {
552 ExpEnergyperCrys->Write();
553 } else {
554 CalibVsCrysID->Write();
555 }
556 histfile->Close();
557
560 dummy = (TH1F*)gROOT->FindObject("PeakVsCrysID"); delete dummy;
561 dummy = (TH1F*)gROOT->FindObject("EdgeVsCrysID"); delete dummy;
562 dummy = (TH1F*)gROOT->FindObject("effSigVsCrysID"); delete dummy;
563 dummy = (TH1F*)gROOT->FindObject("etaVsCrysID"); delete dummy;
564 dummy = (TH1F*)gROOT->FindObject("constVsCrysID"); delete dummy;
565 dummy = (TH1F*)gROOT->FindObject("normVsCrysID"); delete dummy;
566 dummy = (TH1F*)gROOT->FindObject("fitLimitVsCrysID"); delete dummy;
567 dummy = (TH1F*)gROOT->FindObject("StatusVsCrysID"); delete dummy;
568 dummy = (TH1F*)gROOT->FindObject("FitProbVsCrysID"); delete dummy;
569 dummy = (TH1F*)gROOT->FindObject("fracPeakUnc"); delete dummy;
570 dummy = (TH1F*)gROOT->FindObject("nIterations"); delete dummy;
571 dummy = (TH1F*)gROOT->FindObject("hStatus"); delete dummy;
572 dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrys"); delete dummy;
573 dummy = (TH1F*)gROOT->FindObject("CalibVsCrysID"); delete dummy;
574
575
578 if (m_storeConst == -1) {
579 B2INFO("eclGammaGammaEAlgorithm performed fits but was not asked to store constants");
580 return c_Failure;
581 } else if (!DBsuccess) {
582 if (m_findExpValues) { B2INFO("eclGammaGammaEAlgorithm: failed to store expected values"); }
583 else { B2INFO("eclGammaGammaEAlgorithm: failed to store calibration constants"); }
584 return c_Failure;
585 }
586 return c_OK;
587}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
int m_minEntries
Minimum entries to fit a crystal.
int poorFit
low chi square; upper edge is found from histogram, not fit
int m_maxIterations
no more than maxIteration iterations
double m_tRatioMaxHiStat
Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
int iterations
fit reached max number of iterations, but is usable
double m_tRatioMaxNom
Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
double m_tRatioMinNom
Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
int m_highStatEntries
Adjust fit range above this many entries.
std::string m_outputName
..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
int m_storeConst
controls which values are written to the database.
int notFit
no fit performed; no constants found for this crystal
bool m_findExpValues
if true, fits are used to find expected energy deposit for each crystal instead of the calibration co...
bool m_performFits
if false, input histograms are copied to output, but no fits are done
double m_upperEdgeThresh
Upper edge is where the fit = upperEdgeThresh * peak value.
int noPeak
Novosibirsk component of fit is negligible; upper edge is found from histogram, not fit.
double m_tRatioMinHiStat
Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.
int atLimit
a parameter is at the limit; upper edge is found from histogram, not fit
const int c_NCrystals
Number of crystals.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCellIDHi()

int getCellIDHi ( )
inline

Getter for m_cellIDHi.

Definition at line 50 of file eclGammaGammaEAlgorithm.h.

50{return m_cellIDHi;}

◆ getCellIDLo()

int getCellIDLo ( )
inline

Getter for m_cellIDLo.

Definition at line 44 of file eclGammaGammaEAlgorithm.h.

44{return m_cellIDLo;}

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getFindExpValues()

bool getFindExpValues ( )
inline

Getter for m_findExpValues.

Definition at line 104 of file eclGammaGammaEAlgorithm.h.

104{return m_findExpValues;}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getMaxIterations()

int getMaxIterations ( )
inline

Getter for m_maxIterations.

Definition at line 62 of file eclGammaGammaEAlgorithm.h.

62{return m_maxIterations;}

◆ getMinEntries()

int getMinEntries ( )
inline

Getter for m_minEntries.

Definition at line 56 of file eclGammaGammaEAlgorithm.h.

56{return m_minEntries;}

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getOutputName()

std::string getOutputName ( )
inline

Getter for m_outputName.

Definition at line 38 of file eclGammaGammaEAlgorithm.h.

38{return m_outputName;}

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPerformFits()

bool getPerformFits ( )
inline

Getter for m_performFits.

Definition at line 98 of file eclGammaGammaEAlgorithm.h.

98{return m_performFits;}

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getStoreConst()

int getStoreConst ( )
inline

Getter for m_storeConst.

Definition at line 110 of file eclGammaGammaEAlgorithm.h.

110{return m_storeConst;}

◆ getTRatioMax()

double getTRatioMax ( )
inline

Getter for m_tRatioMaxNom.

Definition at line 74 of file eclGammaGammaEAlgorithm.h.

74{return m_tRatioMaxNom;}

◆ getTRatioMaxHiStat()

double getTRatioMaxHiStat ( )
inline

Getter for m_tRatioMaxHiStat.

Definition at line 86 of file eclGammaGammaEAlgorithm.h.

86{return m_tRatioMaxHiStat;}

◆ getTRatioMin()

double getTRatioMin ( )
inline

Getter for m_tRatioMinNom.

Definition at line 68 of file eclGammaGammaEAlgorithm.h.

68{return m_tRatioMinNom;}

◆ getTRatioMinHiStat()

double getTRatioMinHiStat ( )
inline

Getter for m_tRatioMinHiStat.

Definition at line 80 of file eclGammaGammaEAlgorithm.h.

80{return m_tRatioMinHiStat;}

◆ getUpperEdgeThresh()

double getUpperEdgeThresh ( )
inline

Getter for m_upperEdgeThresh.

Definition at line 92 of file eclGammaGammaEAlgorithm.h.

92{return m_upperEdgeThresh;}

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setCellIDHi()

void setCellIDHi ( int  cellIDHi)
inline

Setter for m_cellIDHi.

Definition at line 47 of file eclGammaGammaEAlgorithm.h.

47{m_cellIDHi = cellIDHi;}

◆ setCellIDLo()

void setCellIDLo ( int  cellIDLo)
inline

Setter for m_cellIDLo.

Definition at line 41 of file eclGammaGammaEAlgorithm.h.

41{m_cellIDLo = cellIDLo;}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setFindExpValues()

void setFindExpValues ( bool  findExpValues)
inline

Setter for m_findExpValues.

Definition at line 101 of file eclGammaGammaEAlgorithm.h.

101{m_findExpValues = findExpValues;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setMaxIterations()

void setMaxIterations ( int  maxIterations)
inline

Setter for m_maxIterations.

Definition at line 59 of file eclGammaGammaEAlgorithm.h.

59{m_maxIterations = maxIterations;}

◆ setMinEntries()

void setMinEntries ( int  minEntries)
inline

Setter for m_minEntries.

Definition at line 53 of file eclGammaGammaEAlgorithm.h.

53{m_minEntries = minEntries;}

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setOutputName()

void setOutputName ( const std::string &  outputName)
inline

Setter for m_outputName.

Definition at line 35 of file eclGammaGammaEAlgorithm.h.

35{m_outputName = outputName;}

◆ setPerformFits()

void setPerformFits ( bool  performFits)
inline

Setter for m_performFits.

Definition at line 95 of file eclGammaGammaEAlgorithm.h.

95{m_performFits = performFits;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setStoreConst()

void setStoreConst ( int  storeConst)
inline

Setter for m_storeConst.

Definition at line 107 of file eclGammaGammaEAlgorithm.h.

107{m_storeConst = storeConst;}

◆ setTRatioMax()

void setTRatioMax ( double  tRatioMax)
inline

Setter for m_tRatioMaxNom.

Definition at line 71 of file eclGammaGammaEAlgorithm.h.

71{m_tRatioMaxNom = tRatioMax;}

◆ setTRatioMaxHiStat()

void setTRatioMaxHiStat ( double  tRatioMax)
inline

Setter for m_tRatioMaxHiStat.

Definition at line 83 of file eclGammaGammaEAlgorithm.h.

83{m_tRatioMaxHiStat = tRatioMax;}

◆ setTRatioMin()

void setTRatioMin ( double  tRatioMin)
inline

Setter for m_tRatioMinNom.

Definition at line 65 of file eclGammaGammaEAlgorithm.h.

65{m_tRatioMinNom = tRatioMin;}

◆ setTRatioMinHiStat()

void setTRatioMinHiStat ( double  tRatioMin)
inline

Setter for m_tRatioMinHiStat.

Definition at line 77 of file eclGammaGammaEAlgorithm.h.

77{m_tRatioMinHiStat = tRatioMin;}

◆ setUpperEdgeThresh()

void setUpperEdgeThresh ( double  upperEdgeThresh)
inline

Setter for m_upperEdgeThresh.

Definition at line 89 of file eclGammaGammaEAlgorithm.h.

89{m_upperEdgeThresh = upperEdgeThresh;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ atLimit

int atLimit = 4
private

a parameter is at the limit; upper edge is found from histogram, not fit

Definition at line 146 of file eclGammaGammaEAlgorithm.h.

◆ fitOK

int fitOK = 16
private

Characterize fit status.

fit is OK

Definition at line 144 of file eclGammaGammaEAlgorithm.h.

◆ iterations

int iterations = 8
private

fit reached max number of iterations, but is usable

Definition at line 145 of file eclGammaGammaEAlgorithm.h.

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_cellIDHi

int m_cellIDHi = ECLElementNumbers::c_NCrystals
private

Last cellID to be fit.

Definition at line 123 of file eclGammaGammaEAlgorithm.h.

◆ m_cellIDLo

int m_cellIDLo = 1
private

First cellID to be fit.

Definition at line 122 of file eclGammaGammaEAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_findExpValues

bool m_findExpValues
private
Initial value:
=
false

if true, fits are used to find expected energy deposit for each crystal instead of the calibration constant

Definition at line 136 of file eclGammaGammaEAlgorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_highStatEntries

int m_highStatEntries = 25000
private

Adjust fit range above this many entries.

Definition at line 125 of file eclGammaGammaEAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_maxIterations

int m_maxIterations = 10
private

no more than maxIteration iterations

Definition at line 126 of file eclGammaGammaEAlgorithm.h.

◆ m_minEntries

int m_minEntries = 150
private

Minimum entries to fit a crystal.

Definition at line 124 of file eclGammaGammaEAlgorithm.h.

◆ m_outputName

std::string m_outputName = "eclGammaGammaEAlgorithm.root"
private

..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events

file name for histogram output

Definition at line 121 of file eclGammaGammaEAlgorithm.h.

◆ m_performFits

bool m_performFits = true
private

if false, input histograms are copied to output, but no fits are done

Definition at line 135 of file eclGammaGammaEAlgorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_storeConst

int m_storeConst = 0
private

controls which values are written to the database.

0 : store value found by successful fits, or -|input value| otherwise; -1 : do not store values 1 : store values if every fit for [cellIDLo,cellIDHi] was successful

Definition at line 138 of file eclGammaGammaEAlgorithm.h.

◆ m_tRatioMaxHiStat

double m_tRatioMaxHiStat
private
Initial value:
=
0.95

Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 132 of file eclGammaGammaEAlgorithm.h.

◆ m_tRatioMaxNom

double m_tRatioMaxNom = 0.70
private

Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 129 of file eclGammaGammaEAlgorithm.h.

◆ m_tRatioMinHiStat

double m_tRatioMinHiStat
private
Initial value:
=
0.70

Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 130 of file eclGammaGammaEAlgorithm.h.

◆ m_tRatioMinNom

double m_tRatioMinNom
private
Initial value:
=
0.45

Fit range is adjusted so that fit at lower endpoint is between tRatioMin and tRatioMax of peak.

Definition at line 127 of file eclGammaGammaEAlgorithm.h.

◆ m_upperEdgeThresh

double m_upperEdgeThresh = 0.02
private

Upper edge is where the fit = upperEdgeThresh * peak value.

Definition at line 134 of file eclGammaGammaEAlgorithm.h.

◆ noPeak

int noPeak = 2
private

Novosibirsk component of fit is negligible; upper edge is found from histogram, not fit.

Definition at line 148 of file eclGammaGammaEAlgorithm.h.

◆ notFit

int notFit = -1
private

no fit performed; no constants found for this crystal

Definition at line 149 of file eclGammaGammaEAlgorithm.h.

◆ poorFit

int poorFit = 3
private

low chi square; upper edge is found from histogram, not fit

Definition at line 147 of file eclGammaGammaEAlgorithm.h.


The documentation for this class was generated from the following files: