Belle II Software development
eclee5x5Algorithm Class Reference

Calibrate ecl crystals using Bhabha events. More...

#include <eclee5x5Algorithm.h>

Inheritance diagram for eclee5x5Algorithm:
CalibrationAlgorithm

Public Types

enum  EResult {
  c_OK ,
  c_Iterate ,
  c_NotEnoughData ,
  c_Failure ,
  c_Undefined
}
 The result of calibration. More...
 

Public Member Functions

 eclee5x5Algorithm ()
 ..Constructor
 
virtual ~eclee5x5Algorithm ()
 ..Destructor
 
void setOutputName (const std::string &outputName)
 Setter for m_outputName.
 
std::string getOutputName ()
 Getter for m_outputName.
 
void setMinEntries (int minEntries)
 Setter for m_minEntries.
 
int getMinEntries ()
 Getter for m_minEntries.
 
void setPayloadName (const std::string &payloadname)
 Setter for m_payloadName.
 
std::string getPayloadName ()
 Getter for m_payloadname.
 
void setStoreConst (bool storeConst)
 Setter for m_storeConst.
 
bool getStoreConst ()
 Getter for m_storeConst.
 
void setfracLo (double fracLo)
 Setter for m_fracLo.
 
double getfracLo ()
 Getter for m_fracLo.
 
void setfracHiSym (double fracHiSym)
 Setter for m_fracHiSym.
 
double getfracHiSym ()
 Getter for m_fracHiSym.
 
void setfracHiASym (double fracHiASym)
 Setter for m_fracHiASym.
 
double getfracHiASym ()
 Getter for m_fracHiASym.
 
void setnsigLo (double nsigLo)
 Setter for m_nsigLo.
 
double getnsigLo ()
 Getter for m_nsigLo.
 
void setnsigHiSym (double nsigHiSym)
 Setter for m_nsigHiSym.
 
double getnsigHiSym ()
 Getter for m_nsigHiSym.
 
void setnsigHiASym (double nsigHiASym)
 Setter for m_nsigHiASym.
 
double getnsigHiASym ()
 Getter for m_nsigHiASym.
 
void setlastLoThetaID (int lastLoThetaID)
 Setter for m_lastLoThetaID.
 
int getlastLoThetaID ()
 Getter for m_lastLoThetaID.
 
std::string getPrefix () const
 Get the prefix used for getting calibration data.
 
bool checkPyExpRun (PyObject *pyObj)
 Checks that a PyObject can be successfully converted to an ExpRun type.
 
Calibration::ExpRun convertPyExpRun (PyObject *pyObj)
 Performs the conversion of PyObject to ExpRun.
 
std::string getCollectorName () const
 Alias for prefix.
 
void setPrefix (const std::string &prefix)
 Set the prefix used to identify datastore objects.
 
void setInputFileNames (PyObject *inputFileNames)
 Set the input file names used for this algorithm from a Python list.
 
PyObject * getInputFileNames ()
 Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.
 
std::vector< Calibration::ExpRun > getRunListFromAllData () const
 Get the complete list of runs from inspection of collected data.
 
RunRange getRunRangeFromAllData () const
 Get the complete RunRange from inspection of collected data.
 
IntervalOfValidity getIovFromAllData () const
 Get the complete IoV from inspection of collected data.
 
void fillRunToInputFilesMap ()
 Fill the mapping of ExpRun -> Files.
 
std::string getGranularity () const
 Get the granularity of collected data.
 
EResult execute (std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over vector of runs for a given iteration.
 
EResult execute (PyObject *runs, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
 Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.
 
std::list< Database::DBImportQuery > & getPayloads ()
 Get constants (in TObjects) for database update from last execution.
 
std::list< Database::DBImportQuerygetPayloadValues ()
 Get constants (in TObjects) for database update from last execution but passed by VALUE.
 
bool commit ()
 Submit constants from last calibration into database.
 
bool commit (std::list< Database::DBImportQuery > payloads)
 Submit constants from a (potentially previous) set of payloads.
 
const std::string & getDescription () const
 Get the description of the algorithm (set by developers in constructor)
 
bool loadInputJson (const std::string &jsonString)
 Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.
 
const std::string dumpOutputJson () const
 Dump the JSON string of the output JSON object.
 
const std::vector< Calibration::ExpRun > findPayloadBoundaries (std::vector< Calibration::ExpRun > runs, int iteration=0)
 Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.
 
template<>
std::shared_ptr< TTree > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Specialization of getObjectPtr<TTree>.
 

Protected Member Functions

virtual EResult calibrate () override
 ..Run algorithm on events
 
void setInputFileNames (std::vector< std::string > inputFileNames)
 Set the input file names used for this algorithm.
 
virtual bool isBoundaryRequired (const Calibration::ExpRun &)
 Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.
 
virtual void boundaryFindingSetup (std::vector< Calibration::ExpRun >, int)
 If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.
 
virtual void boundaryFindingTearDown ()
 Put your algorithm back into a state ready for normal execution if you need to.
 
const std::vector< Calibration::ExpRun > & getRunList () const
 Get the list of runs for which calibration is called.
 
int getIteration () const
 Get current iteration.
 
std::vector< std::string > getVecInputFileNames () const
 Get the input file names used for this algorithm as a STL vector.
 
template<class T >
std::shared_ptr< T > getObjectPtr (const std::string &name, const std::vector< Calibration::ExpRun > &requestedRuns)
 Get calibration data object by name and list of runs, the Merge function will be called to generate the overall object.
 
template<class T >
std::shared_ptr< T > getObjectPtr (std::string name)
 Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.
 
template<>
shared_ptr< TTree > getObjectPtr (const string &name, const vector< ExpRun > &requestedRuns)
 We cheekily cast the TChain to TTree for the returned pointer so that the user never knows Hopefully this doesn't cause issues if people do low level stuff to the tree...
 
std::string getGranularityFromData () const
 Get the granularity of collected data.
 
void saveCalibration (TClonesArray *data, const std::string &name)
 Store DBArray payload with given name with default IOV.
 
void saveCalibration (TClonesArray *data, const std::string &name, const IntervalOfValidity &iov)
 Store DBArray with given name and custom IOV.
 
void saveCalibration (TObject *data)
 Store DB payload with default name and default IOV.
 
void saveCalibration (TObject *data, const IntervalOfValidity &iov)
 Store DB payload with default name and custom IOV.
 
void saveCalibration (TObject *data, const std::string &name)
 Store DB payload with given name with default IOV.
 
void saveCalibration (TObject *data, const std::string &name, const IntervalOfValidity &iov)
 Store DB payload with given name and custom IOV.
 
void updateDBObjPtrs (const unsigned int event, const int run, const int experiment)
 Updates any DBObjPtrs by calling update(event) for DBStore.
 
void setDescription (const std::string &description)
 Set algorithm description (in constructor)
 
void clearCalibrationData ()
 Clear calibration data.
 
Calibration::ExpRun getAllGranularityExpRun () const
 Returns the Exp,Run pair that means 'Everything'. Currently unused.
 
void resetInputJson ()
 Clears the m_inputJson member variable.
 
void resetOutputJson ()
 Clears the m_outputJson member variable.
 
template<class T >
void setOutputJsonValue (const std::string &key, const T &value)
 Set a key:value pair for the outputJson object, expected to used internally during calibrate()
 
template<class T >
const T getOutputJsonValue (const std::string &key) const
 Get a value using a key from the JSON output object, not sure why you would want to do this.
 
template<class T >
const T getInputJsonValue (const std::string &key) const
 Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.
 
const nlohmann::json & getInputJsonObject () const
 Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.
 
bool inputJsonKeyExists (const std::string &key) const
 Test for a key in the input JSON object.
 

Protected Attributes

std::vector< Calibration::ExpRun > m_boundaries
 When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.
 

Private Member Functions

std::string getExpRunString (Calibration::ExpRun &expRun) const
 Gets the "exp.run" string repr. of (exp,run)
 
std::string getFullObjectPath (const std::string &name, Calibration::ExpRun expRun) const
 constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun
 

Private Attributes

std::string m_outputName = "eclee5x5Algorithm.root"
 ..Parameters to control job to find energy calibration using Bhabhas
 
int m_minEntries = 150
 all crystals to be calibrated must have this many entries
 
std::string m_payloadName = "ECLCrystalEnergy5x5"
 Name of the payload to be stored.
 
bool m_storeConst = true
 write payload to localdb if true
 
ECL::ECLNeighboursm_eclNeighbours5x5 {nullptr}
 Neighbours, used to get nCrys per ring.
 
double m_fracLo = 0.2
 start dPhi fit where data is > fraclo*peak
 
double m_fracHiSym = 0.2
 end dPhi fit where data is > fracHiSym*peak
 
double m_fracHiASym = 0.4
 or fracHiASym*peak, at low values of thetaID
 
double m_nsigLo = 2.5
 dPhi region is mean - nsigLo*sigma
 
double m_nsigHiSym = 2.5
 to mean + nsigHiSym*sigma
 
double m_nsigHiASym = 2.0
 or mean+nsigHiASym*sigma at low thetaID
 
int m_lastLoThetaID = 4
 use asymmetric dPhi range for thetaID<= this value
 
std::vector< std::string > m_inputFileNames
 List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()
 
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
 Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.
 
std::string m_granularityOfData
 Granularity of input data. This only changes when the input files change so it isn't specific to an execution.
 
ExecutionData m_data
 Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.
 
std::string m_description {""}
 Description of the algorithm.
 
std::string m_prefix {""}
 The name of the TDirectory the collector objects are contained within.
 
nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
 Optional input JSON object used to make decisions about how to execute the algorithm code.
 
nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
 Optional output JSON object that can be set during the execution by the underlying algorithm code.
 

Static Private Attributes

static const Calibration::ExpRun m_allExpRun = make_pair(-1, -1)
 allExpRun
 

Detailed Description

Calibrate ecl crystals using Bhabha events.

Definition at line 25 of file eclee5x5Algorithm.h.

Member Enumeration Documentation

◆ EResult

enum EResult
inherited

The result of calibration.

Enumerator
c_OK 

Finished successfully =0 in Python.

c_Iterate 

Needs iteration =1 in Python.

c_NotEnoughData 

Needs more data =2 in Python.

c_Failure 

Failed =3 in Python.

c_Undefined 

Not yet known (before execution) =4 in Python.

Definition at line 40 of file CalibrationAlgorithm.h.

40 {
41 c_OK,
42 c_Iterate,
44 c_Failure,
46 };
@ c_OK
Finished successfully =0 in Python.
@ c_Iterate
Needs iteration =1 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
@ c_Undefined
Not yet known (before execution) =4 in Python.

Constructor & Destructor Documentation

◆ eclee5x5Algorithm()

..Constructor


Definition at line 30 of file eclee5x5Algorithm.cc.

30 : CalibrationAlgorithm("eclee5x5Collector")
31{
33 "Perform energy calibration of ecl crystals by analyzing energy in 25-crystal sums from Bhabha events"
34 );
35}
Base class for calibration algorithms.
void setDescription(const std::string &description)
Set algorithm description (in constructor)

◆ ~eclee5x5Algorithm()

virtual ~eclee5x5Algorithm ( )
inlinevirtual

..Destructor

Definition at line 32 of file eclee5x5Algorithm.h.

32{}

Member Function Documentation

◆ boundaryFindingSetup()

virtual void boundaryFindingSetup ( std::vector< Calibration::ExpRun >  ,
int   
)
inlineprotectedvirtualinherited

If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run, make them in this function.

Reimplemented in TestBoundarySettingAlgorithm, TestCalibrationAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 252 of file CalibrationAlgorithm.h.

252{};

◆ boundaryFindingTearDown()

virtual void boundaryFindingTearDown ( )
inlineprotectedvirtualinherited

Put your algorithm back into a state ready for normal execution if you need to.

Definition at line 257 of file CalibrationAlgorithm.h.

257{};

◆ calibrate()

CalibrationAlgorithm::EResult calibrate ( )
overrideprotectedvirtual

..Run algorithm on events


Clean up existing histograms if necessary

Put root into batch mode so that we don't try to open a graphics window


Write out the job parameters


Histograms containing the data collected by eclee5x5CollectorModule


Calculate the average expected energy per crystal and calibration constants from Collector, and mean normalized energy


Write out the basic histograms in all cases


If we have not been asked to do fits, we can quit now


Check that all crystals to be calibrated have enough statistics

Only crystals with initial calib>0 are going to be calibrated


need crystal per ring for the dPhi payloads


Ready to find new calibration constants


Expected energy payload


Single crystal energy calibration from matrix inversion


Obtain new values for dPhi* selection, either data or mc

first thetaID with enough statistics

last thetaID with enough statistics

not equal to mean at low thetaID


Invalid payload specified


Write out appropriate histograms, then delete in case algorithm is called again


Set the return code appropriately

Implements CalibrationAlgorithm.

Definition at line 37 of file eclee5x5Algorithm.cc.

38{
41 TH1F* dummy;
42 dummy = (TH1F*)gROOT->FindObject("AverageExpECrys");
43 if (dummy) {delete dummy;}
44 dummy = (TH1F*)gROOT->FindObject("AverageElecCalib");
45 if (dummy) {delete dummy;}
46 dummy = (TH1F*)gROOT->FindObject("AverageInitCalib");
47 if (dummy) {delete dummy;}
48 dummy = (TH1F*)gROOT->FindObject("meanEnvsCrysID");
49 if (dummy) {delete dummy;}
50
52 gROOT->SetBatch();
53
56 B2INFO("eclee5x5Algorithm parameters:");
57 B2INFO("outputName = " << m_outputName);
58 B2INFO("minEntries = " << m_minEntries);
59 B2INFO("payloadName = " << m_payloadName);
60 B2INFO("storeConst = " << m_storeConst);
61 if (m_payloadName == "ECLeedPhiData" or m_payloadName == "ECLeedPhiMC" or m_payloadName == "None") {
62 B2INFO("fracLo = " << m_fracLo);
63 B2INFO("fracHiSym = " << m_fracHiSym);
64 B2INFO("fracHiASym = " << m_fracHiASym);
65 B2INFO("nsigLo = " << m_nsigLo);
66 B2INFO("nsigHiSym = " << m_nsigHiSym);
67 B2INFO("nsigHiASym = " << m_nsigHiASym);
68 }
69
72 auto EnVsCrysID = getObjectPtr<TH2F>("EnVsCrysID");
73 auto RvsCrysID = getObjectPtr<TH1F>("RvsCrysID");
74 auto NRvsCrysID = getObjectPtr<TH1F>("NRvsCrysID");
75 auto Qmatrix = getObjectPtr<TH2F>("Qmatrix");
76 auto ElecCalibvsCrys = getObjectPtr<TH1F>("ElecCalibvsCrys");
77 auto ExpEvsCrys = getObjectPtr<TH1F>("ExpEvsCrys");
78 auto InitialCalibvsCrys = getObjectPtr<TH1F>("InitialCalibvsCrys");
79 auto CalibEntriesvsCrys = getObjectPtr<TH1F>("CalibEntriesvsCrys");
80 auto EntriesvsCrys = getObjectPtr<TH1F>("EntriesvsCrys");
81 auto dPhivsThetaID = getObjectPtr<TH2F>("dPhivsThetaID");
82
86 TH1F* AverageExpECrys = new TH1F("AverageExpECrys", "Average expected E per crys from collector;Crystal ID;Energy (GeV)",
89 TH1F* AverageElecCalib = new TH1F("AverageElecCalib", "Average electronics calib const vs crystal;Crystal ID;Calibration constant",
91 TH1F* AverageInitCalib = new TH1F("AverageInitCalib", "Average initial calib const vs crystal;Crystal ID;Calibration constant",
93 TH1F* meanEnvsCrysID = new TH1F("meanEnvsCrysID", "Mean normalized energy vs crystal;CrystalID;E/Eexp",
95
96 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
97 double TotEntries = CalibEntriesvsCrys->GetBinContent(cellID);
98 if (TotEntries > 0.) {
99 AverageElecCalib->SetBinContent(cellID, ElecCalibvsCrys->GetBinContent(cellID) / TotEntries);
100 AverageExpECrys->SetBinContent(cellID, ExpEvsCrys->GetBinContent(cellID) / TotEntries);
101 AverageInitCalib->SetBinContent(cellID, InitialCalibvsCrys->GetBinContent(cellID) / TotEntries);
102 }
103
104 TH1D* En = EnVsCrysID->ProjectionY("En", cellID, cellID);
105 meanEnvsCrysID->SetBinContent(cellID, En->GetMean());
106 meanEnvsCrysID->SetBinError(cellID, En->GetStdDev());
107 }
108
111 TString fName = m_outputName;
112 TFile* histfile = new TFile(fName, "recreate");
113 EnVsCrysID->Write();
114 RvsCrysID->Write();
115 NRvsCrysID->Write();
116 Qmatrix->Write();
117 AverageElecCalib->Write();
118 AverageExpECrys->Write();
119 AverageInitCalib->Write();
120 EntriesvsCrys->Write();
121 dPhivsThetaID->Write();
122 meanEnvsCrysID->Write();
123
126 if (m_payloadName == "None") {
127 B2INFO("eclee5x5Algorithm has not been asked to find constants; copying input histograms and quitting");
128 histfile->Close();
129 return c_NotEnoughData;
130 }
131
134 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
135
137 if (AverageInitCalib->GetBinContent(cellID) > 0.) {
138 if (EntriesvsCrys->GetBinContent(cellID) < m_minEntries) {
139 histfile->Close();
140 B2INFO("eclee5x5Algorithm: insufficient data for cellID = " << cellID << " " << EntriesvsCrys->GetBinContent(cellID) << " entries");
141 return c_NotEnoughData;
142 }
143 }
144 }
145
146
150
151
154 bool foundConst = false;
155 TH1F* gVsCrysID = new TH1F("gVsCrysID", "Ratio of new to old calibration vs crystal ID;crystal ID;vector g",
157 TH1F* CalibVsCrysID = new TH1F("CalibVsCrysID", "Calibration constant vs crystal ID;crystal ID;counts per GeV",
159 TH1F* ExpEnergyperCrys = new TH1F("ExpEnergyperCrys", "Expected energy per crystal;Crystal ID;Energy in 25 crystal sum (GeV)",
162 TString title = "dPhi cut per crystal " + m_payloadName + ";Crystal ID;dPhi requirement (deg)";
163 TH1F* dPhiperCrys = new TH1F("dPhiperCrys", title, ECLElementNumbers::c_NCrystals, 0, ECLElementNumbers::c_NCrystals);
164
167 if (m_payloadName == "ECLExpee5x5E") {
168 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
169 float mean = meanEnvsCrysID->GetBinContent(cellID);
170 float stdDev = meanEnvsCrysID->GetBinError(cellID);
171 float inputE = AverageExpECrys->GetBinContent(cellID);
172 if (mean > 0. and stdDev > 0.) {
173 ExpEnergyperCrys->SetBinContent(cellID, mean * abs(inputE));
174 ExpEnergyperCrys->SetBinError(cellID, stdDev * abs(inputE));
175 } else {
176 ExpEnergyperCrys->SetBinContent(cellID, inputE);
177 ExpEnergyperCrys->SetBinError(cellID, 0.05 * inputE);
178 }
179 }
180
181 //..Generate the payload, if requested
182 foundConst = true;
183 if (m_storeConst) {
184 std::vector<float> tempCalib;
185 std::vector<float> tempCalibStdDev;
186
187 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
188 tempCalib.push_back(ExpEnergyperCrys->GetBinContent(cellID));
189 tempCalibStdDev.push_back(ExpEnergyperCrys->GetBinError(cellID));
190 }
191 ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
192 ExpectedE->setCalibVector(tempCalib, tempCalibStdDev);
193 saveCalibration(ExpectedE, "ECLExpee5x5E");
194 B2INFO("eclee5x5Algorithm: successfully stored expected energies ECLExpee5x5E");
195 }
196
199 } else if (m_payloadName == "ECLCrystalEnergy5x5") {
200
201 //..Create the Q matrix and the R vector
202 TMatrixDSym matrixQ(ECLElementNumbers::c_NCrystals);
203 TVectorD vectorR(ECLElementNumbers::c_NCrystals);
204 for (int ix = 1; ix <= ECLElementNumbers::c_NCrystals; ix++) {
205 vectorR[ix - 1] = RvsCrysID->GetBinContent(ix);
206 for (int iy = 1; iy <= ECLElementNumbers::c_NCrystals; iy++) {
207 matrixQ[ix - 1][iy - 1] = Qmatrix->GetBinContent(ix, iy);
208 }
209 }
210
211 //..Crystals that are not being calibrated have no entries in NR. Adjust R and Q to get g=-1
212 int nNotCalibrated = 0;
213 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
214 if (NRvsCrysID->GetBinContent(cellID) < 0.5) {
215 for (int othercell = 1; othercell <= ECLElementNumbers::c_NCrystals; othercell++) {
216 matrixQ[cellID - 1][othercell - 1] = 0.;
217 matrixQ[othercell - 1][cellID - 1] = 0.;
218 }
219 matrixQ[cellID - 1][cellID - 1] = 1.;
220 vectorR[cellID - 1] = -1.;
221 nNotCalibrated++;
222 }
223 }
224 B2INFO("eclee5x5Algorithm: " << nNotCalibrated << " crystals will not be calibrated. ");
225
226 //..Invert to solve Q g = R
227 TDecompLU lu(matrixQ);
228 bool solved;
229 TVectorD vectorg = lu.Solve(vectorR, solved);
230
231 //..Fill histograms and check that there are no unexpected negative output values
232 if (solved) {
233 foundConst = true;
234 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
235 gVsCrysID->SetBinContent(cellID, vectorg[cellID - 1]);
236 gVsCrysID->SetBinError(cellID, 0.);
237 float newCalib = vectorg[cellID - 1] * abs(AverageInitCalib->GetBinContent(cellID));
238 CalibVsCrysID->SetBinContent(cellID, newCalib);
239 CalibVsCrysID->SetBinError(cellID, 0.);
240
241 if (vectorg[cellID - 1] < 0. and NRvsCrysID->GetBinContent(cellID) > 0.) {foundConst = false;}
242 }
243 }
244
245 //..Generate the payload if requested, and if the matrix inversion worked
246 if (m_storeConst and foundConst) {
247 std::vector<float> tempCalib;
248 std::vector<float> tempCalibStdDev;
249
250 for (int cellID = 1; cellID <= ECLElementNumbers::c_NCrystals; cellID++) {
251 tempCalib.push_back(CalibVsCrysID->GetBinContent(cellID));
252 tempCalibStdDev.push_back(CalibVsCrysID->GetBinError(cellID));
253 }
254 ECLCrystalCalib* e5x5ECalib = new ECLCrystalCalib();
255 e5x5ECalib->setCalibVector(tempCalib, tempCalibStdDev);
256 saveCalibration(e5x5ECalib, "ECLCrystalEnergyee5x5");
257 B2INFO("eclee5x5Algorithm: successfully stored calibration ECLCrystalEnergyee5x5");
258 }
259
262 } else if (m_payloadName == "ECLeedPhiData" or m_payloadName == "ECLeedPhiMC") {
263
264 //..Find mean and sigma of Gaussian fit to ThetaID projections with sufficient statistics
265 float dPhiCenter[69] = {};
266 float dPhiHalfWidth[69] = {};
267 int firstID = 0;
268 int lastID = 0;
269 const int nbins = dPhivsThetaID->GetNbinsX();
270 for (int ib = 1; ib <= nbins; ib++) {
271 TH1D* proj = dPhivsThetaID->ProjectionY("proj", ib, ib);
272 if (proj->Integral() < 100) {continue;}
273 int thetaID = (int)dPhivsThetaID->GetXaxis()->GetBinCenter(ib);
274 if (firstID == 0) { firstID = thetaID; }
275 lastID = thetaID;
276
277 //..Find the fit limits
278 double fracHi = m_fracHiSym;
279 double nsigHi = m_nsigHiSym;
280 if (thetaID <= m_lastLoThetaID) {
281 fracHi = m_fracHiASym;
282 nsigHi = m_nsigHiASym;
283 }
284
285 //..Fit range includes all bins with entries>m_fracLo*peak on the low side of the
286 // peak, and entries>m_fracHi*peak on the high side.
287 // i.e. low edge of bin on low side, high edge on high side = low edge of bin+1
288 double peak = proj->GetMaximum();
289 int nPhiBins = proj->GetNbinsX();
290 int binLo = 1;
291 do {
292 binLo++;
293 } while (proj->GetBinContent(binLo) < m_fracLo * peak and binLo < nPhiBins);
294 double xfitLo = proj->GetBinLowEdge(binLo);
295
296 //..Start search for the upper edge of the fit range at 175 deg to avoid gamma gamma
297 // and e gamma peaks
298 int binHi = proj->GetXaxis()->FindBin(175.01);
299 do {
300 binHi--;
301 } while (proj->GetBinContent(binHi)<fracHi* peak and binHi>1);
302 double xfitHi = proj->GetBinLowEdge(binHi + 1);
303
304 //..Check that the fit region is sensible
305 int peakBin = proj->GetMaximumBin();
306 if (binLo >= peakBin or binHi <= peakBin) {
307 B2ERROR("Flawed dPhi fit range for thetaID = " << thetaID << " peakBin = " << peakBin << " binLo = " << binLo << "binHi = " <<
308 binHi);
309 }
310
311 //..Now fit a Gaussian to the selected region
312 proj->Fit("gaus", "", "", xfitLo, xfitHi);
313
314 //..Find mean, sigma, and selection range. Record center and half-width of range.
315 TF1* fitGaus = proj->GetFunction("gaus");
316 float mean = fitGaus->GetParameter(1);
317 float sigma = fitGaus->GetParameter(2);
318 float dPhiLo = mean - m_nsigLo * sigma;
319 float dPhiHi = mean + nsigHi * sigma;
320 dPhiCenter[thetaID] = 0.5 * (dPhiLo + dPhiHi);
321 dPhiHalfWidth[thetaID] = 0.5 * (dPhiHi - dPhiLo);
322 }
323
324 //..Pad the thetaID's without fits with the first or last thetaID values
325 for (int thetaID = 0; thetaID < firstID; thetaID++) {
326 dPhiCenter[thetaID] = dPhiCenter[firstID];
327 dPhiHalfWidth[thetaID] = dPhiHalfWidth[firstID];
328 }
329 for (int thetaID = lastID + 1; thetaID < 69; thetaID++) {
330 dPhiCenter[thetaID] = dPhiCenter[lastID];
331 dPhiHalfWidth[thetaID] = dPhiHalfWidth[lastID];
332 }
333
334 //..Now copy these to each crystal to generate the payload and fill the output histogram.
335 // We will use ECLNeighours to get the number of crystals in each theta ring
337 std::vector<float> tempCalib;
338 std::vector<float> tempCalibWidth;
339 tempCalib.resize(ECLElementNumbers::c_NCrystals);
340 tempCalibWidth.resize(ECLElementNumbers::c_NCrystals);
341 int crysID = 0;
342 for (int thetaID = 0; thetaID < 69; thetaID++) {
343 for (int ic = 0; ic < m_eclNeighbours5x5->getCrystalsPerRing(thetaID); ic++) {
344 tempCalib.at(crysID) = dPhiCenter[thetaID];
345 tempCalibWidth.at(crysID) = dPhiHalfWidth[thetaID];
346 dPhiperCrys->SetBinContent(crysID + 1, dPhiCenter[thetaID]);
347 dPhiperCrys->SetBinError(crysID + 1, dPhiHalfWidth[thetaID]);
348 crysID++;
349 }
350 }
351
352 //..Store the payload, if requested
353 foundConst = true;
354 if (m_storeConst) {
355 ECLCrystalCalib* eedPhi = new ECLCrystalCalib();
356 eedPhi->setCalibVector(tempCalib, tempCalibWidth);
358 B2INFO("eclee5x5Algorithm: successfully stored calibration " << m_payloadName);
359 }
360
363 } else {
364 B2ERROR("eclee5x5Algorithm: invalid payload name: m_payloadName = " << m_payloadName);
365 }
366
369 histfile->cd();
370 if (m_payloadName == "ECLExpee5x5E") {
371 ExpEnergyperCrys->Write();
372 } else if (m_payloadName == "ECLCrystalEnergy5x5") {
373 gVsCrysID->Write();
374 CalibVsCrysID->Write();
375 } else if (m_payloadName == "ECLeedPhiData" or m_payloadName == "ECLeedPhiMC") {
376 dPhiperCrys->Write();
377 }
378 histfile->Close();
379
380 dummy = (TH1F*)gROOT->FindObject("gVsCrysID"); delete dummy;
381 dummy = (TH1F*)gROOT->FindObject("CalibVsCrysID"); delete dummy;
382 dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrys"); delete dummy;
383 dummy = (TH1F*)gROOT->FindObject("dPhiperCrys"); delete dummy;
384
387 if (!m_storeConst) {
388 if (foundConst) {
389 B2INFO("eclee5x5Algorithm successfully found constants but was not asked to store them");
390 } else {
391 B2INFO("eclee5x5Algorithm was not asked to store constants, and did not succeed in finding them");
392 }
393 return c_Failure;
394 } else if (!foundConst) {
395 if (m_payloadName == "ECLExpee5x5E") {
396 B2INFO("eclee5x5Algorithm: failed to store expected values");
397 } else if (m_payloadName == "ECLCrystalEnergy5x5") {
398 B2INFO("eclee5x5Algorithm: failed to store calibration constants");
399 } else if (m_payloadName == "ECLeedPhiData" or m_payloadName == "ECLeedPhiMC") {
400 B2INFO("eclee5x5Algorithm: failed to find dPhi* selection criteria");
401 }
402 return c_Failure;
403 }
404 return c_OK;
405}
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
Class to get the neighbours for a given cell id.
Definition: ECLNeighbours.h:25
short int getCrystalsPerRing(const short int thetaid) const
return number of crystals in a given theta ring
Definition: ECLNeighbours.h:39
int m_minEntries
all crystals to be calibrated must have this many entries
double m_fracHiASym
or fracHiASym*peak, at low values of thetaID
double m_fracLo
start dPhi fit where data is > fraclo*peak
double m_nsigHiASym
or mean+nsigHiASym*sigma at low thetaID
double m_nsigLo
dPhi region is mean - nsigLo*sigma
std::string m_payloadName
Name of the payload to be stored.
ECL::ECLNeighbours * m_eclNeighbours5x5
Neighbours, used to get nCrys per ring.
std::string m_outputName
..Parameters to control job to find energy calibration using Bhabhas
bool m_storeConst
write payload to localdb if true
int m_lastLoThetaID
use asymmetric dPhi range for thetaID<= this value
double m_fracHiSym
end dPhi fit where data is > fracHiSym*peak
double m_nsigHiSym
to mean + nsigHiSym*sigma
const int c_NCrystals
Number of crystals.

◆ checkPyExpRun()

bool checkPyExpRun ( PyObject *  pyObj)
inherited

Checks that a PyObject can be successfully converted to an ExpRun type.

Checks if the PyObject can be converted to ExpRun.

Definition at line 28 of file CalibrationAlgorithm.cc.

29{
30 // Is it a sequence?
31 if (PySequence_Check(pyObj)) {
32 Py_ssize_t nObj = PySequence_Length(pyObj);
33 // Does it have 2 objects in it?
34 if (nObj != 2) {
35 B2DEBUG(29, "ExpRun was a Python sequence which didn't have exactly 2 entries!");
36 return false;
37 }
38 PyObject* item1, *item2;
39 item1 = PySequence_GetItem(pyObj, 0);
40 item2 = PySequence_GetItem(pyObj, 1);
41 // Did the GetItem work?
42 if ((item1 == NULL) || (item2 == NULL)) {
43 B2DEBUG(29, "A PyObject pointer was NULL in the sequence");
44 return false;
45 }
46 // Are they longs?
47 if (PyLong_Check(item1) && PyLong_Check(item2)) {
48 long value1, value2;
49 value1 = PyLong_AsLong(item1);
50 value2 = PyLong_AsLong(item2);
51 if (((value1 == -1) || (value2 == -1)) && PyErr_Occurred()) {
52 B2DEBUG(29, "An error occurred while converting the PyLong to long");
53 return false;
54 }
55 } else {
56 B2DEBUG(29, "One or more of the PyObjects in the ExpRun wasn't a long");
57 return false;
58 }
59 // Make sure to kill off the reference GetItem gave us responsibility for
60 Py_DECREF(item1);
61 Py_DECREF(item2);
62 } else {
63 B2DEBUG(29, "ExpRun was not a Python sequence.");
64 return false;
65 }
66 return true;
67}

◆ clearCalibrationData()

void clearCalibrationData ( )
inlineprotectedinherited

Clear calibration data.

Definition at line 324 of file CalibrationAlgorithm.h.

void clearCalibrationData()
Clear calibration data.
ExecutionData m_data
Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

◆ commit() [1/2]

bool commit ( )
inherited

Submit constants from last calibration into database.

Definition at line 302 of file CalibrationAlgorithm.cc.

303{
304 if (getPayloads().empty())
305 return false;
306 list<Database::DBImportQuery> payloads = getPayloads();
307 B2INFO("Committing " << payloads.size() << " payloads to database.");
308 return Database::Instance().storeData(payloads);
309}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last execution.
static Database & Instance()
Instance of a singleton Database.
Definition: Database.cc:42
bool storeData(const std::string &name, TObject *object, const IntervalOfValidity &iov)
Store an object in the database.
Definition: Database.cc:141

◆ commit() [2/2]

bool commit ( std::list< Database::DBImportQuery payloads)
inherited

Submit constants from a (potentially previous) set of payloads.

Definition at line 311 of file CalibrationAlgorithm.cc.

312{
313 if (payloads.empty())
314 return false;
315 return Database::Instance().storeData(payloads);
316}

◆ convertPyExpRun()

ExpRun convertPyExpRun ( PyObject *  pyObj)
inherited

Performs the conversion of PyObject to ExpRun.

Converts the PyObject to an ExpRun. We've preoviously checked the object so this assumes a lot about the PyObject.

Definition at line 70 of file CalibrationAlgorithm.cc.

71{
72 ExpRun expRun;
73 PyObject* itemExp, *itemRun;
74 itemExp = PySequence_GetItem(pyObj, 0);
75 itemRun = PySequence_GetItem(pyObj, 1);
76 expRun.first = PyLong_AsLong(itemExp);
77 Py_DECREF(itemExp);
78 expRun.second = PyLong_AsLong(itemRun);
79 Py_DECREF(itemRun);
80 return expRun;
81}
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ dumpOutputJson()

const std::string dumpOutputJson ( ) const
inlineinherited

Dump the JSON string of the output JSON object.

Definition at line 223 of file CalibrationAlgorithm.h.

223{return m_jsonExecutionOutput.dump();}
nlohmann::json m_jsonExecutionOutput
Optional output JSON object that can be set during the execution by the underlying algorithm code.

◆ execute() [1/2]

CalibrationAlgorithm::EResult execute ( PyObject *  runs,
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over Python list of runs. Converts to C++ and then calls the other execute() function.

Definition at line 83 of file CalibrationAlgorithm.cc.

84{
85 B2DEBUG(29, "Running execute() using Python Object as input argument");
86 // Reset the execution specific data in case the algorithm was previously called
87 m_data.reset();
88 m_data.setIteration(iteration);
89 vector<ExpRun> vecRuns;
90 // Is it a list?
91 if (PySequence_Check(runs)) {
92 boost::python::handle<> handle(boost::python::borrowed(runs));
93 boost::python::list listRuns(handle);
94
95 int nList = boost::python::len(listRuns);
96 for (int iList = 0; iList < nList; ++iList) {
97 boost::python::object pyExpRun(listRuns[iList]);
98 if (!checkPyExpRun(pyExpRun.ptr())) {
99 B2ERROR("Received Python ExpRuns couldn't be converted to C++");
101 return c_Failure;
102 } else {
103 vecRuns.push_back(convertPyExpRun(pyExpRun.ptr()));
104 }
105 }
106 } else {
107 B2ERROR("Tried to set the input runs but we didn't receive a Python sequence object (list,tuple).");
109 return c_Failure;
110 }
111 return execute(vecRuns, iteration, iov);
112}
void setResult(EResult result)
Setter for current iteration.
void setIteration(int iteration)
Setter for current iteration.
void reset()
Resets this class back to what is needed at the beginning of an execution.
bool checkPyExpRun(PyObject *pyObj)
Checks that a PyObject can be successfully converted to an ExpRun type.
EResult execute(std::vector< Calibration::ExpRun > runs={}, int iteration=0, IntervalOfValidity iov=IntervalOfValidity())
Runs calibration over vector of runs for a given iteration.
Calibration::ExpRun convertPyExpRun(PyObject *pyObj)
Performs the conversion of PyObject to ExpRun.

◆ execute() [2/2]

CalibrationAlgorithm::EResult execute ( std::vector< Calibration::ExpRun >  runs = {},
int  iteration = 0,
IntervalOfValidity  iov = IntervalOfValidity() 
)
inherited

Runs calibration over vector of runs for a given iteration.

You can also specify the IoV to save the database payload as. By default the Algorithm will create an IoV from your requested ExpRuns, or from the overall ExpRuns of the input data if you haven't specified ExpRuns in this function.

No checks are performed to make sure that a IoV you specify matches the data you ran over, it simply labels the IoV to commit to the database later.

Definition at line 114 of file CalibrationAlgorithm.cc.

115{
116 // Check if we are calling this function directly and need to reset, or through Python where it was already done.
117 if (m_data.getResult() != c_Undefined) {
118 m_data.reset();
119 m_data.setIteration(iteration);
120 }
121
122 if (m_inputFileNames.empty()) {
123 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
125 return c_Failure;
126 }
127
128 // Did we receive runs to execute over explicitly?
129 if (!(runs.empty())) {
130 for (auto expRun : runs) {
131 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
132 }
133 // We've asked explicitly for certain runs, but we should check if the data granularity is 'run'
134 if (strcmp(getGranularity().c_str(), "all") == 0) {
135 B2ERROR(("The data is collected with granularity=all (exp=-1,run=-1), but you seem to request calibration for specific runs."
136 " We'll continue but using ALL the input data given instead of the specific runs requested."));
137 }
138 } else {
139 // If no runs are provided, infer the runs from all collected data
140 runs = getRunListFromAllData();
141 // Let's check that we have some now
142 if (runs.empty()) {
143 B2ERROR("No collected data in input files.");
145 return c_Failure;
146 }
147 for (auto expRun : runs) {
148 B2DEBUG(29, "ExpRun requested = (" << expRun.first << ", " << expRun.second << ")");
149 }
150 }
151
153 if (iov.empty()) {
154 // If no user specified IoV we use the IoV from the executed run list
155 iov = IntervalOfValidity(runs[0].first, runs[0].second, runs[runs.size() - 1].first, runs[runs.size() - 1].second);
156 }
158 // After here, the getObject<...>(...) helpers start to work
159
161 m_data.setResult(result);
162 return result;
163}
void setRequestedIov(const IntervalOfValidity &iov=IntervalOfValidity(0, 0, -1, -1))
Sets the requested IoV for this execution, based on the.
void setRequestedRuns(const std::vector< Calibration::ExpRun > &requestedRuns)
Sets the vector of ExpRuns.
EResult getResult() const
Getter for current result.
std::vector< Calibration::ExpRun > getRunListFromAllData() const
Get the complete list of runs from inspection of collected data.
std::vector< std::string > m_inputFileNames
List of input files to the Algorithm, will initially be user defined but then gets the wildcards expa...
EResult
The result of calibration.
virtual EResult calibrate()=0
Run algo on data - pure virtual: needs to be implemented.
std::string getGranularity() const
Get the granularity of collected data.
A class that describes the interval of experiments/runs for which an object in the database is valid.

◆ fillRunToInputFilesMap()

void fillRunToInputFilesMap ( )
inherited

Fill the mapping of ExpRun -> Files.

Definition at line 330 of file CalibrationAlgorithm.cc.

331{
332 m_runsToInputFiles.clear();
333 // Save TDirectory to change back at the end
334 TDirectory* dir = gDirectory;
335 RunRange* runRange;
336 // Construct the TDirectory name where we expect our objects to be
337 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
338 for (const auto& fileName : m_inputFileNames) {
339 //Open TFile to get the objects
340 unique_ptr<TFile> f;
341 f.reset(TFile::Open(fileName.c_str(), "READ"));
342 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
343 if (runRange) {
344 // Insert or extend the run -> file mapping for this ExpRun
345 auto expRuns = runRange->getExpRunSet();
346 for (const auto& expRun : expRuns) {
347 auto runFiles = m_runsToInputFiles.find(expRun);
348 if (runFiles != m_runsToInputFiles.end()) {
349 (runFiles->second).push_back(fileName);
350 } else {
351 m_runsToInputFiles.insert(std::make_pair(expRun, std::vector<std::string> {fileName}));
352 }
353 }
354 } else {
355 B2WARNING("Missing a RunRange object for file: " << fileName);
356 }
357 }
358 dir->cd();
359}
std::string getPrefix() const
Get the prefix used for getting calibration data.
std::map< Calibration::ExpRun, std::vector< std::string > > m_runsToInputFiles
Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setti...
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
const std::set< Calibration::ExpRun > & getExpRunSet()
Get access to the stored set.
Definition: RunRange.h:64

◆ findPayloadBoundaries()

const std::vector< ExpRun > findPayloadBoundaries ( std::vector< Calibration::ExpRun >  runs,
int  iteration = 0 
)
inherited

Used to discover the ExpRun boundaries that you want the Python CAF to execute on. This is optional and only used in some.

Definition at line 520 of file CalibrationAlgorithm.cc.

521{
522 m_boundaries.clear();
523 if (m_inputFileNames.empty()) {
524 B2ERROR("There aren't any input files set. Please use CalibrationAlgorithm::setInputFiles()");
525 return m_boundaries;
526 }
527 // Reset the internal execution data just in case something is hanging around
528 m_data.reset();
529 if (runs.empty()) {
530 // Want to loop over all runs we could possibly know about
531 runs = getRunListFromAllData();
532 }
533 // Let's check that we have some now
534 if (runs.empty()) {
535 B2ERROR("No collected data in input files.");
536 return m_boundaries;
537 }
538 // In order to find run boundaries we must have collected with data granularity == 'run'
539 if (strcmp(getGranularity().c_str(), "all") == 0) {
540 B2ERROR("The data is collected with granularity='all' (exp=-1,run=-1), and we can't use that to find run boundaries.");
541 return m_boundaries;
542 }
543 m_data.setIteration(iteration);
544 // User defined setup function
545 boundaryFindingSetup(runs, iteration);
546 std::vector<ExpRun> runList;
547 // Loop over run list and call derived class "isBoundaryRequired" member function
548 for (auto currentRun : runs) {
549 runList.push_back(currentRun);
550 m_data.setRequestedRuns(runList);
551 // After here, the getObject<...>(...) helpers start to work
552 if (isBoundaryRequired(currentRun)) {
553 m_boundaries.push_back(currentRun);
554 }
555 // Only want run-by-run
556 runList.clear();
557 // Don't want memory hanging around
559 }
560 m_data.reset();
562 return m_boundaries;
563}
std::vector< Calibration::ExpRun > m_boundaries
When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries...
virtual void boundaryFindingTearDown()
Put your algorithm back into a state ready for normal execution if you need to.
virtual void boundaryFindingSetup(std::vector< Calibration::ExpRun >, int)
If you need to make some changes to your algorithm class before 'findPayloadBoundaries' is run,...
virtual bool isBoundaryRequired(const Calibration::ExpRun &)
Given the current collector data, make a decision about whether or not this run should be the start o...

◆ getAllGranularityExpRun()

Calibration::ExpRun getAllGranularityExpRun ( ) const
inlineprotectedinherited

Returns the Exp,Run pair that means 'Everything'. Currently unused.

Definition at line 327 of file CalibrationAlgorithm.h.

327{return m_allExpRun;}
static const Calibration::ExpRun m_allExpRun
allExpRun

◆ getCollectorName()

std::string getCollectorName ( ) const
inlineinherited

Alias for prefix.

For convenience and less writing, we say developers to set this to default collector module name in constructor of base class. One can however use the dublets of collector+algorithm multiple times with different settings. To bind these together correctly, the prefix has to be set the same for algo and collector. So we call the setter setPrefix rather than setModuleName or whatever. This getter will work out of the box for default cases -> return the name of module you have to add to your path to collect data for this algorithm.

Definition at line 164 of file CalibrationAlgorithm.h.

164{return getPrefix();}

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Get the description of the algorithm (set by developers in constructor)

Definition at line 216 of file CalibrationAlgorithm.h.

216{return m_description;}
std::string m_description
Description of the algorithm.

◆ getExpRunString()

string getExpRunString ( Calibration::ExpRun &  expRun) const
privateinherited

Gets the "exp.run" string repr. of (exp,run)

Definition at line 254 of file CalibrationAlgorithm.cc.

255{
256 string expRunString;
257 expRunString += to_string(expRun.first);
258 expRunString += ".";
259 expRunString += to_string(expRun.second);
260 return expRunString;
261}

◆ getfracHiASym()

double getfracHiASym ( )
inline

Getter for m_fracHiASym.

Definition at line 74 of file eclee5x5Algorithm.h.

74{return m_fracHiASym;}

◆ getfracHiSym()

double getfracHiSym ( )
inline

Getter for m_fracHiSym.

Definition at line 68 of file eclee5x5Algorithm.h.

68{return m_fracHiSym;}

◆ getfracLo()

double getfracLo ( )
inline

Getter for m_fracLo.

Definition at line 62 of file eclee5x5Algorithm.h.

62{return m_fracLo;}

◆ getFullObjectPath()

string getFullObjectPath ( const std::string &  name,
Calibration::ExpRun  expRun 
) const
privateinherited

constructs the full TDirectory + Key name of an object in a TFile based on its name and exprun

Definition at line 263 of file CalibrationAlgorithm.cc.

264{
265 string dirName = getPrefix() + "/" + name;
266 string objName = name + "_" + getExpRunString(expRun);
267 return dirName + "/" + objName;
268}
std::string getExpRunString(Calibration::ExpRun &expRun) const
Gets the "exp.run" string repr. of (exp,run)

◆ getGranularity()

std::string getGranularity ( ) const
inlineinherited

Get the granularity of collected data.

Definition at line 188 of file CalibrationAlgorithm.h.

188{return m_granularityOfData;};
std::string m_granularityOfData
Granularity of input data. This only changes when the input files change so it isn't specific to an e...

◆ getGranularityFromData()

string getGranularityFromData ( ) const
protectedinherited

Get the granularity of collected data.

Definition at line 383 of file CalibrationAlgorithm.cc.

384{
385 // Save TDirectory to change back at the end
386 TDirectory* dir = gDirectory;
387 RunRange* runRange;
388 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
389 // We only check the first file
390 string fileName = m_inputFileNames[0];
391 unique_ptr<TFile> f;
392 f.reset(TFile::Open(fileName.c_str(), "READ"));
393 runRange = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
394 if (!runRange) {
395 B2FATAL("The input file " << fileName << " does not contain a RunRange object at "
396 << runRangeObjName << ". Please set your input files to exclude it.");
397 return "";
398 }
399 string granularity = runRange->getGranularity();
400 dir->cd();
401 return granularity;
402}
std::string getGranularity() const
Gets the m_granularity.
Definition: RunRange.h:110

◆ getInputFileNames()

PyObject * getInputFileNames ( )
inherited

Get the input file names used for this algorithm and pass them out as a Python list of unicode strings.

Definition at line 245 of file CalibrationAlgorithm.cc.

246{
247 PyObject* objInputFileNames = PyList_New(m_inputFileNames.size());
248 for (size_t i = 0; i < m_inputFileNames.size(); ++i) {
249 PyList_SetItem(objInputFileNames, i, Py_BuildValue("s", m_inputFileNames[i].c_str()));
250 }
251 return objInputFileNames;
252}

◆ getInputJsonObject()

const nlohmann::json & getInputJsonObject ( ) const
inlineprotectedinherited

Get the entire top level JSON object. We explicitly say this must be of object type so that we might pick.

Definition at line 357 of file CalibrationAlgorithm.h.

357{return m_jsonExecutionInput;}
nlohmann::json m_jsonExecutionInput
Optional input JSON object used to make decisions about how to execute the algorithm code.

◆ getInputJsonValue()

const T getInputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get an input JSON value using a key. The normal exceptions are raised when the key doesn't exist.

Definition at line 350 of file CalibrationAlgorithm.h.

351 {
352 return m_jsonExecutionInput.at(key);
353 }

◆ getIovFromAllData()

IntervalOfValidity getIovFromAllData ( ) const
inherited

Get the complete IoV from inspection of collected data.

Definition at line 325 of file CalibrationAlgorithm.cc.

326{
328}
RunRange getRunRangeFromAllData() const
Get the complete RunRange from inspection of collected data.
IntervalOfValidity getIntervalOfValidity()
Make IntervalOfValidity from the set, spanning all runs. Works because sets are sorted by default.
Definition: RunRange.h:70

◆ getIteration()

int getIteration ( ) const
inlineprotectedinherited

Get current iteration.

Definition at line 269 of file CalibrationAlgorithm.h.

269{ return m_data.getIteration(); }
int getIteration() const
Getter for current iteration.

◆ getlastLoThetaID()

int getlastLoThetaID ( )
inline

Getter for m_lastLoThetaID.

Definition at line 98 of file eclee5x5Algorithm.h.

98{return m_lastLoThetaID;}

◆ getMinEntries()

int getMinEntries ( )
inline

Getter for m_minEntries.

Definition at line 44 of file eclee5x5Algorithm.h.

44{return m_minEntries;}

◆ getnsigHiASym()

double getnsigHiASym ( )
inline

Getter for m_nsigHiASym.

Definition at line 92 of file eclee5x5Algorithm.h.

92{return m_nsigHiASym;}

◆ getnsigHiSym()

double getnsigHiSym ( )
inline

Getter for m_nsigHiSym.

Definition at line 86 of file eclee5x5Algorithm.h.

86{return m_nsigHiSym;}

◆ getnsigLo()

double getnsigLo ( )
inline

Getter for m_nsigLo.

Definition at line 80 of file eclee5x5Algorithm.h.

80{return m_nsigLo;}

◆ getObjectPtr()

std::shared_ptr< T > getObjectPtr ( std::string  name)
inlineprotectedinherited

Get calibration data object (for all runs the calibration is requested for) This function will only work during or after execute() has been called once.

Definition at line 285 of file CalibrationAlgorithm.h.

286 {
287 if (m_runsToInputFiles.size() == 0)
289 return getObjectPtr<T>(name, m_data.getRequestedRuns());
290 }
const std::vector< Calibration::ExpRun > & getRequestedRuns() const
Returns the vector of ExpRuns.
void fillRunToInputFilesMap()
Fill the mapping of ExpRun -> Files.

◆ getOutputJsonValue()

const T getOutputJsonValue ( const std::string &  key) const
inlineprotectedinherited

Get a value using a key from the JSON output object, not sure why you would want to do this.

Definition at line 342 of file CalibrationAlgorithm.h.

343 {
344 return m_jsonExecutionOutput.at(key);
345 }

◆ getOutputName()

std::string getOutputName ( )
inline

Getter for m_outputName.

Definition at line 38 of file eclee5x5Algorithm.h.

38{return m_outputName;}

◆ getPayloadName()

std::string getPayloadName ( )
inline

Getter for m_payloadname.

Definition at line 50 of file eclee5x5Algorithm.h.

50{return m_payloadName;}

◆ getPayloads()

std::list< Database::DBImportQuery > & getPayloads ( )
inlineinherited

Get constants (in TObjects) for database update from last execution.

Definition at line 204 of file CalibrationAlgorithm.h.

204{return m_data.getPayloads();}
std::list< Database::DBImportQuery > & getPayloads()
Get constants (in TObjects) for database update from last calibration.

◆ getPayloadValues()

std::list< Database::DBImportQuery > getPayloadValues ( )
inlineinherited

Get constants (in TObjects) for database update from last execution but passed by VALUE.

Definition at line 207 of file CalibrationAlgorithm.h.

207{return m_data.getPayloadValues();}
std::list< Database::DBImportQuery > getPayloadValues()
Get constants (in TObjects) for database update from last calibration but passed by VALUE.

◆ getPrefix()

std::string getPrefix ( ) const
inlineinherited

Get the prefix used for getting calibration data.

Definition at line 146 of file CalibrationAlgorithm.h.

146{return m_prefix;}
std::string m_prefix
The name of the TDirectory the collector objects are contained within.

◆ getRunList()

const std::vector< Calibration::ExpRun > & getRunList ( ) const
inlineprotectedinherited

Get the list of runs for which calibration is called.

Definition at line 266 of file CalibrationAlgorithm.h.

266{return m_data.getRequestedRuns();}

◆ getRunListFromAllData()

vector< ExpRun > getRunListFromAllData ( ) const
inherited

Get the complete list of runs from inspection of collected data.

Definition at line 318 of file CalibrationAlgorithm.cc.

319{
320 RunRange runRange = getRunRangeFromAllData();
321 set<ExpRun> expRunSet = runRange.getExpRunSet();
322 return vector<ExpRun>(expRunSet.begin(), expRunSet.end());
323}

◆ getRunRangeFromAllData()

RunRange getRunRangeFromAllData ( ) const
inherited

Get the complete RunRange from inspection of collected data.

Definition at line 361 of file CalibrationAlgorithm.cc.

362{
363 // Save TDirectory to change back at the end
364 TDirectory* dir = gDirectory;
365 RunRange runRange;
366 // Construct the TDirectory name where we expect our objects to be
367 string runRangeObjName(getPrefix() + "/" + RUN_RANGE_OBJ_NAME);
368 for (const auto& fileName : m_inputFileNames) {
369 //Open TFile to get the objects
370 unique_ptr<TFile> f;
371 f.reset(TFile::Open(fileName.c_str(), "READ"));
372 RunRange* runRangeOther = dynamic_cast<RunRange*>(f->Get(runRangeObjName.c_str()));
373 if (runRangeOther) {
374 runRange.merge(runRangeOther);
375 } else {
376 B2WARNING("Missing a RunRange object for file: " << fileName);
377 }
378 }
379 dir->cd();
380 return runRange;
381}
virtual void merge(const RunRange *other)
Implementation of merging - other is added to the set (union)
Definition: RunRange.h:52

◆ getStoreConst()

bool getStoreConst ( )
inline

Getter for m_storeConst.

Definition at line 56 of file eclee5x5Algorithm.h.

56{return m_storeConst;}

◆ getVecInputFileNames()

std::vector< std::string > getVecInputFileNames ( ) const
inlineprotectedinherited

Get the input file names used for this algorithm as a STL vector.

Definition at line 275 of file CalibrationAlgorithm.h.

275{return m_inputFileNames;}

◆ inputJsonKeyExists()

bool inputJsonKeyExists ( const std::string &  key) const
inlineprotectedinherited

Test for a key in the input JSON object.

Definition at line 360 of file CalibrationAlgorithm.h.

360{return m_jsonExecutionInput.count(key);}

◆ isBoundaryRequired()

virtual bool isBoundaryRequired ( const Calibration::ExpRun &  )
inlineprotectedvirtualinherited

Given the current collector data, make a decision about whether or not this run should be the start of a payload boundary.

Reimplemented in TestBoundarySettingAlgorithm, PXDAnalyticGainCalibrationAlgorithm, PXDValidationAlgorithm, TestCalibrationAlgorithm, SVD3SampleCoGTimeCalibrationAlgorithm, SVD3SampleELSTimeCalibrationAlgorithm, and SVDCoGTimeCalibrationAlgorithm.

Definition at line 243 of file CalibrationAlgorithm.h.

244 {
245 B2ERROR("You didn't implement a isBoundaryRequired() member function in your CalibrationAlgorithm but you are calling it!");
246 return false;
247 }

◆ loadInputJson()

bool loadInputJson ( const std::string &  jsonString)
inherited

Load the m_inputJson variable from a string (useful from Python interface). The return bool indicates success or failure.

Definition at line 502 of file CalibrationAlgorithm.cc.

503{
504 try {
505 auto jsonInput = nlohmann::json::parse(jsonString);
506 // Input string has an object (dict) as the top level object?
507 if (jsonInput.is_object()) {
508 m_jsonExecutionInput = jsonInput;
509 return true;
510 } else {
511 B2ERROR("JSON input string isn't an object type i.e. not a '{}' at the top level.");
512 return false;
513 }
514 } catch (nlohmann::json::parse_error&) {
515 B2ERROR("Parsing of JSON input string failed");
516 return false;
517 }
518}

◆ resetInputJson()

void resetInputJson ( )
inlineprotectedinherited

Clears the m_inputJson member variable.

Definition at line 330 of file CalibrationAlgorithm.h.

330{m_jsonExecutionInput.clear();}

◆ resetOutputJson()

void resetOutputJson ( )
inlineprotectedinherited

Clears the m_outputJson member variable.

Definition at line 333 of file CalibrationAlgorithm.h.

333{m_jsonExecutionOutput.clear();}

◆ saveCalibration() [1/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name 
)
protectedinherited

Store DBArray payload with given name with default IOV.

Definition at line 297 of file CalibrationAlgorithm.cc.

298{
300}
const IntervalOfValidity & getRequestedIov() const
Getter for requested IOV.

◆ saveCalibration() [2/6]

void saveCalibration ( TClonesArray *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DBArray with given name and custom IOV.

Definition at line 276 of file CalibrationAlgorithm.cc.

277{
278 B2DEBUG(29, "Saving calibration TClonesArray '" << name << "' to payloads list.");
279 getPayloads().emplace_back(name, data, iov);
280}

◆ saveCalibration() [3/6]

void saveCalibration ( TObject *  data)
protectedinherited

Store DB payload with default name and default IOV.

Definition at line 287 of file CalibrationAlgorithm.cc.

288{
289 saveCalibration(data, DataStore::objectName(data->IsA(), ""));
290}
static std::string objectName(const TClass *t, const std::string &name)
Return the storage name for an object of the given TClass and name.
Definition: DataStore.cc:151

◆ saveCalibration() [4/6]

void saveCalibration ( TObject *  data,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with default name and custom IOV.

Definition at line 282 of file CalibrationAlgorithm.cc.

283{
284 saveCalibration(data, DataStore::objectName(data->IsA(), ""), iov);
285}

◆ saveCalibration() [5/6]

void saveCalibration ( TObject *  data,
const std::string &  name 
)
protectedinherited

Store DB payload with given name with default IOV.

Definition at line 292 of file CalibrationAlgorithm.cc.

293{
295}

◆ saveCalibration() [6/6]

void saveCalibration ( TObject *  data,
const std::string &  name,
const IntervalOfValidity iov 
)
protectedinherited

Store DB payload with given name and custom IOV.

Definition at line 270 of file CalibrationAlgorithm.cc.

271{
272 B2DEBUG(29, "Saving calibration TObject = '" << name << "' to payloads list.");
273 getPayloads().emplace_back(name, data, iov);
274}

◆ setDescription()

void setDescription ( const std::string &  description)
inlineprotectedinherited

Set algorithm description (in constructor)

Definition at line 321 of file CalibrationAlgorithm.h.

321{m_description = description;}

◆ setfracHiASym()

void setfracHiASym ( double  fracHiASym)
inline

Setter for m_fracHiASym.

Definition at line 71 of file eclee5x5Algorithm.h.

71{m_fracHiASym = fracHiASym;}

◆ setfracHiSym()

void setfracHiSym ( double  fracHiSym)
inline

Setter for m_fracHiSym.

Definition at line 65 of file eclee5x5Algorithm.h.

65{m_fracHiSym = fracHiSym;}

◆ setfracLo()

void setfracLo ( double  fracLo)
inline

Setter for m_fracLo.

Definition at line 59 of file eclee5x5Algorithm.h.

59{m_fracLo = fracLo;}

◆ setInputFileNames() [1/2]

void setInputFileNames ( PyObject *  inputFileNames)
inherited

Set the input file names used for this algorithm from a Python list.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 166 of file CalibrationAlgorithm.cc.

167{
168 // The reasoning for this very 'manual' approach to extending the Python interface
169 // (instead of using boost::python) is down to my fear of putting off final users with
170 // complexity on their side.
171 //
172 // I didn't want users that inherit from this class to be forced to use boost and
173 // to have to define a new python module just to use the CAF. A derived class from
174 // from a boost exposed class would need to have its own boost python module definition
175 // to allow access from a steering file and to the base class functions (I think).
176 // I also couldn't be bothered to write a full framework to get around the issue in a similar
177 // way to Module()...maybe there's an easy way.
178 //
179 // But this way we can allow people to continue using their ROOT implemented classes and inherit
180 // easily from this one. But add in a few helper functions that work with Python objects
181 // created in their steering file i.e. instead of being forced to use STL objects as input
182 // to the algorithm.
183 if (PyList_Check(inputFileNames)) {
184 boost::python::handle<> handle(boost::python::borrowed(inputFileNames));
185 boost::python::list listInputFileNames(handle);
186 auto vecInputFileNames = PyObjConvUtils::convertPythonObject(listInputFileNames, vector<string>());
187 setInputFileNames(vecInputFileNames);
188 } else {
189 B2ERROR("Tried to set the input files but we didn't receive a Python list.");
190 }
191}
void setInputFileNames(PyObject *inputFileNames)
Set the input file names used for this algorithm from a Python list.
Scalar convertPythonObject(const boost::python::object &pyObject, Scalar)
Convert from Python to given type.

◆ setInputFileNames() [2/2]

void setInputFileNames ( std::vector< std::string >  inputFileNames)
protectedinherited

Set the input file names used for this algorithm.

Set the input file names used for this algorithm and resolve the wildcards.

Definition at line 194 of file CalibrationAlgorithm.cc.

195{
196 // A lot of code below is tweaked from RootInputModule::initialize,
197 // since we're basically copying the functionality anyway.
198 if (inputFileNames.empty()) {
199 B2WARNING("You have called setInputFileNames() with an empty list. Did you mean to do that?");
200 return;
201 }
202 auto tmpInputFileNames = RootIOUtilities::expandWordExpansions(inputFileNames);
203
204 // We'll use a set to enforce sorted unique file paths as we check them
205 set<string> setInputFileNames;
206 // Check that files exist and convert to absolute paths
207 for (auto path : tmpInputFileNames) {
208 string fullPath = fs::absolute(path).string();
209 if (fs::exists(fullPath)) {
210 setInputFileNames.insert(fs::canonical(fullPath).string());
211 } else {
212 B2WARNING("Couldn't find the file " << path);
213 }
214 }
215
216 if (setInputFileNames.empty()) {
217 B2WARNING("No valid files specified!");
218 return;
219 } else {
220 // Reset the run -> files map as our files are likely different
221 m_runsToInputFiles.clear();
222 }
223
224 // Open TFile to check they can be accessed by ROOT
225 TDirectory* dir = gDirectory;
226 for (const string& fileName : setInputFileNames) {
227 unique_ptr<TFile> f;
228 try {
229 f.reset(TFile::Open(fileName.c_str(), "READ"));
230 } catch (logic_error&) {
231 //this might happen for ~invaliduser/foo.root
232 //actually undefined behaviour per standard, reported as ROOT-8490 in JIRA
233 }
234 if (!f || !f->IsOpen()) {
235 B2FATAL("Couldn't open input file " + fileName);
236 }
237 }
238 dir->cd();
239
240 // Copy the entries of the set to a vector
241 m_inputFileNames = vector<string>(setInputFileNames.begin(), setInputFileNames.end());
243}
std::string getGranularityFromData() const
Get the granularity of collected data.
std::vector< std::string > expandWordExpansions(const std::vector< std::string > &filenames)
Performs wildcard expansion using wordexp(), returns matches.

◆ setlastLoThetaID()

void setlastLoThetaID ( int  lastLoThetaID)
inline

Setter for m_lastLoThetaID.

Definition at line 95 of file eclee5x5Algorithm.h.

95{m_lastLoThetaID = lastLoThetaID;}

◆ setMinEntries()

void setMinEntries ( int  minEntries)
inline

Setter for m_minEntries.

Definition at line 41 of file eclee5x5Algorithm.h.

41{m_minEntries = minEntries;}

◆ setnsigHiASym()

void setnsigHiASym ( double  nsigHiASym)
inline

Setter for m_nsigHiASym.

Definition at line 89 of file eclee5x5Algorithm.h.

89{m_nsigHiASym = nsigHiASym;}

◆ setnsigHiSym()

void setnsigHiSym ( double  nsigHiSym)
inline

Setter for m_nsigHiSym.

Definition at line 83 of file eclee5x5Algorithm.h.

83{m_nsigHiSym = nsigHiSym;}

◆ setnsigLo()

void setnsigLo ( double  nsigLo)
inline

Setter for m_nsigLo.

Definition at line 77 of file eclee5x5Algorithm.h.

77{m_nsigLo = nsigLo;}

◆ setOutputJsonValue()

void setOutputJsonValue ( const std::string &  key,
const T &  value 
)
inlineprotectedinherited

Set a key:value pair for the outputJson object, expected to used internally during calibrate()

Definition at line 337 of file CalibrationAlgorithm.h.

337{m_jsonExecutionOutput[key] = value;}

◆ setOutputName()

void setOutputName ( const std::string &  outputName)
inline

Setter for m_outputName.

Definition at line 35 of file eclee5x5Algorithm.h.

35{m_outputName = outputName;}

◆ setPayloadName()

void setPayloadName ( const std::string &  payloadname)
inline

Setter for m_payloadName.

Definition at line 47 of file eclee5x5Algorithm.h.

47{m_payloadName = payloadname;}

◆ setPrefix()

void setPrefix ( const std::string &  prefix)
inlineinherited

Set the prefix used to identify datastore objects.

Definition at line 167 of file CalibrationAlgorithm.h.

167{m_prefix = prefix;}

◆ setStoreConst()

void setStoreConst ( bool  storeConst)
inline

Setter for m_storeConst.

Definition at line 53 of file eclee5x5Algorithm.h.

53{m_storeConst = storeConst;}

◆ updateDBObjPtrs()

void updateDBObjPtrs ( const unsigned int  event = 1,
const int  run = 0,
const int  experiment = 0 
)
protectedinherited

Updates any DBObjPtrs by calling update(event) for DBStore.

Definition at line 404 of file CalibrationAlgorithm.cc.

405{
406 // Construct an EventMetaData object but NOT in the Datastore
407 EventMetaData emd(event, run, experiment);
408 // Explicitly update while avoiding registering a Datastore object
410 // Also update the intra-run objects to the event at the same time (maybe unnecessary...)
412}
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static DBStore & Instance()
Instance of a singleton DBStore.
Definition: DBStore.cc:28
void updateEvent()
Updates all intra-run dependent objects.
Definition: DBStore.cc:142
void update()
Updates all objects that are outside their interval of validity.
Definition: DBStore.cc:79

Member Data Documentation

◆ m_allExpRun

const ExpRun m_allExpRun = make_pair(-1, -1)
staticprivateinherited

allExpRun

Definition at line 364 of file CalibrationAlgorithm.h.

◆ m_boundaries

std::vector<Calibration::ExpRun> m_boundaries
protectedinherited

When using the boundaries functionality from isBoundaryRequired, this is used to store the boundaries. It is cleared when.

Definition at line 261 of file CalibrationAlgorithm.h.

◆ m_data

ExecutionData m_data
privateinherited

Data specific to a SINGLE execution of the algorithm. Gets reset at the beginning of execution.

Definition at line 382 of file CalibrationAlgorithm.h.

◆ m_description

std::string m_description {""}
privateinherited

Description of the algorithm.

Definition at line 385 of file CalibrationAlgorithm.h.

◆ m_eclNeighbours5x5

ECL::ECLNeighbours* m_eclNeighbours5x5 {nullptr}
private

Neighbours, used to get nCrys per ring.

Definition at line 113 of file eclee5x5Algorithm.h.

◆ m_fracHiASym

double m_fracHiASym = 0.4
private

or fracHiASym*peak, at low values of thetaID

Definition at line 116 of file eclee5x5Algorithm.h.

◆ m_fracHiSym

double m_fracHiSym = 0.2
private

end dPhi fit where data is > fracHiSym*peak

Definition at line 115 of file eclee5x5Algorithm.h.

◆ m_fracLo

double m_fracLo = 0.2
private

start dPhi fit where data is > fraclo*peak

Definition at line 114 of file eclee5x5Algorithm.h.

◆ m_granularityOfData

std::string m_granularityOfData
privateinherited

Granularity of input data. This only changes when the input files change so it isn't specific to an execution.

Definition at line 379 of file CalibrationAlgorithm.h.

◆ m_inputFileNames

std::vector<std::string> m_inputFileNames
privateinherited

List of input files to the Algorithm, will initially be user defined but then gets the wildcards expanded during execute()

Definition at line 373 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionInput

nlohmann::json m_jsonExecutionInput = nlohmann::json::object()
privateinherited

Optional input JSON object used to make decisions about how to execute the algorithm code.

Definition at line 397 of file CalibrationAlgorithm.h.

◆ m_jsonExecutionOutput

nlohmann::json m_jsonExecutionOutput = nlohmann::json::object()
privateinherited

Optional output JSON object that can be set during the execution by the underlying algorithm code.

Definition at line 403 of file CalibrationAlgorithm.h.

◆ m_lastLoThetaID

int m_lastLoThetaID = 4
private

use asymmetric dPhi range for thetaID<= this value

Definition at line 120 of file eclee5x5Algorithm.h.

◆ m_minEntries

int m_minEntries = 150
private

all crystals to be calibrated must have this many entries

Definition at line 109 of file eclee5x5Algorithm.h.

◆ m_nsigHiASym

double m_nsigHiASym = 2.0
private

or mean+nsigHiASym*sigma at low thetaID

Definition at line 119 of file eclee5x5Algorithm.h.

◆ m_nsigHiSym

double m_nsigHiSym = 2.5
private

to mean + nsigHiSym*sigma

Definition at line 118 of file eclee5x5Algorithm.h.

◆ m_nsigLo

double m_nsigLo = 2.5
private

dPhi region is mean - nsigLo*sigma

Definition at line 117 of file eclee5x5Algorithm.h.

◆ m_outputName

std::string m_outputName = "eclee5x5Algorithm.root"
private

..Parameters to control job to find energy calibration using Bhabhas

file name for histogram output

Definition at line 108 of file eclee5x5Algorithm.h.

◆ m_payloadName

std::string m_payloadName = "ECLCrystalEnergy5x5"
private

Name of the payload to be stored.

options: ECLCrystalEnergy5x5, ECLExpee5x5E, ECLeedPhiData, ECLeedPhiMC, or None

Definition at line 111 of file eclee5x5Algorithm.h.

◆ m_prefix

std::string m_prefix {""}
privateinherited

The name of the TDirectory the collector objects are contained within.

Definition at line 388 of file CalibrationAlgorithm.h.

◆ m_runsToInputFiles

std::map<Calibration::ExpRun, std::vector<std::string> > m_runsToInputFiles
privateinherited

Map of Runs to input files. Gets filled when you call getRunRangeFromAllData, gets cleared when setting input files again.

Definition at line 376 of file CalibrationAlgorithm.h.

◆ m_storeConst

bool m_storeConst = true
private

write payload to localdb if true

Definition at line 112 of file eclee5x5Algorithm.h.


The documentation for this class was generated from the following files: